cascadeclassifier.cpp 33.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;


50
#if !defined (HAVE_CUDA)
51

52 53 54
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&)  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU()  { throw_nogpu(); }
55

56 57 58
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const string&)  { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); }
59

60
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size)  { throw_nogpu(); return 0; }
61 62 63

#else

64
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
65
{
66 67
    CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
    {
68
        ncvSetDebugOutputHandler(NCVDebugOutputHandler);
69
        ncvSafeCall( load(filename) );
70 71 72 73 74 75 76 77
    }


    NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
                      /*out*/unsigned int& numDetections)
    {
        calculateMemReqsAndAllocate(src.size());
78

79 80 81
        NCVMemPtr src_beg;
        src_beg.ptr = (void*)src.ptr<Ncv8u>();
        src_beg.memtype = NCVMemoryTypeDevice;
82

83 84 85
        NCVMemSegment src_seg;
        src_seg.begin = src_beg;
        src_seg.size  = src.step * src.rows;
86

87
        NCVMatrixReuse<Ncv8u> d_src(src_seg, static_cast<int>(devProp.textureAlignment), src.cols, src.rows, static_cast<int>(src.step), true);
88
        ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
89

90 91 92 93 94 95 96 97 98 99
        CV_Assert(objects.rows == 1);

        NCVMemPtr objects_beg;
        objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
        objects_beg.memtype = NCVMemoryTypeDevice;

        NCVMemSegment objects_seg;
        objects_seg.begin = objects_beg;
        objects_seg.size = objects.step * objects.rows;
        NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
100 101
        ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);

102 103 104 105 106 107 108
        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();

        Ncv32u flags = 0;
        flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
        flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace  : 0;
109

110 111 112 113 114 115 116
        ncvStat = ncvDetectObjectsMultiScale_device(
            d_src, roi, d_rects, numDetections, haar, *h_haarStages,
            *d_haarStages, *d_haarNodes, *d_haarFeatures,
            ncvMinSize,
            minNeighbors,
            scaleStep, 1,
            flags,
117
            *gpuAllocator, *cpuAllocator, devProp, 0);
118 119
        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
120

121 122
        return NCV_SUCCESS;
    }
123 124


125 126
    NcvSize32u getClassifierSize() const  { return haar.ClassifierSize; }
    cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
127 128


129 130
private:

131

132 133
    static void NCVDebugOutputHandler(const char* msg) { CV_Error(CV_GpuApiCallError, msg); }

134

135
    NCVStatus load(const string& classifierFile)
136 137
    {
        int devId = cv::gpu::getDevice();
138 139 140
        ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);

        // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
141 142
        gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, static_cast<int>(devProp.textureAlignment));
        cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, static_cast<int>(devProp.textureAlignment));
143 144 145 146 147 148 149 150

        ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);

        Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
        ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);

151
        h_haarStages   = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
152 153 154 155
        h_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
        h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
156
        ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
157 158 159 160 161 162 163 164 165 166
        ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);

        ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);

        d_haarStages   = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
        d_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
        d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
167
        ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
168 169 170 171 172 173 174
        ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);

        ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
175
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
176 177 178

        return NCV_SUCCESS;
    }
179

180 181

    NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
182
    {
183
        if (lastAllocatedFrameSize == frameSize)
184
        {
185
            return NCV_SUCCESS;
186
        }
187 188

        // Calculate memory requirements and create real allocators
189 190
        NCVMemStackAllocator gpuCounter(static_cast<int>(devProp.textureAlignment));
        NCVMemStackAllocator cpuCounter(static_cast<int>(devProp.textureAlignment));
191

192
        ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
193
        ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
194

195 196 197
        NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
        NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);

198
        ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
199 200
        ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

201
        NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
202 203 204 205 206 207 208
        ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();
        Ncv32u numDetections;
        ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
209
            *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
210 211 212

        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
213

214 215
        gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
        cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), static_cast<int>(devProp.textureAlignment));
216 217

        ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
218
        ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
219 220
        return NCV_SUCCESS;
    }
221

222 223 224 225

    cudaDeviceProp devProp;
    NCVStatus ncvStat;

226
    Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
227 228
    Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;

229
    Ptr<NCVVectorAlloc<HaarStage64> >           h_haarStages;
230 231 232 233 234 235 236 237 238 239 240
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         h_haarFeatures;

    HaarClassifierCascadeDescriptor haar;

    Ptr<NCVVectorAlloc<HaarStage64> >           d_haarStages;
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         d_haarFeatures;

    Size lastAllocatedFrameSize;

241
    Ptr<NCVMemStackAllocator> gpuAllocator;
242 243 244 245 246 247 248 249 250 251
    Ptr<NCVMemStackAllocator> cpuAllocator;
};


cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }

252

253
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
254
{
255 256
    release();
    impl = new CascadeClassifierImpl(filename);
257
    return !this->empty();
258 259
}

260

261
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
262
{
263
    return this->empty() ? Size() : impl->getClassifierCvSize();
264
}
265 266


267
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
268
{
269 270
    CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
    CV_Assert( !this->empty());
271

272 273
    const int defaultObjSearchNum = 100;
    if (objectsBuf.empty())
274
    {
275
        objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
276 277
    }

278
    NcvSize32u ncvMinSize = impl->getClassifierSize();
279

280 281 282 283
    if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
    {
        ncvMinSize.width = minSize.width;
        ncvMinSize.height = minSize.height;
284 285
    }

286
    unsigned int numDetections;
287
    ncvSafeCall( impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections) );
288 289

    return numDetections;
290 291
}

292

A
Anatoly Baksheev 已提交
293 294
struct RectConvert
{
295 296 297 298 299 300 301 302 303 304
    Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
    NcvRect32u operator()(const Rect& nr) const
    {
        NcvRect32u rect;
        rect.x = nr.x;
        rect.y = nr.y;
        rect.width = nr.width;
        rect.height = nr.height;
        return rect;
    }
A
Anatoly Baksheev 已提交
305 306
};

307

A
Anatoly Baksheev 已提交
308 309
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    vector<Rect> rects(hypotheses.size());
    std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());

    if (weights)
    {
        vector<int> weights_int;
        weights_int.assign(weights->begin(), weights->end());
        cv::groupRectangles(rects, weights_int, groupThreshold, eps);
    }
    else
    {
        cv::groupRectangles(rects, groupThreshold, eps);
    }
    std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
    hypotheses.resize(rects.size());
A
Anatoly Baksheev 已提交
325
}
326 327 328 329


#if 1 /* loadFromXML implementation switch */

330 331 332 333
NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
334
                      std::vector<HaarFeature64> &haarFeatures)
335
{
336 337 338 339 340 341 342
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
343
    haar.ClassifierSize.height = 0;
344 345 346 347
    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

348
    std::vector<char> xmlFileCont;
349 350 351 352

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
353
    haarFeatures.resize(0);
354

355 356
    Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
    if (oldCascade.empty())
357
    {
358
        return NCV_HAAR_XML_LOADING_EXCEPTION;
359
    }
360

361 362 363 364 365 366 367
    haar.ClassifierSize.width = oldCascade->orig_window_size.width;
    haar.ClassifierSize.height = oldCascade->orig_window_size.height;

    int stagesCound = oldCascade->count;
    for(int s = 0; s < stagesCound; ++s) // by stages
    {
        HaarStage64 curStage;
368
        curStage.setStartClassifierRootNodeOffset(static_cast<Ncv32u>(haarClassifierNodes.size()));
369 370 371 372

        curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);

        int treesCount = oldCascade->stage_classifier[s].count;
373 374
        for(int t = 0; t < treesCount; ++t) // by trees
        {
375 376 377 378
            Ncv32u nodeId = 0;
            CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];

            int nodesCount = tree->count;
379 380
            for(int n = 0; n < nodesCount; ++n)  //by features
            {
381 382
                CvHaarFeature* feature = &tree->haar_feature[n];

