cascadeclassifier.cpp 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;

49
#if !defined (HAVE_CUDA)
50

51 52 53
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&)  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU()  { throw_nogpu(); }
54

55 56 57
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const string&)  { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); }
58

59
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size)  { throw_nogpu(); return 0; }
60 61 62

#else

63
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
64
{
65 66
    CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
    {
67
        ncvSetDebugOutputHandler(NCVDebugOutputHandler);
68
        ncvSafeCall( load(filename) );
69 70 71 72 73 74 75 76
    }


    NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
                      /*out*/unsigned int& numDetections)
    {
        calculateMemReqsAndAllocate(src.size());
77

78 79 80
        NCVMemPtr src_beg;
        src_beg.ptr = (void*)src.ptr<Ncv8u>();
        src_beg.memtype = NCVMemoryTypeDevice;
81

82 83 84
        NCVMemSegment src_seg;
        src_seg.begin = src_beg;
        src_seg.size  = src.step * src.rows;
85

86
        NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
87
        ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
88

89 90 91 92 93 94 95 96 97 98
        CV_Assert(objects.rows == 1);

        NCVMemPtr objects_beg;
        objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
        objects_beg.memtype = NCVMemoryTypeDevice;

        NCVMemSegment objects_seg;
        objects_seg.begin = objects_beg;
        objects_seg.size = objects.step * objects.rows;
        NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
99 100
        ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);

101 102 103 104 105 106 107
        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();

        Ncv32u flags = 0;
        flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
        flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace  : 0;
108

109 110 111 112 113 114 115
        ncvStat = ncvDetectObjectsMultiScale_device(
            d_src, roi, d_rects, numDetections, haar, *h_haarStages,
            *d_haarStages, *d_haarNodes, *d_haarFeatures,
            ncvMinSize,
            minNeighbors,
            scaleStep, 1,
            flags,
116
            *gpuAllocator, *cpuAllocator, devProp, 0);
117 118
        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
119

120 121
        return NCV_SUCCESS;
    }
122 123


124 125
    NcvSize32u getClassifierSize() const  { return haar.ClassifierSize; }
    cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
126 127


128 129
private:

130

A
Anton Obukhov 已提交
131
    static void NCVDebugOutputHandler(const std::string &msg) { CV_Error(CV_GpuApiCallError, msg.c_str()); }
132

133

134
    NCVStatus load(const string& classifierFile)
135 136
    {
        int devId = cv::gpu::getDevice();
137 138 139
        ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);

        // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
140 141
        gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
        cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
142 143 144 145 146 147 148 149

        ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);

        Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
        ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);

150
        h_haarStages   = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
151 152 153 154
        h_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
        h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
155
        ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
156 157 158 159 160 161 162 163 164 165
        ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);

        ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);

        d_haarStages   = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
        d_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
        d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
166
        ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
167 168 169 170 171 172 173
        ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);

        ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
174
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
175 176 177

        return NCV_SUCCESS;
    }
178

179 180

    NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
181
    {
182
        if (lastAllocatedFrameSize == frameSize)
183
        {
184
            return NCV_SUCCESS;
185
        }
186 187

        // Calculate memory requirements and create real allocators
188 189
        NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
        NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));
190

191
        ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
192
        ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
193

194 195 196
        NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
        NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);

197
        ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
198 199
        ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

200
        NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
201 202 203 204 205 206 207
        ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();
        Ncv32u numDetections;
        ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
208
            *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
209 210 211

        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
212

213 214
        gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
        cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
215 216

        ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
217
        ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
218 219
        return NCV_SUCCESS;
    }
220

221 222 223 224

    cudaDeviceProp devProp;
    NCVStatus ncvStat;

225
    Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
226 227
    Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;

228
    Ptr<NCVVectorAlloc<HaarStage64> >           h_haarStages;
229 230 231 232 233 234 235 236 237 238 239
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         h_haarFeatures;

    HaarClassifierCascadeDescriptor haar;

    Ptr<NCVVectorAlloc<HaarStage64> >           d_haarStages;
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         d_haarFeatures;

    Size lastAllocatedFrameSize;

240
    Ptr<NCVMemStackAllocator> gpuAllocator;
241 242 243 244 245 246 247 248 249 250
    Ptr<NCVMemStackAllocator> cpuAllocator;
};


cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }

251

252
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
253
{
254 255
    release();
    impl = new CascadeClassifierImpl(filename);
256
    return !this->empty();
257 258
}

259

260
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
261
{
262
    return this->empty() ? Size() : impl->getClassifierCvSize();
263
}
264 265


266
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
267
{
268 269
    CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
    CV_Assert( !this->empty());
270

