cascadeclassifier.cpp 33.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other GpuMaterials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#include "precomp.hpp"

using namespace cv;
using namespace cv::gpu;
using namespace std;


50
#if !defined (HAVE_CUDA)
51

52 53 54
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU()  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string&)  { throw_nogpu(); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU()  { throw_nogpu(); }
55

56 57 58
bool cv::gpu::CascadeClassifier_GPU::empty() const { throw_nogpu(); return true; }
bool cv::gpu::CascadeClassifier_GPU::load(const string&)  { throw_nogpu(); return true; }
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const { throw_nogpu(); return Size(); }
59

60
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& , GpuMat& , double , int , Size)  { throw_nogpu(); return 0; }
61 62 63

#else

64
struct cv::gpu::CascadeClassifier_GPU::CascadeClassifierImpl
65
{
66 67
    CascadeClassifierImpl(const string& filename) : lastAllocatedFrameSize(-1, -1)
    {
68
        ncvSetDebugOutputHandler(NCVDebugOutputHandler);
69
        if (ncvStat != load(filename))
70
        {
71
            CV_Error(CV_GpuApiCallError, "Error in GPU cacade load");
72 73 74 75 76 77 78 79 80
        }
    }


    NCVStatus process(const GpuMat& src, GpuMat& objects, float scaleStep, int minNeighbors,
                      bool findLargestObject, bool visualizeInPlace, NcvSize32u ncvMinSize,
                      /*out*/unsigned int& numDetections)
    {
        calculateMemReqsAndAllocate(src.size());
81

82 83 84
        NCVMemPtr src_beg;
        src_beg.ptr = (void*)src.ptr<Ncv8u>();
        src_beg.memtype = NCVMemoryTypeDevice;
85

86 87 88
        NCVMemSegment src_seg;
        src_seg.begin = src_beg;
        src_seg.size  = src.step * src.rows;
89

90 91
        NCVMatrixReuse<Ncv8u> d_src(src_seg, devProp.textureAlignment, src.cols, src.rows, src.step, true);
        ncvAssertReturn(d_src.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);
92

93 94 95 96 97 98 99 100 101 102
        CV_Assert(objects.rows == 1);

        NCVMemPtr objects_beg;
        objects_beg.ptr = (void*)objects.ptr<NcvRect32u>();
        objects_beg.memtype = NCVMemoryTypeDevice;

        NCVMemSegment objects_seg;
        objects_seg.begin = objects_beg;
        objects_seg.size = objects.step * objects.rows;
        NCVVectorReuse<NcvRect32u> d_rects(objects_seg, objects.cols);
103 104
        ncvAssertReturn(d_rects.isMemReused(), NCV_ALLOCATOR_BAD_REUSE);

105 106 107 108 109 110 111
        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();

        Ncv32u flags = 0;
        flags |= findLargestObject? NCVPipeObjDet_FindLargestObject : 0;
        flags |= visualizeInPlace ? NCVPipeObjDet_VisualizeInPlace  : 0;
112

113 114 115 116 117 118 119
        ncvStat = ncvDetectObjectsMultiScale_device(
            d_src, roi, d_rects, numDetections, haar, *h_haarStages,
            *d_haarStages, *d_haarNodes, *d_haarFeatures,
            ncvMinSize,
            minNeighbors,
            scaleStep, 1,
            flags,
120
            *gpuAllocator, *cpuAllocator, devProp, 0);
121 122
        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
123

124 125
        return NCV_SUCCESS;
    }
126 127


128 129
    NcvSize32u getClassifierSize() const  { return haar.ClassifierSize; }
    cv::Size getClassifierCvSize() const { return cv::Size(haar.ClassifierSize.width, haar.ClassifierSize.height); }
130 131


132 133
private:

134

135 136
    static void NCVDebugOutputHandler(const char* msg) { CV_Error(CV_GpuApiCallError, msg); }

