operations_on_arrays.rst 141.2 KB
Newer Older
1 2 3 4 5
Operations on Arrays
====================

.. highlight:: cpp

6
abs
7
---
8
Calculates an absolute value of each matrix element.
9

10 11
.. ocv:function:: MatExpr abs( const Mat& m )
.. ocv:function:: MatExpr abs( const MatExpr& e )
12

13 14
    :param m: matrix.
    :param e: matrix expression.
15

16
``abs`` is a meta-function that is expanded to one of :ocv:func:`absdiff` forms:
17

18
    * ``C = abs(A-B)``     is equivalent to ``absdiff(A, B, C)``
19

20
    * ``C = abs(A)``     is equivalent to ``absdiff(A, Scalar::all(0), C)``
21

22
    * ``C = Mat_<Vec<uchar,n> >(abs(A*alpha + beta))``     is equivalent to :ocv:funcx:`convertScaleAbs` (A, C, alpha, beta)
23

24
The output matrix has the same size and the same type as the input one except for the last case, where ``C`` is ``depth=CV_8U`` .
25

26
    .. seealso:: :ref:`MatrixExpressions`, :ocv:func:`absdiff`
V
Vadim Pisarevsky 已提交
27

28

29
absdiff
30 31
-------
Calculates the per-element absolute difference between two arrays or between an array and a scalar.
32

33
.. ocv:function:: void absdiff(InputArray src1, InputArray src2, OutputArray dst)
34

35 36 37 38 39 40
.. ocv:pyfunction:: cv2.absdiff(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value)
.. ocv:pyoldfunction:: cv.AbsDiff(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.AbsDiffS(src, dst, value)-> None
41

42
    :param src1: first input array or a scalar.
43

44
    :param src2: second input array or a scalar.
45

46
    :param dst: output array that has the same size and type as input arrays.
47

48
The function ``absdiff`` calculates:
49

50 51
 *
    Absolute difference between two arrays when they have the same size and type:
52

53
    .. math::
54

55
        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)
56

57 58
 *
    Absolute difference between an array and a scalar when the second array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src1``:
59

60
    .. math::
61

62
        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)
63

64 65 66 67 68 69
 *
    Absolute difference between a scalar and an array when the first array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src2``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)
70

71
    where  ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
72

73
.. note:: Saturation is not applied when the arrays have the depth ``CV_32S``. You may even get a negative value in the case of overflow.
74

75
.. seealso:: :ocv:func:`abs`
V
Vadim Pisarevsky 已提交
76

77

78
add
79
---
80

81
Calculates the per-element sum of two arrays or an array and a scalar.
82 83

.. ocv:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
84 85 86 87 88 89 90

.. ocv:pyfunction:: cv2.add(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Add(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AddS(src, value, dst, mask=None)-> None
91

92
    :param src1: first input array or a scalar.
93

94
    :param src2: second input array or a scalar.
95

96
    :param dst: output array that has the same size and number of channels as the input array(s); the depth is defined by ``dtype`` or ``src1``/``src2``.
97

98
    :param mask: optional operation mask – 8-bit single channel array, that specifies elements of the output array to be changed.
99

100
    :param dtype: optional depth of the output array (see the discussion below).
101

102
The function ``add`` calculates:
103

104 105
 *
    Sum of two arrays when both input arrays have the same size and the same number of channels:
V
Vadim Pisarevsky 已提交
106

107
    .. math::
V
Vadim Pisarevsky 已提交
108

109
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
110

111 112
 *
    Sum of an array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
113 114 115 116 117

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0

118 119
 *
    Sum of a scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
120

V
Vadim Pisarevsky 已提交
121
    .. math::
122

123
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
124

125
    where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
126

127
The first function in the list above can be replaced with matrix expressions: ::
128 129 130

    dst = src1 + src2;
    dst += src1; // equivalent to add(dst, src1, dst);
131

132
The input arrays and the output array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case, the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
133

134 135
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

136
.. seealso::
137

138 139 140
    :ocv:func:`subtract`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
141
    :ocv:func:`Mat::convertTo`,
142 143
    :ref:`MatrixExpressions`

144 145


146
addWeighted
147 148
-----------
Calculates the weighted sum of two arrays.
149

150
.. ocv:function:: void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1)
151

152 153 154 155
.. ocv:pyfunction:: cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvAddWeighted(const CvArr* src1, double alpha, const CvArr* src2, double beta, double gamma, CvArr* dst)
.. ocv:pyoldfunction:: cv.AddWeighted(src1, alpha, src2, beta, gamma, dst)-> None
156

157
    :param src1: first input array.
158

159
    :param alpha: weight of the first array elements.
160

161
    :param src2: second input array of the same size and channel number as  ``src1``.
162

163
    :param beta: weight of the second array elements.
164

165
    :param dst: output array that has the same size and number of channels as the input arrays.
166

167
    :param gamma: scalar added to each sum.
168

169
    :param dtype: optional depth of the output array; when both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.
170

171
The function ``addWeighted`` calculates the weighted sum of two arrays as follows:
172 173 174

.. math::

V
Vadim Pisarevsky 已提交
175
    \texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )
176

177
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
178

179
The function can be replaced with a matrix expression: ::
180 181

    dst = src1*alpha + src2*beta + gamma;
182

183
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.
184

185 186
.. seealso::

187 188 189
    :ocv:func:`add`,
    :ocv:func:`subtract`,
    :ocv:func:`scaleAdd`,
190
    :ocv:func:`Mat::convertTo`,
191 192
    :ref:`MatrixExpressions`

193 194 195 196


bitwise_and
-----------
197 198
Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

199
.. ocv:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
200

201 202 203 204 205 206
.. ocv:pyfunction:: cv2.bitwise_and(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.And(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AndS(src, value, dst, mask=None)-> None
207

208
    :param src1: first input array or a scalar.
209

210
    :param src2: second input array or a scalar.
211

212
    :param dst: output array that has the same size and type as the input arrays.
213

214
    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
215

216
The function calculates the per-element bit-wise logical conjunction for:
217

218 219
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
220

221
    .. math::
V
Vadim Pisarevsky 已提交
222 223

        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
224

225 226
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
227

228
    .. math::
V
Vadim Pisarevsky 已提交
229

230
        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
231

232 233
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
234 235 236 237

    .. math::

        \texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
238 239


240
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
241

242

V
Vadim Pisarevsky 已提交
243

244 245
bitwise_not
-----------
246 247
Inverts every bit of an array.