383
                HaarClassifierNode128 curNode;
384
                curNode.setThreshold(tree->threshold[n]);
385 386 387 388

                NcvBool bIsLeftNodeLeaf = false;
                NcvBool bIsRightNodeLeaf = false;

389 390
                HaarClassifierNodeDescriptor32 nodeLeft;
                if ( tree->left[n] <= 0 )
391
                {
392 393
                    Ncv32f leftVal = tree->alpha[-tree->left[n]];
                    ncvStat = nodeLeft.create(leftVal);
394 395
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    bIsLeftNodeLeaf = true;
396 397
                }
                else
398
                {
399
                    Ncv32u leftNodeOffset = tree->left[n];
400 401 402 403
                    nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
                curNode.setLeftNodeDesc(nodeLeft);
404

405 406
                HaarClassifierNodeDescriptor32 nodeRight;
                if ( tree->right[n] <= 0 )
407 408
                {
                    Ncv32f rightVal = tree->alpha[-tree->right[n]];
409 410
                    ncvStat = nodeRight.create(rightVal);
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
411
                    bIsRightNodeLeaf = true;
412 413
                }
                else
414 415
                {
                    Ncv32u rightNodeOffset = tree->right[n];
416 417 418
                    nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
419
                curNode.setRightNodeDesc(nodeRight);
420 421

                Ncv32u tiltedVal = feature->tilted;
422
                haar.bNeedsTiltedII = (tiltedVal != 0);
423

424
                Ncv32u featureId = 0;
425
                for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
426 427
                {
                    Ncv32u rectX = feature->rect[l].r.x;
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
                    Ncv32u rectY = feature->rect[l].r.y;
                    Ncv32u rectWidth = feature->rect[l].r.width;
                    Ncv32u rectHeight = feature->rect[l].r.height;

                    Ncv32f rectWeight = feature->rect[l].weight;

                    if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
                        break;

                    HaarFeature64 curFeature;
                    ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                    curFeature.setWeight(rectWeight);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    haarFeatures.push_back(curFeature);

                    featureId++;
                }

                HaarFeatureDescriptor32 tmpFeatureDesc;
447
                ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
448
                    featureId, static_cast<Ncv32u>(haarFeatures.size()) - featureId);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
                ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                curNode.setFeatureDesc(tmpFeatureDesc);

                if (!nodeId)
                {
                    //root node
                    haarClassifierNodes.push_back(curNode);
                    curMaxTreeDepth = 1;
                }
                else
                {
                    //other node
                    h_TmpClassifierNotRootNodes.push_back(curNode);
                    curMaxTreeDepth++;
                }

                nodeId++;
466
            }
467 468 469
        }

        curStage.setNumClassifierRootNodes(treesCount);
470
        haarStages.push_back(curStage);
471 472 473
    }

    //fill in cascade stats
474 475 476 477
    haar.NumStages = static_cast<Ncv32u>(haarStages.size());
    haar.NumClassifierRootNodes = static_cast<Ncv32u>(haarClassifierNodes.size());
    haar.NumClassifierTotalNodes = static_cast<Ncv32u>(haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size());
    haar.NumFeatures = static_cast<Ncv32u>(haarFeatures.size());
478 479

    //merge root and leaf nodes in one classifiers array
480
    Ncv32u offsetRoot = static_cast<Ncv32u>(haarClassifierNodes.size());
481 482
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
483 484
        HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();

485
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
486
        if (!featureDesc.isLeftNodeLeaf())
487 488 489 490 491 492 493
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
494
        if (!featureDesc.isRightNodeLeaf())
495 496 497 498 499 500
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
501

502 503
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
504 505
        HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();