137

138
    NCVStatus load(const string& classifierFile)
139 140
    {
        int devId = cv::gpu::getDevice();
141 142 143
        ncvAssertCUDAReturn(cudaGetDeviceProperties(&devProp, devId), NCV_CUDA_ERROR);

        // Load the classifier from file (assuming its size is about 1 mb) using a simple allocator
144
        gpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeDevice, devProp.textureAlignment);
145
        cpuCascadeAllocator = new NCVMemNativeAllocator(NCVMemoryTypeHostPinned, devProp.textureAlignment);
146 147 148 149 150 151 152 153

        ncvAssertPrintReturn(gpuCascadeAllocator->isInitialized(), "Error creating cascade GPU allocator", NCV_CUDA_ERROR);
        ncvAssertPrintReturn(cpuCascadeAllocator->isInitialized(), "Error creating cascade CPU allocator", NCV_CUDA_ERROR);

        Ncv32u haarNumStages, haarNumNodes, haarNumFeatures;
        ncvStat = ncvHaarGetClassifierSize(classifierFile, haarNumStages, haarNumNodes, haarNumFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error reading classifier size (check the file)", NCV_FILE_ERROR);

154
        h_haarStages   = new NCVVectorAlloc<HaarStage64>(*cpuCascadeAllocator, haarNumStages);
155 156 157 158
        h_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*cpuCascadeAllocator, haarNumNodes);
        h_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*cpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(h_haarStages->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
159
        ncvAssertPrintReturn(h_haarNodes->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);
160 161 162 163 164 165 166 167 168 169
        ncvAssertPrintReturn(h_haarFeatures->isMemAllocated(), "Error in cascade CPU allocator", NCV_CUDA_ERROR);

        ncvStat = ncvHaarLoadFromFile_host(classifierFile, haar, *h_haarStages, *h_haarNodes, *h_haarFeatures);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error loading classifier", NCV_FILE_ERROR);

        d_haarStages   = new NCVVectorAlloc<HaarStage64>(*gpuCascadeAllocator, haarNumStages);
        d_haarNodes    = new NCVVectorAlloc<HaarClassifierNode128>(*gpuCascadeAllocator, haarNumNodes);
        d_haarFeatures = new NCVVectorAlloc<HaarFeature64>(*gpuCascadeAllocator, haarNumFeatures);

        ncvAssertPrintReturn(d_haarStages->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
170
        ncvAssertPrintReturn(d_haarNodes->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);
171 172 173 174 175 176 177
        ncvAssertPrintReturn(d_haarFeatures->isMemAllocated(), "Error in cascade GPU allocator", NCV_CUDA_ERROR);

        ncvStat = h_haarStages->copySolid(*d_haarStages, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarNodes->copySolid(*d_haarNodes, 0);
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
        ncvStat = h_haarFeatures->copySolid(*d_haarFeatures, 0);
178
        ncvAssertPrintReturn(ncvStat == NCV_SUCCESS, "Error copying cascade to GPU", NCV_CUDA_ERROR);
179 180 181

        return NCV_SUCCESS;
    }
182

183 184

    NCVStatus calculateMemReqsAndAllocate(const Size& frameSize)
185
    {
186
        if (lastAllocatedFrameSize == frameSize)
187
        {
188
            return NCV_SUCCESS;
189
        }
190 191 192 193 194

        // Calculate memory requirements and create real allocators
        NCVMemStackAllocator gpuCounter(devProp.textureAlignment);
        NCVMemStackAllocator cpuCounter(devProp.textureAlignment);

195
        ncvAssertPrintReturn(gpuCounter.isInitialized(), "Error creating GPU memory counter", NCV_CUDA_ERROR);
196
        ncvAssertPrintReturn(cpuCounter.isInitialized(), "Error creating CPU memory counter", NCV_CUDA_ERROR);
197