248
.. ocv:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())
249

250 251 252 253
.. ocv:pyfunction:: cv2.bitwise_not(src[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvNot(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Not(src, dst)-> None
254

255
    :param src: input array.
256

257
    :param dst: output array that has the same size and type as the input array.
258

259
    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
260

261
The function calculates per-element bit-wise inversion of the input array:
262 263 264

.. math::

V
Vadim Pisarevsky 已提交
265
    \texttt{dst} (I) =  \neg \texttt{src} (I)
266

267
In case of a floating-point input array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.
268

269

270 271 272

bitwise_or
----------
273 274
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

275
.. ocv:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
276

277 278 279 280 281 282
.. ocv:pyfunction:: cv2.bitwise_or(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Or(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.OrS(src, value, dst, mask=None)-> None
283

284
    :param src1: first input array or a scalar.
285

286
    :param src2: second input array or a scalar.
287

288
    :param dst: output array that has the same size and type as the input arrays.
289

290
    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
291

292
The function calculates the per-element bit-wise logical disjunction for:
293

294 295
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
296

297
        .. math::
V
Vadim Pisarevsky 已提交
298

299
            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
300

301 302
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
303

304
        .. math::
V
Vadim Pisarevsky 已提交
305

306
            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
307

308 309
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
310

311
        .. math::
312

313 314 315
            \texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


316
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
317

318

319 320
bitwise_xor
-----------
321 322
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.

323
.. ocv:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
324

325 326 327 328 329 330
.. ocv:pyfunction:: cv2.bitwise_xor(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Xor(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.XorS(src, value, dst, mask=None)-> None
331

332
    :param src1: first input array or a scalar.
333

334
    :param src2: second input array or a scalar.
335

336
    :param dst: output array that has the same size and type as the input arrays.
337

338
    :param mask: optional operation mask, 8-bit single channel array, that specifies elements of the output array to be changed.
339

340
The function calculates the per-element bit-wise logical "exclusive-or" operation for:
341

342 343
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
344

345
        .. math::
V
Vadim Pisarevsky 已提交
346

347
            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
348

349 350
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
351

352
        .. math::
V
Vadim Pisarevsky 已提交
353

354
            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
355

356 357
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
358

359 360 361 362 363
        .. math::

            \texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


364
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.
365

366

367
calcCovarMatrix
V
Vadim Pisarevsky 已提交
368
---------------
369
Calculates the covariance matrix of a set of vectors.
V
Vadim Pisarevsky 已提交
370

371
.. ocv:function:: void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int ctype=CV_64F)
372

373
.. ocv:function:: void calcCovarMatrix( InputArray samples, OutputArray covar, OutputArray mean, int flags, int ctype=CV_64F)
374

375 376
.. ocv:pyfunction:: cv2.calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean

377 378
.. ocv:cfunction:: void cvCalcCovarMatrix( const CvArr** vects, int count, CvArr* cov_mat, CvArr* avg, int flags )

379
.. ocv:pyoldfunction:: cv.CalcCovarMatrix(vects, covMat, avg, flags)-> None
380

381
    :param samples: samples stored either as separate matrices or as rows/columns of a single matrix.
382

383
    :param nsamples: number of samples when they are stored separately.
384

385
    :param covar: output covariance matrix of the type ``ctype`` and square size.
386

387
    :param mean: input or output (depending on the flags) array as the average value of the input vectors.
V
Vadim Pisarevsky 已提交
388

389
    :param flags: operation flags as a combination of the following values:
V
Vadim Pisarevsky 已提交
390 391

            * **CV_COVAR_SCRAMBLED** The output covariance matrix is calculated as:
392 393

                .. math::
V
Vadim Pisarevsky 已提交
394

V
Vadim Pisarevsky 已提交
395
                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],
396

397
                The covariance matrix will be  ``nsamples x nsamples``. Such an unusual covariance matrix is used for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of the "scrambled" covariance matrix.
398

V
Vadim Pisarevsky 已提交
399 400 401
            * **CV_COVAR_NORMAL** The output covariance matrix is calculated as:

                .. math::
402

V
Vadim Pisarevsky 已提交
403
                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,
404

405
                ``covar``  will be a square matrix of the same size as the total number of elements in each input vector. One and only one of  ``CV_COVAR_SCRAMBLED``  and ``CV_COVAR_NORMAL``  must be specified.
406

407
            * **CV_COVAR_USE_AVG** If the flag is specified, the function does not calculate  ``mean``  from the input vectors but, instead, uses the passed  ``mean``  vector. This is useful if  ``mean``  has been pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In this case, ``mean``  is not a mean vector of the input sub-set of vectors but rather the mean vector of the whole set.
408

409
            * **CV_COVAR_SCALE** If the flag is specified, the covariance matrix is scaled. In the "normal" mode,  ``scale``  is  ``1./nsamples`` . In the "scrambled" mode,  ``scale``  is the reciprocal of the total number of elements in each input vector. By default (if the flag is not specified), the covariance matrix is not scaled (  ``scale=1`` ).
410

411
            * **CV_COVAR_ROWS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as rows of the  ``samples``  matrix.  ``mean``  should be a single-row vector in this case.
412

413
            * **CV_COVAR_COLS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as columns of the  ``samples``  matrix.  ``mean``  should be a single-column vector in this case.
414

415
The functions ``calcCovarMatrix`` calculate the covariance matrix and, optionally, the mean vector of the set of input vectors.
416

417 418
.. seealso::

419 420 421
    :ocv:class:`PCA`,
    :ocv:func:`mulTransposed`,
    :ocv:func:`Mahalanobis`
422

V
Vadim Pisarevsky 已提交
423

424

425
cartToPolar
V
Vadim Pisarevsky 已提交
426
-----------
427
Calculates the magnitude and angle of 2D vectors.
V
Vadim Pisarevsky 已提交
428

429
.. ocv:function:: void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees=false)
430

431 432
.. ocv:pyfunction:: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle

433 434
.. ocv:cfunction:: void cvCartToPolar( const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int angle_in_degrees=0 )

435
.. ocv:pyoldfunction:: cv.CartToPolar(x, y, magnitude, angle=None, angleInDegrees=0)-> None
436

437
    :param x: array of x-coordinates; this must be a single-precision or double-precision floating-point array.
438

439
    :param y: array of y-coordinates, that must have the same size and same type as ``x``.
440

441
    :param magnitude: output array of magnitudes of the same size and type as ``x``.
442

443
    :param angle: output array of angles that has the same size and type as ``x``; the angles are measured in radians (from 0 to 2*Pi) or in degrees (0 to 360 degrees).
444

445
    :param angleInDegrees: a flag, indicating whether the angles are measured in radians (which is by default), or in degrees.
446

447
The function ``cartToPolar`` calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):
448 449 450

.. math::

V
Vadim Pisarevsky 已提交
451
    \begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}
452

453
The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.
454

A
Alexander Shishkov 已提交
455
.. seealso::
456

A
Alexander Shishkov 已提交
457 458
    :ocv:func:`Sobel`,
    :ocv:func:`Scharr`
459

460
checkRange
V
Vadim Pisarevsky 已提交
461
----------
462
Checks every element of an input array for invalid values.
463

464
.. ocv:function:: bool checkRange( InputArray a, bool quiet=true, Point* pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX )
465

466
.. ocv:pyfunction:: cv2.checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pos
467

468
    :param a: input array.
469

470
    :param quiet: a flag, indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
471

472
    :param pos: optional output parameter, where the position of the first outlier is stored; in the second function ``pos``, when not NULL, must be a pointer to array of ``src.dims`` elements.
473