271 272
    const int defaultObjSearchNum = 100;
    if (objectsBuf.empty())
273
    {
274
        objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
275 276
    }

277
    NcvSize32u ncvMinSize = impl->getClassifierSize();
278

279 280 281 282
    if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
    {
        ncvMinSize.width = minSize.width;
        ncvMinSize.height = minSize.height;
283 284
    }

285
    unsigned int numDetections;
286
    ncvSafeCall( impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections) );
287 288

    return numDetections;
289 290
}

291

A
Anatoly Baksheev 已提交
292 293
struct RectConvert
{
294 295 296 297 298 299 300 301 302 303
    Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
    NcvRect32u operator()(const Rect& nr) const
    {
        NcvRect32u rect;
        rect.x = nr.x;
        rect.y = nr.y;
        rect.width = nr.width;
        rect.height = nr.height;
        return rect;
    }
A
Anatoly Baksheev 已提交
304 305
};

306

A
Anatoly Baksheev 已提交
307 308
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    vector<Rect> rects(hypotheses.size());
    std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());

    if (weights)
    {
        vector<int> weights_int;
        weights_int.assign(weights->begin(), weights->end());
        cv::groupRectangles(rects, weights_int, groupThreshold, eps);
    }
    else
    {
        cv::groupRectangles(rects, groupThreshold, eps);
    }
    std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
    hypotheses.resize(rects.size());
A
Anatoly Baksheev 已提交
324
}
325 326 327 328


#if 1 /* loadFromXML implementation switch */

329 330 331 332
NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
333
                      std::vector<HaarFeature64> &haarFeatures)
334
{
335 336 337 338 339 340 341
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
342
    haar.ClassifierSize.height = 0;
343 344 345 346
    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

347
    std::vector<char> xmlFileCont;
348 349 350 351

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
352
    haarFeatures.resize(0);
353

354 355
    Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
    if (oldCascade.empty())
356
    {
357
        return NCV_HAAR_XML_LOADING_EXCEPTION;
358
    }
359

360 361 362 363 364 365 366
    haar.ClassifierSize.width = oldCascade->orig_window_size.width;
    haar.ClassifierSize.height = oldCascade->orig_window_size.height;

    int stagesCound = oldCascade->count;
    for(int s = 0; s < stagesCound; ++s) // by stages
    {
        HaarStage64 curStage;
367
        curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size()));
368 369 370 371

        curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);

        int treesCount = oldCascade->stage_classifier[s].count;
372 373
        for(int t = 0; t < treesCount; ++t) // by trees
        {
374 375 376 377
            Ncv32u nodeId = 0;
            CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];

            int nodesCount = tree->count;
378 379
            for(int n = 0; n < nodesCount; ++n)  //by features
            {
380 381
                CvHaarFeature* feature = &tree->haar_feature[n];

382
                HaarClassifierNode128 curNode;
383
                curNode.setThreshold(tree->threshold[n]);
384 385 386 387

                NcvBool bIsLeftNodeLeaf = false;
                NcvBool bIsRightNodeLeaf = false;

388 389
                HaarClassifierNodeDescriptor32 nodeLeft;
                if ( tree->left[n] <= 0 )
390
                {
391 392
                    Ncv32f leftVal = tree->alpha[-tree->left[n]];
                    ncvStat = nodeLeft.create(leftVal);
393 394
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    bIsLeftNodeLeaf = true;
395 396
                }
                else
397
                {
398
                    Ncv32u leftNodeOffset = tree->left[n];
399 400 401 402
                    nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
                curNode.setLeftNodeDesc(nodeLeft);
403

404 405
                HaarClassifierNodeDescriptor32 nodeRight;
                if ( tree->right[n] <= 0 )
406 407
                {
                    Ncv32f rightVal = tree->alpha[-tree->right[n]];
408 409
                    ncvStat = nodeRight.create(rightVal);
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
410
                    bIsRightNodeLeaf = true;
411 412
                }
                else
413 414
                {
                    Ncv32u rightNodeOffset = tree->right[n];
415 416 417
                    nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
418
                curNode.setRightNodeDesc(nodeRight);
419 420

                Ncv32u tiltedVal = feature->tilted;
421
                haar.bNeedsTiltedII = (tiltedVal != 0);
422

423
                Ncv32u featureId = 0;
424
                for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
425 426
                {
                    Ncv32u rectX = feature->rect[l].r.x;
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
                    Ncv32u rectY = feature->rect[l].r.y;
                    Ncv32u rectWidth = feature->rect[l].r.width;
                    Ncv32u rectHeight = feature->rect[l].r.height;