198 199 200
        NCVMatrixAlloc<Ncv8u> d_src(gpuCounter, frameSize.width, frameSize.height);
        NCVMatrixAlloc<Ncv8u> h_src(cpuCounter, frameSize.width, frameSize.height);

201
        ncvAssertReturn(d_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);
202 203
        ncvAssertReturn(h_src.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

204
        NCVVectorAlloc<NcvRect32u> d_rects(gpuCounter, 100);
205 206 207 208 209 210 211
        ncvAssertReturn(d_rects.isMemAllocated(), NCV_ALLOCATOR_BAD_ALLOC);

        NcvSize32u roi;
        roi.width = d_src.width();
        roi.height = d_src.height();
        Ncv32u numDetections;
        ncvStat = ncvDetectObjectsMultiScale_device(d_src, roi, d_rects, numDetections, haar, *h_haarStages,
212
            *d_haarStages, *d_haarNodes, *d_haarFeatures, haar.ClassifierSize, 4, 1.2f, 1, 0, gpuCounter, cpuCounter, devProp, 0);
213 214 215

        ncvAssertReturnNcvStat(ncvStat);
        ncvAssertCUDAReturn(cudaStreamSynchronize(0), NCV_CUDA_ERROR);
216 217

        gpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeDevice, gpuCounter.maxSize(), devProp.textureAlignment);
218 219 220
        cpuAllocator = new NCVMemStackAllocator(NCVMemoryTypeHostPinned, cpuCounter.maxSize(), devProp.textureAlignment);

        ncvAssertPrintReturn(gpuAllocator->isInitialized(), "Error creating GPU memory allocator", NCV_CUDA_ERROR);
221
        ncvAssertPrintReturn(cpuAllocator->isInitialized(), "Error creating CPU memory allocator", NCV_CUDA_ERROR);
222 223
        return NCV_SUCCESS;
    }
224

225 226 227 228

    cudaDeviceProp devProp;
    NCVStatus ncvStat;

229
    Ptr<NCVMemNativeAllocator> gpuCascadeAllocator;
230 231
    Ptr<NCVMemNativeAllocator> cpuCascadeAllocator;

232
    Ptr<NCVVectorAlloc<HaarStage64> >           h_haarStages;
233 234 235 236 237 238 239 240 241 242 243
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > h_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         h_haarFeatures;

    HaarClassifierCascadeDescriptor haar;

    Ptr<NCVVectorAlloc<HaarStage64> >           d_haarStages;
    Ptr<NCVVectorAlloc<HaarClassifierNode128> > d_haarNodes;
    Ptr<NCVVectorAlloc<HaarFeature64> >         d_haarFeatures;

    Size lastAllocatedFrameSize;

244
    Ptr<NCVMemStackAllocator> gpuAllocator;
245 246 247 248 249 250 251 252 253 254
    Ptr<NCVMemStackAllocator> cpuAllocator;
};


cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU() : findLargestObject(false), visualizeInPlace(false), impl(0) {}
cv::gpu::CascadeClassifier_GPU::CascadeClassifier_GPU(const string& filename) : findLargestObject(false), visualizeInPlace(false), impl(0) { load(filename); }
cv::gpu::CascadeClassifier_GPU::~CascadeClassifier_GPU() { release(); }
bool cv::gpu::CascadeClassifier_GPU::empty() const { return impl == 0; }
void cv::gpu::CascadeClassifier_GPU::release() { if (impl) { delete impl; impl = 0; } }

255

256
bool cv::gpu::CascadeClassifier_GPU::load(const string& filename)
257
{
258 259
    release();
    impl = new CascadeClassifierImpl(filename);
260
    return !this->empty();
261 262
}

263

264
Size cv::gpu::CascadeClassifier_GPU::getClassifierSize() const
265
{
266
    return this->empty() ? Size() : impl->getClassifierCvSize();
267
}
268 269