474
    :param minVal: inclusive lower boundary of valid values range.
475

476
    :param maxVal: exclusive upper boundary of valid values range.
477

478
The functions ``checkRange`` check that every array element is neither NaN nor
479
infinite. When ``minVal < -DBL_MAX`` and ``maxVal < DBL_MAX``, the functions also check that each value is between ``minVal`` and ``maxVal``. In case of multi-channel arrays, each channel is processed independently.
V
Vadim Pisarevsky 已提交
480
If some values are out of range, position of the first outlier is stored in ``pos`` (when
481
``pos != NULL``). Then, the functions either return false (when ``quiet=true``) or throw an exception.
482

483 484


V
Vadim Pisarevsky 已提交
485 486
compare
-------
487
Performs the per-element comparison of two arrays or an array and scalar value.
488

489
.. ocv:function:: void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop)
490

491
.. ocv:pyfunction:: cv2.compare(src1, src2, cmpop[, dst]) -> dst
492

493
.. ocv:cfunction:: void cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op )
494

495 496
.. ocv:pyoldfunction:: cv.Cmp(src1, src2, dst, cmpOp)-> None

497
.. ocv:cfunction:: void cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op )
498

499
.. ocv:pyoldfunction:: cv.CmpS(src, value, dst, cmpOp)-> None
500

501
    :param src1: first input array or a scalar (in the case of ``cvCmp``, ``cv.Cmp``, ``cvCmpS``, ``cv.CmpS`` it is always an array); when it is an array, it must have a single channel.
502

503
    :param src2: second input array or a scalar (in the case of ``cvCmp`` and ``cv.Cmp`` it is always an array; in the case of ``cvCmpS``, ``cv.CmpS`` it is always a scalar); when it is an array, it must have a single channel.
504

505
    :param dst: output array that has the same size as the input arrays and type= ``CV_8UC1`` .
506

507
    :param cmpop: a flag, that specifies correspondence between the arrays:
V
Vadim Pisarevsky 已提交
508

509 510 511 512 513 514
            * **CMP_EQ** ``src1`` is equal to ``src2``.
            * **CMP_GT** ``src1`` is greater than ``src2``.
            * **CMP_GE** ``src1`` is greater than or equal to ``src2``.
            * **CMP_LT** ``src1`` is less than ``src2``.
            * **CMP_LE** ``src1`` is less than or equal to ``src2``.
            * **CMP_NE** ``src1`` is unequal to ``src2``.
515

516
The function compares:
V
Vadim Pisarevsky 已提交
517

518

519 520
 *
   Elements of two arrays when ``src1`` and ``src2`` have the same size:
521 522 523

   .. math::

524
       \texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)
525

526
 *
527
   Elements of ``src1`` with a scalar ``src2`` when ``src2`` is constructed from ``Scalar`` or has a single element:
528 529 530

   .. math::

531
       \texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}
532

533 534
 *
   ``src1`` with elements of ``src2`` when ``src1`` is constructed from ``Scalar`` or has a single element:
535 536 537

   .. math::

538
       \texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)
539 540


541
When the comparison result is true, the corresponding element of output array is set to 255.
V
Vadim Pisarevsky 已提交
542
The comparison operations can be replaced with the equivalent matrix expressions: ::
543 544 545 546

    Mat dst1 = src1 >= src2;
    Mat dst2 = src1 < 8;
    ...
547

548

549 550
.. seealso::

551 552 553 554
    :ocv:func:`checkRange`,
    :ocv:func:`min`,
    :ocv:func:`max`,
    :ocv:func:`threshold`,
555 556
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
557

558

559
completeSymm
V
Vadim Pisarevsky 已提交
560
------------
561
Copies the lower or the upper half of a square matrix to another half.
V
Vadim Pisarevsky 已提交
562

563
.. ocv:function:: void completeSymm(InputOutputArray mtx, bool lowerToUpper=false)
564

565
.. ocv:pyfunction:: cv2.completeSymm(mtx[, lowerToUpper]) -> None
566

567
    :param mtx: input-output floating-point square matrix.
568

569
    :param lowerToUpper: operation flag; if true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.
570

571
The function ``completeSymm`` copies the lower half of a square matrix to its another half. The matrix diagonal remains unchanged:
572

573
 *
V
Vadim Pisarevsky 已提交
574
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
V
Vadim Pisarevsky 已提交
575
    :math:`i > j`     if ``lowerToUpper=false``
576

577
 *
V
Vadim Pisarevsky 已提交
578
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
V
Vadim Pisarevsky 已提交
579
    :math:`i < j`     if ``lowerToUpper=true``
580

581 582
.. seealso::

583 584
    :ocv:func:`flip`,
    :ocv:func:`transpose`
585

V
Vadim Pisarevsky 已提交
586

587

588
convertScaleAbs
V
Vadim Pisarevsky 已提交
589
---------------
590
Scales, calculates absolute values, and converts the result to 8-bit.
V
Vadim Pisarevsky 已提交
591

592
.. ocv:function:: void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)
593

594 595 596 597
.. ocv:pyfunction:: cv2.convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

.. ocv:cfunction:: void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
.. ocv:pyoldfunction:: cv.ConvertScaleAbs(src, dst, scale=1.0, shift=0.0)-> None
598

599
    :param src: input array.
600

601
    :param dst: output array.
602

603
    :param alpha: optional scale factor.
604

605
    :param beta: optional delta added to the scaled values.
606

607
On each element of the input array, the function ``convertScaleAbs`` performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:
608

609

610 611
.. math::

V
Vadim Pisarevsky 已提交
612
    \texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)
613

614
In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the ``Mat::convertTo`` method (or by using matrix expressions) and then by calculating an absolute value of the result. For example: ::
615 616 617 618 619 620 621

    Mat_<float> A(30,30);
    randu(A, Scalar(-100), Scalar(100));
    Mat_<float> B = A*5 + 3;
    B = abs(B);
    // Mat_<float> B = abs(A*5+3) will also do the job,
    // but it will allocate a temporary matrix
622

623

624 625
.. seealso::

626 627
    :ocv:func:`Mat::convertTo`,
    :ocv:func:`abs`
628

V
Vadim Pisarevsky 已提交
629

630

631
countNonZero
V
Vadim Pisarevsky 已提交
632
------------
633
Counts non-zero array elements.
634

635
.. ocv:function:: int countNonZero( InputArray src )
636

637 638 639
.. ocv:pyfunction:: cv2.countNonZero(src) -> retval

.. ocv:cfunction:: int cvCountNonZero(const CvArr* arr)
640

641
.. ocv:pyoldfunction:: cv.CountNonZero(arr)-> int
642

643
    :param src: single-channel array.
644

645
The function returns the number of non-zero elements in ``src`` :
646

V
Vadim Pisarevsky 已提交
647
.. math::
648

649
    \sum _{I: \; \texttt{src} (I) \ne0 } 1
650

651 652
.. seealso::

653 654 655 656 657
    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`
658

V
Vadim Pisarevsky 已提交
659

660

661
cvarrToMat
V
Vadim Pisarevsky 已提交
662
----------
663
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.
V
Vadim Pisarevsky 已提交
664

665
.. ocv:function:: Mat cvarrToMat( const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0 )
666