                    Ncv32f rectWeight = feature->rect[l].weight;

                    if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
                        break;

                    HaarFeature64 curFeature;
                    ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                    curFeature.setWeight(rectWeight);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    haarFeatures.push_back(curFeature);

                    featureId++;
                }

                HaarFeatureDescriptor32 tmpFeatureDesc;
446
                ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
447
                    featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId);
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
                ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                curNode.setFeatureDesc(tmpFeatureDesc);

                if (!nodeId)
                {
                    //root node
                    haarClassifierNodes.push_back(curNode);
                    curMaxTreeDepth = 1;
                }
                else
                {
                    //other node
                    h_TmpClassifierNotRootNodes.push_back(curNode);
                    curMaxTreeDepth++;
                }

                nodeId++;
465
            }
466 467 468
        }

        curStage.setNumClassifierRootNodes(treesCount);
469
        haarStages.push_back(curStage);
470 471 472
    }

    //fill in cascade stats
473 474 475 476
    haar.NumStages = static_cast<Ncv32u>(haarStages.size());
    haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size());
    haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size());
    haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size());
477 478

    //merge root and leaf nodes in one classifiers array
479
    Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size());
480 481
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
482 483
        HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();

484
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
485
        if (!featureDesc.isLeftNodeLeaf())
486 487 488 489 490 491 492
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
493
        if (!featureDesc.isRightNodeLeaf())
494 495 496 497 498 499
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
500

501 502
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
503 504
        HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();

505
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
506
        if (!featureDesc.isLeftNodeLeaf())
507 508 509 510 511 512 513
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
514
        if (!featureDesc.isRightNodeLeaf())
515 516 517 518 519 520 521 522 523 524
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
525 526
}

527
#else /* loadFromXML implementation switch */
528

529 530 531 532 533 534 535
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"

NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
                      std::vector<HaarFeature64> &haarFeatures)
536
{
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
    haar.ClassifierSize.height = 0;
    haar.bNeedsTiltedII = false;
    haar.bHasStumpsOnly = false;

    FILE *fp;
    fopen_s(&fp, filename.c_str(), "r");
    ncvAssertReturn(fp != NULL, NCV_FILE_ERROR);

    //get file size
    fseek(fp, 0, SEEK_END);
    Ncv32u xmlSize = ftell(fp);
    fseek(fp, 0, SEEK_SET);

    //load file to vector
    std::vector<char> xmlFileCont;
    xmlFileCont.resize(xmlSize+1);
    memset(&xmlFileCont[0], 0, xmlSize+1);
    fread_s(&xmlFileCont[0], xmlSize, 1, xmlSize, fp);
    fclose(fp);

    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
    haarFeatures.resize(0);

    //XML loading and OpenCV XML classifier syntax verification
    try
    {
        rapidxml::xml_document<> doc;
        doc.parse<0>(&xmlFileCont[0]);

        //opencv_storage
        rapidxml::xml_node<> *parserGlobal = doc.first_node();
        ncvAssertReturn(!strcmp(parserGlobal->name(), "opencv_storage"), NCV_HAAR_XML_LOADING_EXCEPTION);

        //classifier type
        parserGlobal = parserGlobal->first_node();
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        rapidxml::xml_attribute<> *attr = parserGlobal->first_attribute("type_id");
        ncvAssertReturn(!strcmp(attr->value(), "opencv-haar-classifier"), NCV_HAAR_XML_LOADING_EXCEPTION);
588

589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
        //classifier size
        parserGlobal = parserGlobal->first_node("size");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        sscanf_s(parserGlobal->value(), "%d %d", &(haar.ClassifierSize.width), &(haar.ClassifierSize.height));

        //parse stages
        parserGlobal = parserGlobal->next_sibling("stages");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        parserGlobal = parserGlobal->first_node("_");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);

        while (parserGlobal)
        {
            HaarStage64 curStage;
            curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());
            Ncv32u tmpNumClassifierRootNodes = 0;

            rapidxml::xml_node<> *parserStageThreshold = parserGlobal->first_node("stage_threshold");
            ncvAssertReturn(parserStageThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
            Ncv32f tmpStageThreshold;
            sscanf_s(parserStageThreshold->value(), "%f", &tmpStageThreshold);
            curStage.setStageThreshold(tmpStageThreshold);