270
int cv::gpu::CascadeClassifier_GPU::detectMultiScale( const GpuMat& image, GpuMat& objectsBuf, double scaleFactor, int minNeighbors, Size minSize)
271
{
272 273
    CV_Assert( scaleFactor > 1 && image.depth() == CV_8U);
    CV_Assert( !this->empty());
274

275 276
    const int defaultObjSearchNum = 100;
    if (objectsBuf.empty())
277
    {
278
        objectsBuf.create(1, defaultObjSearchNum, DataType<Rect>::type);
279 280
    }

281
    NcvSize32u ncvMinSize = impl->getClassifierSize();
282

283 284 285 286
    if (ncvMinSize.width < (unsigned)minSize.width && ncvMinSize.height < (unsigned)minSize.height)
    {
        ncvMinSize.width = minSize.width;
        ncvMinSize.height = minSize.height;
287 288
    }

289
    unsigned int numDetections;
290
    NCVStatus ncvStat = impl->process(image, objectsBuf, (float)scaleFactor, minNeighbors, findLargestObject, visualizeInPlace, ncvMinSize, numDetections);
291
    if (ncvStat != NCV_SUCCESS)
292
    {
293
        CV_Error(CV_GpuApiCallError, "Error in face detectioln");
294
    }
295 296

    return numDetections;
297 298
}

299

A
Anatoly Baksheev 已提交
300 301
struct RectConvert
{
302 303 304 305 306 307 308 309 310 311
    Rect operator()(const NcvRect32u& nr) const { return Rect(nr.x, nr.y, nr.width, nr.height); }
    NcvRect32u operator()(const Rect& nr) const
    {
        NcvRect32u rect;
        rect.x = nr.x;
        rect.y = nr.y;
        rect.width = nr.width;
        rect.height = nr.height;
        return rect;
    }
A
Anatoly Baksheev 已提交
312 313
};

314

A
Anatoly Baksheev 已提交
315 316
void groupRectangles(std::vector<NcvRect32u> &hypotheses, int groupThreshold, double eps, std::vector<Ncv32u> *weights)
{
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    vector<Rect> rects(hypotheses.size());
    std::transform(hypotheses.begin(), hypotheses.end(), rects.begin(), RectConvert());

    if (weights)
    {
        vector<int> weights_int;
        weights_int.assign(weights->begin(), weights->end());
        cv::groupRectangles(rects, weights_int, groupThreshold, eps);
    }
    else
    {
        cv::groupRectangles(rects, groupThreshold, eps);
    }
    std::transform(rects.begin(), rects.end(), hypotheses.begin(), RectConvert());
    hypotheses.resize(rects.size());
A
Anatoly Baksheev 已提交
332
}
333 334 335 336


#if 1 /* loadFromXML implementation switch */

337 338 339 340
NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
341
                      std::vector<HaarFeature64> &haarFeatures)
342
{
343 344 345 346 347 348 349
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
350
    haar.ClassifierSize.height = 0;
351 352 353 354
    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

355
    std::vector<char> xmlFileCont;
356 357 358 359

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
360
    haarFeatures.resize(0);
361

362 363
    Ptr<CvHaarClassifierCascade> oldCascade = (CvHaarClassifierCascade*)cvLoad(filename.c_str(), 0, 0, 0);
    if (oldCascade.empty())
364
    {
365
        return NCV_HAAR_XML_LOADING_EXCEPTION;
366
    }
367

368 369 370 371 372 373 374 375 376 377 378 379
    haar.ClassifierSize.width = oldCascade->orig_window_size.width;
    haar.ClassifierSize.height = oldCascade->orig_window_size.height;

    int stagesCound = oldCascade->count;
    for(int s = 0; s < stagesCound; ++s) // by stages
    {
        HaarStage64 curStage;
        curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());

        curStage.setStageThreshold(oldCascade->stage_classifier[s].threshold);

        int treesCount = oldCascade->stage_classifier[s].count;
380 381
        for(int t = 0; t < treesCount; ++t) // by trees
        {
382 383 384 385
            Ncv32u nodeId = 0;
            CvHaarClassifier* tree = &oldCascade->stage_classifier[s].classifier[t];

            int nodesCount = tree->count;
386 387
            for(int n = 0; n < nodesCount; ++n)  //by features
            {
388 389
                CvHaarFeature* feature = &tree->haar_feature[n];