667
    :param arr: input ``CvMat``, ``IplImage`` , or  ``CvMatND``.
668

669
    :param copyData: when false (default value), no data is copied and only the new header is created, in this case, the original array should not be deallocated while the new matrix header is used; if the parameter is true, all the data is copied and you may deallocate the original array right after the conversion.
670

671
    :param allowND: when true (default value), ``CvMatND`` is converted to 2-dimensional ``Mat``, if it is possible (see the discussion below); if it is not possible, or when the parameter is false, the function will report an error.
672

673
    :param coiMode: parameter specifying how the IplImage COI (when set) is handled.
674

675
        *  If  ``coiMode=0`` and COI is set, the function reports an error.
V
Vadim Pisarevsky 已提交
676

677
        *  If  ``coiMode=1`` , the function never reports an error. Instead, it returns the header to the whole original image and you will have to check and process COI manually. See  :ocv:func:`extractImageCOI` .
V
Vadim Pisarevsky 已提交
678

679
The function ``cvarrToMat`` converts ``CvMat``, ``IplImage`` , or ``CvMatND`` header to
680
:ocv:class:`Mat` header, and optionally duplicates the underlying data. The constructed header is returned by the function.
V
Vadim Pisarevsky 已提交
681

682
When ``copyData=false`` , the conversion is done really fast (in O(1) time) and the newly created matrix header will have ``refcount=0`` , which means that no reference counting is done for the matrix data. In this case, you have to preserve the data until the new header is destructed. Otherwise, when ``copyData=true`` , the new buffer is allocated and managed as if you created a new matrix from scratch and copied the data there. That is, ``cvarrToMat(arr, true)`` is equivalent to ``cvarrToMat(arr, false).clone()`` (assuming that COI is not set). The function provides a uniform way of supporting
V
Vadim Pisarevsky 已提交
683
``CvArr`` paradigm in the code that is migrated to use new-style data structures internally. The reverse transformation, from
684
``Mat`` to
V
Vadim Pisarevsky 已提交
685
``CvMat`` or
686
``IplImage`` can be done by a simple assignment: ::
V
Vadim Pisarevsky 已提交
687

688 689 690 691 692 693 694 695 696
    CvMat* A = cvCreateMat(10, 10, CV_32F);
    cvSetIdentity(A);
    IplImage A1; cvGetImage(A, &A1);
    Mat B = cvarrToMat(A);
    Mat B1 = cvarrToMat(&A1);
    IplImage C = B;
    CvMat C1 = B1;
    // now A, A1, B, B1, C and C1 are different headers
    // for the same 10x10 floating-point array.
697 698
    // note that you will need to use "&"
    // to pass C & C1 to OpenCV functions, for example:
699
    printf("%g\n", cvNorm(&C1, 0, CV_L2));
700 701

Normally, the function is used to convert an old-style 2D array (
V
Vadim Pisarevsky 已提交
702
``CvMat`` or
703 704
``IplImage`` ) to ``Mat`` . However, the function can also take
``CvMatND`` as an input and create
705
:ocv:func:`Mat` for it, if it is possible. And, for ``CvMatND A`` , it is possible if and only if ``A.dim[i].size*A.dim.step[i] == A.dim.step[i-1]`` for all or for all but one ``i, 0 < i < A.dims`` . That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By using this function in this way, you can process
706
``CvMatND`` using an arbitrary element-wise function.
V
Vadim Pisarevsky 已提交
707

708
The last parameter, ``coiMode`` , specifies how to deal with an image with COI set. By default, it is 0 and the function reports an error when an image with COI comes in. And ``coiMode=1`` means that no error is signalled. You have to check COI presence and handle it manually. The modern structures, such as
709 710
:ocv:class:`Mat` and
``MatND`` do not support COI natively. To process an individual channel of a new-style array, you need either to organize a loop over the array (for example, using matrix iterators) where the channel of interest will be processed, or extract the COI using
711
:ocv:func:`mixChannels` (for new-style arrays) or
712
:ocv:func:`extractImageCOI` (for old-style arrays), process this individual channel, and insert it back to the output array if needed (using
713
:ocv:func:`mixChannels` or
714
:ocv:func:`insertImageCOI` , respectively).
715

716
.. seealso::
V
Vadim Pisarevsky 已提交
717

718 719
    :ocv:cfunc:`cvGetImage`,
    :ocv:cfunc:`cvGetMat`,
720 721
    :ocv:func:`extractImageCOI`,
    :ocv:func:`insertImageCOI`,
722
    :ocv:func:`mixChannels`
723

724
dct
725
---
726 727
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

728
.. ocv:function:: void dct(InputArray src, OutputArray dst, int flags=0)
729

730 731 732 733
.. ocv:pyfunction:: cv2.dct(src[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvDCT(const CvArr* src, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.DCT(src, dst, flags)-> None
734

735
    :param src: input floating-point array.
736

737
    :param dst: output array of the same size and type as  ``src`` .
738

739
    :param flags: transformation flags as a combination of the following values:
740

741
            * **DCT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
742

743
            * **DCT_ROWS** performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.
744

745
The function ``dct`` performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:
746

747 748
*
    Forward Cosine transform of a 1D vector of ``N`` elements:
749

750
    .. math::
751

752
        Y = C^{(N)}  \cdot X
753

754
    where
755

756
    .. math::
757

758
        C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )
759

760
    and
761

762
    :math:`\alpha_0=1`, :math:`\alpha_j=2` for *j > 0*.
763

764 765
*
    Inverse Cosine transform of a 1D vector of ``N`` elements:
766

767
    .. math::
768

769
        X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y
770

771 772 773
    (since
    :math:`C^{(N)}` is an orthogonal matrix,
    :math:`C^{(N)} \cdot \left(C^{(N)}\right)^T = I` )
774

775 776
*
    Forward 2D Cosine transform of ``M x N`` matrix:
777

778 779 780
    .. math::

        Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T
781

782 783
*
    Inverse 2D Cosine transform of ``M x N`` matrix:
784

785
    .. math::
786

787
        X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}
788 789 790 791 792


The function chooses the mode of operation by looking at the flags and size of the input array:

*
793
    If ``(flags & DCT_INVERSE) == 0`` , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
794 795

*
796
    If ``(flags & DCT_ROWS) != 0`` , the function performs a 1D transform of each row.
797 798

*
799
    If the array is a single column or a single row, the function performs a 1D transform.
800 801

*
802
    If none of the above is true, the function performs a 2D transform.
V
Vadim Pisarevsky 已提交
803

804
.. note::
805

806
    Currently ``dct`` supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary.
807

808
    Also, the function performance depends very much, and not monotonically, on the array size (see
809
    :ocv:func:`getOptimalDFTSize` ). In the current implementation DCT of a vector of size ``N`` is calculated via DFT of a vector of size ``N/2`` . Thus, the optimal DCT size ``N1 >= N`` can be calculated as: ::
810

811 812
        size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
        N1 = getOptimalDCTSize(N);
813

814
.. seealso:: :ocv:func:`dft` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`idct`
815

V
Vadim Pisarevsky 已提交
816

817

818
dft
V
Vadim Pisarevsky 已提交
819
---
820
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
V
Vadim Pisarevsky 已提交
821