506
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
507
        if (!featureDesc.isLeftNodeLeaf())
508 509 510 511 512 513 514
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
515
        if (!featureDesc.isRightNodeLeaf())
516 517 518 519 520 521 522 523 524 525
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
526 527
}

528
#else /* loadFromXML implementation switch */
529

530 531 532 533 534 535 536
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"

NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
                      std::vector<HaarFeature64> &haarFeatures)
537
{
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
    haar.ClassifierSize.height = 0;
    haar.bNeedsTiltedII = false;
    haar.bHasStumpsOnly = false;

    FILE *fp;
    fopen_s(&fp, filename.c_str(), "r");
    ncvAssertReturn(fp != NULL, NCV_FILE_ERROR);

    //get file size
    fseek(fp, 0, SEEK_END);
    Ncv32u xmlSize = ftell(fp);
    fseek(fp, 0, SEEK_SET);

    //load file to vector
    std::vector<char> xmlFileCont;
    xmlFileCont.resize(xmlSize+1);
    memset(&xmlFileCont[0], 0, xmlSize+1);
    fread_s(&xmlFileCont[0], xmlSize, 1, xmlSize, fp);
    fclose(fp);

    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
    haarFeatures.resize(0);

    //XML loading and OpenCV XML classifier syntax verification
    try
    {
        rapidxml::xml_document<> doc;
        doc.parse<0>(&xmlFileCont[0]);

        //opencv_storage
        rapidxml::xml_node<> *parserGlobal = doc.first_node();
        ncvAssertReturn(!strcmp(parserGlobal->name(), "opencv_storage"), NCV_HAAR_XML_LOADING_EXCEPTION);

        //classifier type
        parserGlobal = parserGlobal->first_node();
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        rapidxml::xml_attribute<> *attr = parserGlobal->first_attribute("type_id");
        ncvAssertReturn(!strcmp(attr->value(), "opencv-haar-classifier"), NCV_HAAR_XML_LOADING_EXCEPTION);
589

590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        //classifier size
        parserGlobal = parserGlobal->first_node("size");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        sscanf_s(parserGlobal->value(), "%d %d", &(haar.ClassifierSize.width), &(haar.ClassifierSize.height));

        //parse stages
        parserGlobal = parserGlobal->next_sibling("stages");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        parserGlobal = parserGlobal->first_node("_");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);

        while (parserGlobal)
        {
            HaarStage64 curStage;
            curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());
            Ncv32u tmpNumClassifierRootNodes = 0;

            rapidxml::xml_node<> *parserStageThreshold = parserGlobal->first_node("stage_threshold");
            ncvAssertReturn(parserStageThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
            Ncv32f tmpStageThreshold;
            sscanf_s(parserStageThreshold->value(), "%f", &tmpStageThreshold);
            curStage.setStageThreshold(tmpStageThreshold);

            //parse trees
            rapidxml::xml_node<> *parserTree;
            parserTree = parserGlobal->first_node("trees");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);
            parserTree = parserTree->first_node("_");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);

            while (parserTree)
            {
                rapidxml::xml_node<> *parserNode;
                parserNode = parserTree->first_node("_");
                ncvAssertReturn(parserNode, NCV_HAAR_XML_LOADING_EXCEPTION);
                Ncv32u nodeId = 0;

                while (parserNode)
                {
                    HaarClassifierNode128 curNode;

                    rapidxml::xml_node<> *parserNodeThreshold = parserNode->first_node("threshold");
                    ncvAssertReturn(parserNodeThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32f tmpThreshold;
                    sscanf_s(parserNodeThreshold->value(), "%f", &tmpThreshold);
                    curNode.setThreshold(tmpThreshold);