390
                HaarClassifierNode128 curNode;
391
                curNode.setThreshold(tree->threshold[n]);
392 393 394 395

                NcvBool bIsLeftNodeLeaf = false;
                NcvBool bIsRightNodeLeaf = false;

396 397
                HaarClassifierNodeDescriptor32 nodeLeft;
                if ( tree->left[n] <= 0 )
398
                {
399 400
                    Ncv32f leftVal = tree->alpha[-tree->left[n]];
                    ncvStat = nodeLeft.create(leftVal);
401 402
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    bIsLeftNodeLeaf = true;
403 404
                }
                else
405
                {
406
                    Ncv32u leftNodeOffset = tree->left[n];
407 408 409 410
                    nodeLeft.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
                curNode.setLeftNodeDesc(nodeLeft);
411

412 413
                HaarClassifierNodeDescriptor32 nodeRight;
                if ( tree->right[n] <= 0 )
414 415
                {
                    Ncv32f rightVal = tree->alpha[-tree->right[n]];
416 417
                    ncvStat = nodeRight.create(rightVal);
                    ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
418
                    bIsRightNodeLeaf = true;
419 420
                }
                else
421 422
                {
                    Ncv32u rightNodeOffset = tree->right[n];
423 424 425
                    nodeRight.create((Ncv32u)(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1));
                    haar.bHasStumpsOnly = false;
                }
426
                curNode.setRightNodeDesc(nodeRight);
427 428

                Ncv32u tiltedVal = feature->tilted;
429
                haar.bNeedsTiltedII = (tiltedVal != 0);
430

431
                Ncv32u featureId = 0;
432
                for(int l = 0; l < CV_HAAR_FEATURE_MAX; ++l) //by rects
433 434
                {
                    Ncv32u rectX = feature->rect[l].r.x;
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
                    Ncv32u rectY = feature->rect[l].r.y;
                    Ncv32u rectWidth = feature->rect[l].r.width;
                    Ncv32u rectHeight = feature->rect[l].r.height;

                    Ncv32f rectWeight = feature->rect[l].weight;

                    if (rectWeight == 0/* && rectX == 0 &&rectY == 0 && rectWidth == 0 && rectHeight == 0*/)
                        break;

                    HaarFeature64 curFeature;
                    ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                    curFeature.setWeight(rectWeight);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    haarFeatures.push_back(curFeature);

                    featureId++;
                }

                HaarFeatureDescriptor32 tmpFeatureDesc;
454
                ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, bIsLeftNodeLeaf, bIsRightNodeLeaf,
455
                    featureId, haarFeatures.size() - featureId);
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                curNode.setFeatureDesc(tmpFeatureDesc);

                if (!nodeId)
                {
                    //root node
                    haarClassifierNodes.push_back(curNode);
                    curMaxTreeDepth = 1;
                }
                else
                {
                    //other node
                    h_TmpClassifierNotRootNodes.push_back(curNode);
                    curMaxTreeDepth++;
                }

                nodeId++;
473
            }
474 475 476
        }

        curStage.setNumClassifierRootNodes(treesCount);
477
        haarStages.push_back(curStage);
478 479 480 481 482 483 484 485 486 487 488 489
    }

    //fill in cascade stats
    haar.NumStages = haarStages.size();
    haar.NumClassifierRootNodes = haarClassifierNodes.size();
    haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
    haar.NumFeatures = haarFeatures.size();

    //merge root and leaf nodes in one classifiers array
    Ncv32u offsetRoot = haarClassifierNodes.size();
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
490 491
        HaarFeatureDescriptor32 featureDesc = haarClassifierNodes[i].getFeatureDesc();