822
.. ocv:function:: void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
823

824 825
.. ocv:pyfunction:: cv2.dft(src[, dst[, flags[, nonzeroRows]]]) -> dst

826 827
.. ocv:cfunction:: void cvDFT( const CvArr* src, CvArr* dst, int flags, int nonzero_rows=0 )

828
.. ocv:pyoldfunction:: cv.DFT(src, dst, flags, nonzeroRows=0)-> None
829

830
    :param src: input array that could be real or complex.
831

832
    :param dst: output array whose size and type depends on the  ``flags`` .
833

834
    :param flags: transformation flags, representing a combination of the following values:
835

836
            * **DFT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
837

838 839
            * **DFT_SCALE** scales the result: divide it by the number of array elements. Normally, it is combined with  ``DFT_INVERSE``.
            * **DFT_ROWS** performs a forward or inverse transform of every individual row of the input matrix; this flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transformations and so forth.
840

841
            * **DFT_COMPLEX_OUTPUT** performs a forward transformation of 1D or 2D real array; the result, though being a complex array, has complex-conjugate symmetry (*CCS*, see the function description below for details), and such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default; however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) – pass the flag to enable the function to produce a full-size complex output array.
842

843
            * **DFT_REAL_OUTPUT** performs an inverse transformation of a 1D or 2D complex array; the result is normally a complex array of the same size, however, if the input array has conjugate-complex symmetry (for example, it is a result of forward transformation with  ``DFT_COMPLEX_OUTPUT``  flag), the output is a real array; while the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array (note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array, and the output will also be a real array).
844

845
    :param nonzeroRows: when the parameter is not zero, the function assumes that only the first ``nonzeroRows`` rows of the input array (``DFT_INVERSE`` is not set) or only the first ``nonzeroRows`` of the output array (``DFT_INVERSE`` is set) contain non-zeros, thus, the function can handle the rest of the rows more efficiently and save some time; this technique is very useful for calculating array cross-correlation or convolution using DFT.
846 847


848
The function performs one of the following:
849

850
*
851
    Forward the Fourier transform of a 1D vector of ``N`` elements:
852

853
    .. math::
854

855
        Y = F^{(N)}  \cdot X,
856

857 858 859
    where
    :math:`F^{(N)}_{jk}=\exp(-2\pi i j k/N)` and
    :math:`i=\sqrt{-1}`
860

861
*
862
    Inverse the Fourier transform of a 1D vector of ``N`` elements:
863

864
    .. math::
865

866
        \begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}
867

868 869
    where
    :math:`F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T`
870

871
*
872
    Forward the 2D Fourier transform of a ``M x N`` matrix:
873

874
    .. math::
875

876
        Y = F^{(M)}  \cdot X  \cdot F^{(N)}
877

878
*
879
    Inverse the 2D Fourier transform of a ``M x N`` matrix:
880 881 882 883 884 885

    .. math::

        \begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}


886
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D *CCS* spectrum looks:
887 888 889

.. math::

V
Vadim Pisarevsky 已提交
890
    \begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}
891

892
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
893

894
So, the function chooses an operation mode depending on the flags and size of the input array:
895

896
 * If ``DFT_ROWS`` is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when ``DFT_ROWS`` is set. Otherwise, it performs a 2D transform.
897

898
 * If the input array is real and ``DFT_INVERSE`` is not set, the function performs a forward 1D or 2D transform:
V
Vadim Pisarevsky 已提交
899

900
    * When ``DFT_COMPLEX_OUTPUT`` is set, the output is a complex matrix of the same size as input.
V
Vadim Pisarevsky 已提交
901

902
    * When ``DFT_COMPLEX_OUTPUT`` is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the ``DCT_ROWS``         flag), each row of the output matrix looks like the first row of the matrix above.
903

904
 * If the input array is complex and either ``DFT_INVERSE``     or ``DFT_REAL_OUTPUT``     are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
905

906
 * When ``DFT_INVERSE`` is set and the input array is real, or it is complex but ``DFT_REAL_OUTPUT``     is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
907

908
If ``DFT_SCALE`` is set, the scaling is done after the transformation.
909

910
Unlike :ocv:func:`dct` , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be calculated using the :ocv:func:`getOptimalDFTSize` method.
911

912
The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: ::
913

914
    void convolveDFT(InputArray A, InputArray B, OutputArray C)
915 916 917 918
    {
        // reallocate the output array if needed
        C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
        Size dftSize;
919
        // calculate the size of DFT transform
920 921
        dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
        dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
V
Vadim Pisarevsky 已提交
922

923 924 925
        // allocate temporary buffers and initialize them with 0's
        Mat tempA(dftSize, A.type(), Scalar::all(0));
        Mat tempB(dftSize, B.type(), Scalar::all(0));
V
Vadim Pisarevsky 已提交
926

927 928 929 930 931
        // copy A and B to the top-left corners of tempA and tempB, respectively
        Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
        A.copyTo(roiA);
        Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
        B.copyTo(roiB);
V
Vadim Pisarevsky 已提交
932

933 934 935 936
        // now transform the padded A & B in-place;
        // use "nonzeroRows" hint for faster processing
        dft(tempA, tempA, 0, A.rows);
        dft(tempB, tempB, 0, B.rows);
V
Vadim Pisarevsky 已提交
937

938 939 940
        // multiply the spectrums;
        // the function handles packed spectrum representations well
        mulSpectrums(tempA, tempB, tempA);
V
Vadim Pisarevsky 已提交
941

942 943
        // transform the product back from the frequency domain.
        // Even though all the result rows will be non-zero,
944
        // you need only the first C.rows of them, and thus you
945 946
        // pass nonzeroRows == C.rows
        dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
V
Vadim Pisarevsky 已提交
947

948 949
        // now copy the result back to C.
        tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
V
Vadim Pisarevsky 已提交
950

951 952
        // all the temporary buffers will be deallocated automatically
    }
953

954

955
To optimize this sample, consider the following approaches:
956 957

*
958
    Since ``nonzeroRows != 0`` is passed to the forward transform calls and since  ``A`` and ``B`` are copied to the top-left corners of ``tempA`` and ``tempB``, respectively, it is not necessary to clear the whole ``tempA`` and ``tempB``. It is only necessary to clear the ``tempA.cols - A.cols`` ( ``tempB.cols - B.cols``) rightmost columns of the matrices.
959

960
*
961
   This DFT-based convolution does not have to be applied to the whole big arrays, especially if ``B``     is significantly smaller than ``A`` or vice versa. Instead, you can calculate convolution by parts. To do this, you need to split the output array ``C``     into multiple tiles. For each tile, estimate which parts of ``A``     and ``B``     are required to calculate convolution in this tile. If the tiles in ``C``     are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in ``C``     is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays ``tempA``     and ``tempB``     become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
962 963

*
964
    If different tiles in ``C``     can be calculated in parallel and, thus, the convolution is done by parts, the loop can be threaded.
V
Vadim Pisarevsky 已提交
965

966
All of the above improvements have been implemented in :ocv:func:`matchTemplate` and :ocv:func:`filter2D` . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually calculate cross-correlation, not convolution, so you need to "flip" the second convolution operand ``B`` vertically and horizontally using :ocv:func:`flip` .
967

968
.. seealso:: :ocv:func:`dct` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`mulSpectrums`, :ocv:func:`filter2D` , :ocv:func:`matchTemplate` , :ocv:func:`flip` , :ocv:func:`cartToPolar` , :ocv:func:`magnitude` , :ocv:func:`phase`
969

V
Vadim Pisarevsky 已提交
970

971

972
divide
973
----------
974 975
Performs per-element division of two arrays or a scalar by an array.