                    rapidxml::xml_node<> *parserNodeLeft = parserNode->first_node("left_val");
                    HaarClassifierNodeDescriptor32 nodeLeft;
                    if (parserNodeLeft)
                    {
                        Ncv32f leftVal;
                        sscanf_s(parserNodeLeft->value(), "%f", &leftVal);
                        ncvStat = nodeLeft.create(leftVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeLeft = parserNode->first_node("left_node");
                        ncvAssertReturn(parserNodeLeft, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u leftNodeOffset;
                        sscanf_s(parserNodeLeft->value(), "%d", &leftNodeOffset);
                        nodeLeft.create(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setLeftNodeDesc(nodeLeft);

                    rapidxml::xml_node<> *parserNodeRight = parserNode->first_node("right_val");
                    HaarClassifierNodeDescriptor32 nodeRight;
                    if (parserNodeRight)
                    {
                        Ncv32f rightVal;
                        sscanf_s(parserNodeRight->value(), "%f", &rightVal);
                        ncvStat = nodeRight.create(rightVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeRight = parserNode->first_node("right_node");
                        ncvAssertReturn(parserNodeRight, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u rightNodeOffset;
                        sscanf_s(parserNodeRight->value(), "%d", &rightNodeOffset);
                        nodeRight.create(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setRightNodeDesc(nodeRight);

                    rapidxml::xml_node<> *parserNodeFeatures = parserNode->first_node("feature");
                    ncvAssertReturn(parserNodeFeatures, NCV_HAAR_XML_LOADING_EXCEPTION);

                    rapidxml::xml_node<> *parserNodeFeaturesTilted = parserNodeFeatures->first_node("tilted");
                    ncvAssertReturn(parserNodeFeaturesTilted, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u tiltedVal;
                    sscanf_s(parserNodeFeaturesTilted->value(), "%d", &tiltedVal);
                    haar.bNeedsTiltedII = (tiltedVal != 0);

                    rapidxml::xml_node<> *parserNodeFeaturesRects = parserNodeFeatures->first_node("rects");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    parserNodeFeaturesRects = parserNodeFeaturesRects->first_node("_");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u featureId = 0;

                    while (parserNodeFeaturesRects)
                    {
                        Ncv32u rectX, rectY, rectWidth, rectHeight;
                        Ncv32f rectWeight;
                        sscanf_s(parserNodeFeaturesRects->value(), "%d %d %d %d %f", &rectX, &rectY, &rectWidth, &rectHeight, &rectWeight);
                        HaarFeature64 curFeature;
                        ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                        curFeature.setWeight(rectWeight);
                        ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                        haarFeatures.push_back(curFeature);

                        parserNodeFeaturesRects = parserNodeFeaturesRects->next_sibling("_");
                        featureId++;
                    }

                    HaarFeatureDescriptor32 tmpFeatureDesc;
                    ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    curNode.setFeatureDesc(tmpFeatureDesc);

                    if (!nodeId)
                    {
                        //root node
                        haarClassifierNodes.push_back(curNode);
                        curMaxTreeDepth = 1;
                    }
                    else
                    {
                        //other node
                        h_TmpClassifierNotRootNodes.push_back(curNode);
                        curMaxTreeDepth++;
                    }

                    parserNode = parserNode->next_sibling("_");
                    nodeId++;
                }

                parserTree = parserTree->next_sibling("_");
                tmpNumClassifierRootNodes++;
            }

            curStage.setNumClassifierRootNodes(tmpNumClassifierRootNodes);
            haarStages.push_back(curStage);

            parserGlobal = parserGlobal->next_sibling("_");
        }
    }
    catch (...)
    {
        return NCV_HAAR_XML_LOADING_EXCEPTION;
    }

    //fill in cascade stats
    haar.NumStages = haarStages.size();
    haar.NumClassifierRootNodes = haarClassifierNodes.size();
    haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
    haar.NumFeatures = haarFeatures.size();

    //merge root and leaf nodes in one classifiers array
    Ncv32u offsetRoot = haarClassifierNodes.size();
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
792 793
}

794 795 796
#endif /* loadFromXML implementation switch */

#endif /* HAVE_CUDA */