492
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
493
        if (!featureDesc.isLeftNodeLeaf())
494 495 496 497 498 499 500
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
501
        if (!featureDesc.isRightNodeLeaf())
502 503 504 505 506 507
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
508

509 510
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
511 512
        HaarFeatureDescriptor32 featureDesc = h_TmpClassifierNotRootNodes[i].getFeatureDesc();

513
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
514
        if (!featureDesc.isLeftNodeLeaf())
515 516 517 518 519 520 521
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
522
        if (!featureDesc.isRightNodeLeaf())
523 524 525 526 527 528 529 530 531 532
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
533 534
}

535
#else /* loadFromXML implementation switch */
536

537 538 539 540 541 542 543
#include "e:/devNPP-OpenCV/src/external/_rapidxml-1.13/rapidxml.hpp"

NCVStatus loadFromXML(const std::string &filename,
                      HaarClassifierCascadeDescriptor &haar,
                      std::vector<HaarStage64> &haarStages,
                      std::vector<HaarClassifierNode128> &haarClassifierNodes,
                      std::vector<HaarFeature64> &haarFeatures)
544
{
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    NCVStatus ncvStat;

    haar.NumStages = 0;
    haar.NumClassifierRootNodes = 0;
    haar.NumClassifierTotalNodes = 0;
    haar.NumFeatures = 0;
    haar.ClassifierSize.width = 0;
    haar.ClassifierSize.height = 0;
    haar.bNeedsTiltedII = false;
    haar.bHasStumpsOnly = false;

    FILE *fp;
    fopen_s(&fp, filename.c_str(), "r");
    ncvAssertReturn(fp != NULL, NCV_FILE_ERROR);

    //get file size
    fseek(fp, 0, SEEK_END);
    Ncv32u xmlSize = ftell(fp);
    fseek(fp, 0, SEEK_SET);

    //load file to vector
    std::vector<char> xmlFileCont;
    xmlFileCont.resize(xmlSize+1);
    memset(&xmlFileCont[0], 0, xmlSize+1);
    fread_s(&xmlFileCont[0], xmlSize, 1, xmlSize, fp);
    fclose(fp);

    haar.bHasStumpsOnly = true;
    haar.bNeedsTiltedII = false;
    Ncv32u curMaxTreeDepth;

    std::vector<HaarClassifierNode128> h_TmpClassifierNotRootNodes;
    haarStages.resize(0);
    haarClassifierNodes.resize(0);
    haarFeatures.resize(0);

    //XML loading and OpenCV XML classifier syntax verification
    try
    {
        rapidxml::xml_document<> doc;
        doc.parse<0>(&xmlFileCont[0]);

        //opencv_storage
        rapidxml::xml_node<> *parserGlobal = doc.first_node();
        ncvAssertReturn(!strcmp(parserGlobal->name(), "opencv_storage"), NCV_HAAR_XML_LOADING_EXCEPTION);

        //classifier type
        parserGlobal = parserGlobal->first_node();
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        rapidxml::xml_attribute<> *attr = parserGlobal->first_attribute("type_id");
        ncvAssertReturn(!strcmp(attr->value(), "opencv-haar-classifier"), NCV_HAAR_XML_LOADING_EXCEPTION);
596

597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
        //classifier size
        parserGlobal = parserGlobal->first_node("size");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        sscanf_s(parserGlobal->value(), "%d %d", &(haar.ClassifierSize.width), &(haar.ClassifierSize.height));

        //parse stages
        parserGlobal = parserGlobal->next_sibling("stages");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);
        parserGlobal = parserGlobal->first_node("_");
        ncvAssertReturn(parserGlobal, NCV_HAAR_XML_LOADING_EXCEPTION);

        while (parserGlobal)
        {
            HaarStage64 curStage;
            curStage.setStartClassifierRootNodeOffset(haarClassifierNodes.size());
            Ncv32u tmpNumClassifierRootNodes = 0;

            rapidxml::xml_node<> *parserStageThreshold = parserGlobal->first_node("stage_threshold");
            ncvAssertReturn(parserStageThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
            Ncv32f tmpStageThreshold;
            sscanf_s(parserStageThreshold->value(), "%f", &tmpStageThreshold);
            curStage.setStageThreshold(tmpStageThreshold);