976
.. ocv:function:: void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
977

978
.. ocv:function:: void divide(double scale, InputArray src2, OutputArray dst, int dtype=-1)
979

980 981 982 983
.. ocv:pyfunction:: cv2.divide(src1, src2[, dst[, scale[, dtype]]]) -> dst
.. ocv:pyfunction:: cv2.divide(scale, src2[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
984
.. ocv:pyoldfunction:: cv.Div(src1, src2, dst, scale=1) -> None
985

986
    :param src1: first input array.
987

988
    :param src2: second input array of the same size and type as ``src1``.
989

990
    :param scale: scalar factor.
991

992
    :param dst: output array of the same size and type as ``src2``.
993

994
    :param dtype: optional depth of the output array; if ``-1``, ``dst`` will have depth ``src2.depth()``, but in case of an array-by-array division, you can only pass ``-1`` when ``src1.depth()==src2.depth()``.
995

V
Vadim Pisarevsky 已提交
996
The functions ``divide`` divide one array by another:
997 998 999

.. math::

V
Vadim Pisarevsky 已提交
1000
    \texttt{dst(I) = saturate(src1(I)*scale/src2(I))}
1001

1002
or a scalar by an array when there is no ``src1`` :
1003 1004 1005

.. math::

V
Vadim Pisarevsky 已提交
1006
    \texttt{dst(I) = saturate(scale/src2(I))}
1007

1008
When ``src2(I)`` is zero, ``dst(I)`` will also be zero. Different channels of multi-channel arrays are processed independently.
1009

1010 1011
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

1012 1013
.. seealso::

1014 1015 1016
    :ocv:func:`multiply`,
    :ocv:func:`add`,
    :ocv:func:`subtract`,
1017 1018
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1019

1020

1021
determinant
V
Vadim Pisarevsky 已提交
1022
-----------
1023
Returns the determinant of a square floating-point matrix.
V
Vadim Pisarevsky 已提交
1024

1025
.. ocv:function:: double determinant(InputArray mtx)
1026

1027 1028
.. ocv:pyfunction:: cv2.determinant(mtx) -> retval

1029 1030
.. ocv:cfunction:: double cvDet( const CvArr* mat )

1031
.. ocv:pyoldfunction:: cv.Det(mat) -> float
1032

1033
    :param mtx: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type and square size.
1034

1035
The function ``determinant`` calculates and returns the determinant of the specified matrix. For small matrices ( ``mtx.cols=mtx.rows<=3`` ),
1036
the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.
1037

1038
For symmetric positively-determined matrices, it is also possible to use :ocv:func:`eigen` decomposition to calculate the determinant.
1039

1040 1041
.. seealso::

1042 1043 1044 1045
    :ocv:func:`trace`,
    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
1046 1047
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1048

1049

1050
eigen
V
Vadim Pisarevsky 已提交
1051
-----
1052
Calculates eigenvalues and eigenvectors of a symmetric matrix.
V
Vadim Pisarevsky 已提交
1053

1054
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)
1055

1056
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1,int highindex=-1)
1057

1058
.. ocv:pyfunction:: cv2.eigen(src, calculateEigenvectors[, eigenvalues[, eigenvectors]]) -> retval, eigenvalues, eigenvectors
1059

1060
.. ocv:cfunction:: void cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, double eps=0, int lowindex=-1, int highindex=-1 )
1061

1062
.. ocv:pyoldfunction:: cv.EigenVV(mat, evects, evals, eps, lowindex=-1, highindex=-1)-> None
1063

1064
    :param src: input matrix that must have ``CV_32FC1`` or ``CV_64FC1`` type, square size and be symmetrical (``src`` :sup:`T` == ``src``).
1065

1066
    :param eigenvalues: output vector of eigenvalues of the same type as ``src``; the eigenvalues are stored in the descending order.
1067

1068
    :param eigenvectors: output matrix of eigenvectors; it has the same size and type as ``src``; the eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
1069

1070
    :param lowindex: optional index of largest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.
1071

1072
    :param highindex: optional index of smallest eigenvalue/-vector to calculate; the parameter is ignored in the current implementation.
1073

1074
The functions ``eigen`` calculate just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix ``src`` : ::
1075

1076
    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
1077

1078 1079
.. note:: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.

1080
.. seealso:: :ocv:func:`completeSymm` , :ocv:class:`PCA`
1081

V
Vadim Pisarevsky 已提交
1082

1083

1084
exp
V
Vadim Pisarevsky 已提交
1085
---
1086
Calculates the exponent of every array element.
1087

1088
.. ocv:function:: void exp(InputArray src, OutputArray dst)
1089

1090 1091 1092 1093
.. ocv:pyfunction:: cv2.exp(src[, dst]) -> dst

.. ocv:cfunction:: void cvExp(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Exp(src, dst)-> None
1094

1095
    :param src: input array.
1096

1097
    :param dst: output array of the same size and type as ``src``.
V
Vadim Pisarevsky 已提交
1098 1099

The function ``exp`` calculates the exponent of every element of the input array:
1100 1101 1102

.. math::

1103
    \texttt{dst} [I] = e^{ src(I) }
1104

1105 1106
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

1107
.. seealso::  :ocv:func:`log` , :ocv:func:`cartToPolar` , :ocv:func:`polarToCart` , :ocv:func:`phase` , :ocv:func:`pow` , :ocv:func:`sqrt` , :ocv:func:`magnitude`
1108

V
Vadim Pisarevsky 已提交
1109

1110

1111
extractImageCOI
V
Vadim Pisarevsky 已提交
1112
---------------
1113
Extracts the selected image channel.
V
Vadim Pisarevsky 已提交
1114

1115
.. ocv:function:: void extractImageCOI( const CvArr* arr, OutputArray coiimg, int coi=-1 )
1116

1117
    :param arr: input array; it should be a pointer to ``CvMat`` or ``IplImage``.
1118

1119
    :param coiimg: output array with a single channel and the same size and depth as ``arr``.
1120

1121
    :param coi: if the parameter is ``>=0``, it specifies the channel to extract, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a valid COI set, the selected COI is extracted.
1122

1123
The function ``extractImageCOI`` is used to extract an image COI from an old-style array and put the result to the new-style C++ matrix. As usual, the output matrix is reallocated using ``Mat::create`` if needed.
1124

V
Vadim Pisarevsky 已提交
1125
To extract a channel from a new-style matrix, use
1126 1127
:ocv:func:`mixChannels` or
:ocv:func:`split` .
1128

1129
.. seealso::  :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`
1130

1131

1132 1133 1134 1135
insertImageCOI
---------------
Copies the selected image channel from a new-style C++ matrix to the old-style C array.