            //parse trees
            rapidxml::xml_node<> *parserTree;
            parserTree = parserGlobal->first_node("trees");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);
            parserTree = parserTree->first_node("_");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);

            while (parserTree)
            {
                rapidxml::xml_node<> *parserNode;
                parserNode = parserTree->first_node("_");
                ncvAssertReturn(parserNode, NCV_HAAR_XML_LOADING_EXCEPTION);
                Ncv32u nodeId = 0;

                while (parserNode)
                {
                    HaarClassifierNode128 curNode;

                    rapidxml::xml_node<> *parserNodeThreshold = parserNode->first_node("threshold");
                    ncvAssertReturn(parserNodeThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32f tmpThreshold;
                    sscanf_s(parserNodeThreshold->value(), "%f", &tmpThreshold);
                    curNode.setThreshold(tmpThreshold);

                    rapidxml::xml_node<> *parserNodeLeft = parserNode->first_node("left_val");
                    HaarClassifierNodeDescriptor32 nodeLeft;
                    if (parserNodeLeft)
                    {
                        Ncv32f leftVal;
                        sscanf_s(parserNodeLeft->value(), "%f", &leftVal);
                        ncvStat = nodeLeft.create(leftVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeLeft = parserNode->first_node("left_node");
                        ncvAssertReturn(parserNodeLeft, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u leftNodeOffset;
                        sscanf_s(parserNodeLeft->value(), "%d", &leftNodeOffset);
                        nodeLeft.create(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setLeftNodeDesc(nodeLeft);

                    rapidxml::xml_node<> *parserNodeRight = parserNode->first_node("right_val");
                    HaarClassifierNodeDescriptor32 nodeRight;
                    if (parserNodeRight)
                    {
                        Ncv32f rightVal;
                        sscanf_s(parserNodeRight->value(), "%f", &rightVal);
                        ncvStat = nodeRight.create(rightVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeRight = parserNode->first_node("right_node");
                        ncvAssertReturn(parserNodeRight, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u rightNodeOffset;
                        sscanf_s(parserNodeRight->value(), "%d", &rightNodeOffset);
                        nodeRight.create(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setRightNodeDesc(nodeRight);

                    rapidxml::xml_node<> *parserNodeFeatures = parserNode->first_node("feature");
                    ncvAssertReturn(parserNodeFeatures, NCV_HAAR_XML_LOADING_EXCEPTION);

                    rapidxml::xml_node<> *parserNodeFeaturesTilted = parserNodeFeatures->first_node("tilted");
                    ncvAssertReturn(parserNodeFeaturesTilted, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u tiltedVal;
                    sscanf_s(parserNodeFeaturesTilted->value(), "%d", &tiltedVal);
                    haar.bNeedsTiltedII = (tiltedVal != 0);

                    rapidxml::xml_node<> *parserNodeFeaturesRects = parserNodeFeatures->first_node("rects");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    parserNodeFeaturesRects = parserNodeFeaturesRects->first_node("_");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u featureId = 0;

                    while (parserNodeFeaturesRects)
                    {
                        Ncv32u rectX, rectY, rectWidth, rectHeight;
                        Ncv32f rectWeight;
                        sscanf_s(parserNodeFeaturesRects->value(), "%d %d %d %d %f", &rectX, &rectY, &rectWidth, &rectHeight, &rectWeight);
                        HaarFeature64 curFeature;
                        ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                        curFeature.setWeight(rectWeight);
                        ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                        haarFeatures.push_back(curFeature);

                        parserNodeFeaturesRects = parserNodeFeaturesRects->next_sibling("_");
                        featureId++;
                    }

                    HaarFeatureDescriptor32 tmpFeatureDesc;
                    ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    curNode.setFeatureDesc(tmpFeatureDesc);

                    if (!nodeId)
                    {
                        //root node
                        haarClassifierNodes.push_back(curNode);
                        curMaxTreeDepth = 1;
                    }
                    else
                    {
                        //other node
                        h_TmpClassifierNotRootNodes.push_back(curNode);
                        curMaxTreeDepth++;
                    }

                    parserNode = parserNode->next_sibling("_");
                    nodeId++;
                }

                parserTree = parserTree->next_sibling("_");
                tmpNumClassifierRootNodes++;
            }

            curStage.setNumClassifierRootNodes(tmpNumClassifierRootNodes);
            haarStages.push_back(curStage);

            parserGlobal = parserGlobal->next_sibling("_");
        }
    }
    catch (...)
    {
        return NCV_HAAR_XML_LOADING_EXCEPTION;
    }

    //fill in cascade stats
    haar.NumStages = haarStages.size();
    haar.NumClassifierRootNodes = haarClassifierNodes.size();
    haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
    haar.NumFeatures = haarFeatures.size();

    //merge root and leaf nodes in one classifiers array
    Ncv32u offsetRoot = haarClassifierNodes.size();
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
791 792
}

793 794 795
#endif /* loadFromXML implementation switch */

#endif /* HAVE_CUDA */