            //parse trees
            rapidxml::xml_node<> *parserTree;
            parserTree = parserGlobal->first_node("trees");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);
            parserTree = parserTree->first_node("_");
            ncvAssertReturn(parserTree, NCV_HAAR_XML_LOADING_EXCEPTION);

            while (parserTree)
            {
                rapidxml::xml_node<> *parserNode;
                parserNode = parserTree->first_node("_");
                ncvAssertReturn(parserNode, NCV_HAAR_XML_LOADING_EXCEPTION);
                Ncv32u nodeId = 0;

                while (parserNode)
                {
                    HaarClassifierNode128 curNode;

                    rapidxml::xml_node<> *parserNodeThreshold = parserNode->first_node("threshold");
                    ncvAssertReturn(parserNodeThreshold, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32f tmpThreshold;
                    sscanf_s(parserNodeThreshold->value(), "%f", &tmpThreshold);
                    curNode.setThreshold(tmpThreshold);

                    rapidxml::xml_node<> *parserNodeLeft = parserNode->first_node("left_val");
                    HaarClassifierNodeDescriptor32 nodeLeft;
                    if (parserNodeLeft)
                    {
                        Ncv32f leftVal;
                        sscanf_s(parserNodeLeft->value(), "%f", &leftVal);
                        ncvStat = nodeLeft.create(leftVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeLeft = parserNode->first_node("left_node");
                        ncvAssertReturn(parserNodeLeft, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u leftNodeOffset;
                        sscanf_s(parserNodeLeft->value(), "%d", &leftNodeOffset);
                        nodeLeft.create(h_TmpClassifierNotRootNodes.size() + leftNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setLeftNodeDesc(nodeLeft);

                    rapidxml::xml_node<> *parserNodeRight = parserNode->first_node("right_val");
                    HaarClassifierNodeDescriptor32 nodeRight;
                    if (parserNodeRight)
                    {
                        Ncv32f rightVal;
                        sscanf_s(parserNodeRight->value(), "%f", &rightVal);
                        ncvStat = nodeRight.create(rightVal);
                        ncvAssertReturn(ncvStat == NCV_SUCCESS, ncvStat);
                    }
                    else
                    {
                        parserNodeRight = parserNode->first_node("right_node");
                        ncvAssertReturn(parserNodeRight, NCV_HAAR_XML_LOADING_EXCEPTION);
                        Ncv32u rightNodeOffset;
                        sscanf_s(parserNodeRight->value(), "%d", &rightNodeOffset);
                        nodeRight.create(h_TmpClassifierNotRootNodes.size() + rightNodeOffset - 1);
                        haar.bHasStumpsOnly = false;
                    }
                    curNode.setRightNodeDesc(nodeRight);

                    rapidxml::xml_node<> *parserNodeFeatures = parserNode->first_node("feature");
                    ncvAssertReturn(parserNodeFeatures, NCV_HAAR_XML_LOADING_EXCEPTION);

                    rapidxml::xml_node<> *parserNodeFeaturesTilted = parserNodeFeatures->first_node("tilted");
                    ncvAssertReturn(parserNodeFeaturesTilted, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u tiltedVal;
                    sscanf_s(parserNodeFeaturesTilted->value(), "%d", &tiltedVal);
                    haar.bNeedsTiltedII = (tiltedVal != 0);

                    rapidxml::xml_node<> *parserNodeFeaturesRects = parserNodeFeatures->first_node("rects");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    parserNodeFeaturesRects = parserNodeFeaturesRects->first_node("_");
                    ncvAssertReturn(parserNodeFeaturesRects, NCV_HAAR_XML_LOADING_EXCEPTION);
                    Ncv32u featureId = 0;