1136
.. ocv:function:: void insertImageCOI( InputArray coiimg, CvArr* arr, int coi=-1 )
1137

1138
    :param coiimg: input array with a single channel and the same size and depth as ``arr``.
1139

1140
    :param arr: output array, it should be a pointer to ``CvMat`` or ``IplImage``.
1141

1142
    :param coi: if the parameter is ``>=0``, it specifies the channel to insert, if it is ``<0`` and ``arr`` is a pointer to ``IplImage`` with a  valid COI set, the selected COI is extracted.
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162

The function ``insertImageCOI`` is used to extract an image COI from a new-style C++ matrix and put the result to the old-style array.

The sample below illustrates how to use the function:
::

    Mat temp(240, 320, CV_8UC1, Scalar(255));
    IplImage* img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3);
    insertImageCOI(temp, img, 1); //insert to the first channel
    cvNamedWindow("window",1);
    cvShowImage("window", img); //you should see green image, because channel number 1 is green (BGR)
    cvWaitKey(0);
    cvDestroyAllWindows();
    cvReleaseImage(&img);

To insert a channel to a new-style matrix, use
:ocv:func:`merge` .

.. seealso::  :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`

1163

1164
flip
1165
--------
1166 1167
Flips a 2D array around vertical, horizontal, or both axes.

1168
.. ocv:function:: void flip(InputArray src, OutputArray dst, int flipCode)
1169

1170 1171
.. ocv:pyfunction:: cv2.flip(src, flipCode[, dst]) -> dst

1172 1173
.. ocv:cfunction:: void cvFlip( const CvArr* src, CvArr* dst=NULL, int flip_mode=0 )

1174
.. ocv:pyoldfunction:: cv.Flip(src, dst=None, flipMode=0)-> None
1175

1176
    :param src: input array.
1177

1178
    :param dst: output array of the same size and type as ``src``.
1179

1180
    :param flipCode: a flag to specify how to flip the array; 0 means flipping around the x-axis and positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes (see the discussion below for the formulas).
1181

V
Vadim Pisarevsky 已提交
1182
The function ``flip`` flips the array in one of three different ways (row and column indices are 0-based):
1183 1184 1185

.. math::

1186 1187 1188 1189 1190 1191 1192 1193
    \texttt{dst} _{ij} =
    \left\{
    \begin{array}{l l}
    \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
    \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
    \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
    \end{array}
    \right.
1194

1195
The example scenarios of using the function are the following:
1196

1197
 *
1198
    Vertical flipping of the image (``flipCode == 0``) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS.
1199

1200
 *
1201
    Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (``flipCode > 0``).
1202

1203
 *
1204
    Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (``flipCode < 0``).
1205

1206
 *
1207 1208
    Reversing the order of point arrays (``flipCode > 0`` or ``flipCode == 0``).

1209
.. seealso:: :ocv:func:`transpose` , :ocv:func:`repeat` , :ocv:func:`completeSymm`
1210

V
Vadim Pisarevsky 已提交
1211

1212

1213
gemm
V
Vadim Pisarevsky 已提交
1214
----
1215
Performs generalized matrix multiplication.
V
Vadim Pisarevsky 已提交
1216

1217
.. ocv:function:: void gemm( InputArray src1, InputArray src2, double alpha, InputArray src3, double gamma, OutputArray dst, int flags=0 )
1218

1219 1220 1221
.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
1222
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alpha, src3, beta, dst, tABC=0)-> None
1223

1224
    :param src1: first multiplied input matrix that should have ``CV_32FC1``, ``CV_64FC1``, ``CV_32FC2``, or ``CV_64FC2`` type.
1225

1226
    :param src2: second multiplied input matrix of the same type as ``src1``.
1227

1228
    :param alpha: weight of the matrix product.
1229

1230
    :param src3: third optional delta matrix added to the matrix product; it should have the same type as ``src1`` and ``src2``.
1231

1232
    :param beta: weight of ``src3``.
1233

1234
    :param dst: output matrix; it has the proper size and the same type as input matrices.
1235

1236
    :param flags: operation flags:
1237

1238 1239 1240
            * **GEMM_1_T** transposes ``src1``.
            * **GEMM_2_T** transposes ``src2``.
            * **GEMM_3_T** transposes ``src3``.
1241

1242
The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to
1243 1244 1245

.. math::

V
Vadim Pisarevsky 已提交
1246
    \texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T
1247

1248
The function can be replaced with a matrix expression. For example, the above call can be replaced with: ::
1249 1250

    dst = alpha*src1.t()*src2 + beta*src3.t();
1251

1252

1253
.. seealso::  :ocv:func:`mulTransposed` , :ocv:func:`transform` , :ref:`MatrixExpressions`
1254

V
Vadim Pisarevsky 已提交
1255

1256

1257
getConvertElem
V
Vadim Pisarevsky 已提交
1258
--------------
1259
Returns a conversion function for a single pixel.
V
Vadim Pisarevsky 已提交
1260

1261
.. ocv:function:: ConvertData getConvertElem(int fromType, int toType)
1262

1263
.. ocv:function:: ConvertScaleData getConvertScaleElem(int fromType, int toType)
1264

1265
    :param fromType: input pixel type.
1266

1267
    :param toType: output pixel type.
1268

1269
    :param from: callback parameter: pointer to the input pixel.
1270

1271
    :param to: callback parameter: pointer to the output pixel
1272

1273
    :param cn: callback parameter: the number of channels; it can be arbitrary, 1, 100, 100000, etc.
1274

1275
    :param alpha: ``ConvertScaleData`` callback optional parameter: the scale factor.
1276

1277
    :param beta: ``ConvertScaleData`` callback optional parameter: the delta or offset.
1278

V
Vadim Pisarevsky 已提交
1279
The functions ``getConvertElem`` and ``getConvertScaleElem`` return pointers to the functions for converting individual pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole matrix at once, by setting ``cn = matrix.cols*matrix.rows*matrix.channels()`` if the matrix data is continuous.
1280

1281 1282 1283 1284 1285 1286
``ConvertData`` and ``ConvertScaleData`` are defined as: ::

    typedef void (*ConvertData)(const void* from, void* to, int cn)
    typedef void (*ConvertScaleData)(const void* from, void* to,
                                     int cn, double alpha, double beta)

1287
.. seealso:: :ocv:func:`Mat::convertTo` , :ocv:func:`SparseMat::convertTo`
1288

V
Vadim Pisarevsky 已提交
1289

1290

1291
getOptimalDFTSize
V
Vadim Pisarevsky 已提交
1292
-----------------
1293
Returns the optimal DFT size for a given vector size.
V
Vadim Pisarevsky 已提交
1294

1295
.. ocv:function:: int getOptimalDFTSize(int vecsize)
1296

1297 1298 1299 1300
.. ocv:pyfunction:: cv2.getOptimalDFTSize(vecsize) -> retval

.. ocv:cfunction:: int cvGetOptimalDFTSize(int size0)
.. ocv:pyoldfunction:: cv.GetOptimalDFTSize(size0)-> int
1301