                    while (parserNodeFeaturesRects)
                    {
                        Ncv32u rectX, rectY, rectWidth, rectHeight;
                        Ncv32f rectWeight;
                        sscanf_s(parserNodeFeaturesRects->value(), "%d %d %d %d %f", &rectX, &rectY, &rectWidth, &rectHeight, &rectWeight);
                        HaarFeature64 curFeature;
                        ncvStat = curFeature.setRect(rectX, rectY, rectWidth, rectHeight, haar.ClassifierSize.width, haar.ClassifierSize.height);
                        curFeature.setWeight(rectWeight);
                        ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                        haarFeatures.push_back(curFeature);

                        parserNodeFeaturesRects = parserNodeFeaturesRects->next_sibling("_");
                        featureId++;
                    }

                    HaarFeatureDescriptor32 tmpFeatureDesc;
                    ncvStat = tmpFeatureDesc.create(haar.bNeedsTiltedII, featureId, haarFeatures.size() - featureId);
                    ncvAssertReturn(NCV_SUCCESS == ncvStat, ncvStat);
                    curNode.setFeatureDesc(tmpFeatureDesc);

                    if (!nodeId)
                    {
                        //root node
                        haarClassifierNodes.push_back(curNode);
                        curMaxTreeDepth = 1;
                    }
                    else
                    {
                        //other node
                        h_TmpClassifierNotRootNodes.push_back(curNode);
                        curMaxTreeDepth++;
                    }

                    parserNode = parserNode->next_sibling("_");
                    nodeId++;
                }

                parserTree = parserTree->next_sibling("_");
                tmpNumClassifierRootNodes++;
            }

            curStage.setNumClassifierRootNodes(tmpNumClassifierRootNodes);
            haarStages.push_back(curStage);

            parserGlobal = parserGlobal->next_sibling("_");
        }
    }
    catch (...)
    {
        return NCV_HAAR_XML_LOADING_EXCEPTION;
    }

    //fill in cascade stats
    haar.NumStages = haarStages.size();
    haar.NumClassifierRootNodes = haarClassifierNodes.size();
    haar.NumClassifierTotalNodes = haar.NumClassifierRootNodes + h_TmpClassifierNotRootNodes.size();
    haar.NumFeatures = haarFeatures.size();

    //merge root and leaf nodes in one classifiers array
    Ncv32u offsetRoot = haarClassifierNodes.size();
    for (Ncv32u i=0; i<haarClassifierNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = haarClassifierNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        haarClassifierNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = haarClassifierNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        haarClassifierNodes[i].setRightNodeDesc(nodeRight);
    }
    for (Ncv32u i=0; i<h_TmpClassifierNotRootNodes.size(); i++)
    {
        HaarClassifierNodeDescriptor32 nodeLeft = h_TmpClassifierNotRootNodes[i].getLeftNodeDesc();
        if (!nodeLeft.isLeaf())
        {
            Ncv32u newOffset = nodeLeft.getNextNodeOffset() + offsetRoot;
            nodeLeft.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setLeftNodeDesc(nodeLeft);

        HaarClassifierNodeDescriptor32 nodeRight = h_TmpClassifierNotRootNodes[i].getRightNodeDesc();
        if (!nodeRight.isLeaf())
        {
            Ncv32u newOffset = nodeRight.getNextNodeOffset() + offsetRoot;
            nodeRight.create(newOffset);
        }
        h_TmpClassifierNotRootNodes[i].setRightNodeDesc(nodeRight);

        haarClassifierNodes.push_back(h_TmpClassifierNotRootNodes[i]);
    }

    return NCV_SUCCESS;
799 800
}

801 802 803
#endif /* loadFromXML implementation switch */

#endif /* HAVE_CUDA */