1302
    :param vecsize: vector size.
1303

1304
DFT performance is not a monotonic function of a vector size. Therefore, when you calculate convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one.
1305
Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2) are also processed quite efficiently.
1306

1307
The function ``getOptimalDFTSize`` returns the minimum number ``N`` that is greater than or equal to ``vecsize``  so that the DFT of a vector of size ``N`` can be processed efficiently. In the current implementation ``N`` = 2 :sup:`p` * 3 :sup:`q` * 5 :sup:`r` for some integer ``p``, ``q``, ``r``.
1308

V
Vadim Pisarevsky 已提交
1309
The function returns a negative number if ``vecsize`` is too large (very close to ``INT_MAX`` ).
1310

1311
While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily processed as ``getOptimalDFTSize((vecsize+1)/2)*2``.
1312

1313
.. seealso:: :ocv:func:`dft` , :ocv:func:`dct` , :ocv:func:`idft` , :ocv:func:`idct` , :ocv:func:`mulSpectrums`
1314

V
Vadim Pisarevsky 已提交
1315

1316

1317
idct
V
Vadim Pisarevsky 已提交
1318
----
1319
Calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
V
Vadim Pisarevsky 已提交
1320

1321
.. ocv:function:: void idct(InputArray src, OutputArray dst, int flags=0)
1322

1323
.. ocv:pyfunction:: cv2.idct(src[, dst[, flags]]) -> dst
1324

1325
    :param src: input floating-point single-channel array.
1326

1327
    :param dst: output array of the same size and type as ``src``.
1328

1329
    :param flags: operation flags.
1330

V
Vadim Pisarevsky 已提交
1331
``idct(src, dst, flags)`` is equivalent to ``dct(src, dst, flags | DCT_INVERSE)``.
1332

1333 1334
.. seealso::

1335 1336 1337 1338
    :ocv:func:`dct`,
    :ocv:func:`dft`,
    :ocv:func:`idft`,
    :ocv:func:`getOptimalDFTSize`
1339

V
Vadim Pisarevsky 已提交
1340

1341

1342
idft
V
Vadim Pisarevsky 已提交
1343
----
1344
Calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
V
Vadim Pisarevsky 已提交
1345

1346
.. ocv:function:: void idft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
1347

1348
.. ocv:pyfunction:: cv2.idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
1349

1350
    :param src: input floating-point real or complex array.
1351

1352
    :param dst: output array whose size and type depend on the ``flags``.
1353

1354
    :param flags: operation flags (see :ocv:func:`dft`).
1355

1356
    :param nonzeroRows: number of ``dst`` rows to process; the rest of the rows have undefined content (see the convolution sample in  :ocv:func:`dft` description.
1357

A
Alexander Shishkov 已提交
1358
``idft(src, dst, flags)`` is equivalent to ``dft(src, dst, flags | DFT_INVERSE)`` .
V
Vadim Pisarevsky 已提交
1359

1360
See :ocv:func:`dft` for details.
1361

1362
.. note:: None of ``dft`` and ``idft`` scales the result by default. So, you should pass ``DFT_SCALE`` to one of ``dft`` or ``idft`` explicitly to make these transforms mutually inverse.
1363 1364 1365

.. seealso::

1366 1367 1368 1369 1370
    :ocv:func:`dft`,
    :ocv:func:`dct`,
    :ocv:func:`idct`,
    :ocv:func:`mulSpectrums`,
    :ocv:func:`getOptimalDFTSize`
1371

V
Vadim Pisarevsky 已提交
1372

1373

1374
inRange
V
Vadim Pisarevsky 已提交
1375
-------
1376
Checks if array elements lie between the elements of two other arrays.
1377

1378
.. ocv:function:: void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
1379

1380 1381 1382 1383 1384 1385
.. ocv:pyfunction:: cv2.inRange(src, lowerb, upperb[, dst]) -> dst

.. ocv:cfunction:: void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
.. ocv:cfunction:: void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
.. ocv:pyoldfunction:: cv.InRange(src, lower, upper, dst)-> None
.. ocv:pyoldfunction:: cv.InRangeS(src, lower, upper, dst)-> None
1386

1387
    :param src: first input array.
1388

1389
    :param lowerb: inclusive lower boundary array or a scalar.
1390

1391
    :param upperb: inclusive upper boundary array or a scalar.
1392

1393
    :param dst: output array of the same size as ``src`` and ``CV_8U`` type.
1394

1395
The function checks the range as follows:
1396

1397
 * For every element of a single-channel input array:
1398

1399
   .. math::
1400

1401
      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0
1402

1403
 * For two-channel arrays:
1404

1405
   .. math::
1406

1407
      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1
1408

1409
 * and so forth.
1410

1411
That is, ``dst`` (I) is set to 255 (all ``1`` -bits) if ``src`` (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.
1412

1413
When the lower and/or upper boundary parameters are scalars, the indexes ``(I)`` at ``lowerb`` and ``upperb`` in the above formulas should be omitted.
1414

1415

1416
invert
V
Vadim Pisarevsky 已提交
1417
------
1418
Finds the inverse or pseudo-inverse of a matrix.
V
Vadim Pisarevsky 已提交
1419

1420
.. ocv:function:: double invert(InputArray src, OutputArray dst, int flags=DECOMP_LU)
1421

1422 1423
.. ocv:pyfunction:: cv2.invert(src[, dst[, flags]]) -> retval, dst

1424
.. ocv:cfunction:: double cvInvert( const CvArr* src, CvArr* dst, int method=CV_LU )
1425

1426
.. ocv:pyoldfunction:: cv.Invert(src, dst, method=CV_LU) -> float
1427

1428
    :param src: input floating-point ``M x N`` matrix.
1429

1430
    :param dst: output matrix of ``N x M`` size and the same type as ``src``.
1431

1432
    :param flags: inversion method :
1433

1434
            * **DECOMP_LU** Gaussian elimination with the optimal pivot element chosen.
1435

1436
            * **DECOMP_SVD** singular value decomposition (SVD) method.
1437

1438
            * **DECOMP_CHOLESKY** Cholesky decomposition; the matrix must be symmetrical and positively defined.
1439

1440
The function ``invert`` inverts the matrix ``src`` and stores the result in ``dst`` .
1441
When the matrix ``src`` is singular or non-square, the function calculates the pseudo-inverse matrix (the ``dst`` matrix) so that ``norm(src*dst - I)`` is minimal, where I is an identity matrix.
1442

1443
In case of the ``DECOMP_LU`` method, the function returns non-zero value if the inverse has been successfully calculated and 0 if ``src`` is singular.
1444

1445
In case of the ``DECOMP_SVD`` method, the function returns the inverse condition number of ``src`` (the ratio of the smallest singular value to the largest singular value) and 0 if ``src`` is singular. The SVD method calculates a pseudo-inverse matrix if ``src`` is singular.
1446

1447
Similarly to ``DECOMP_LU`` , the method ``DECOMP_CHOLESKY`` works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in ``dst`` and returns non-zero. Otherwise, it returns 0.
1448

1449 1450
.. seealso::

1451 1452
    :ocv:func:`solve`,
    :ocv:class:`SVD`
1453

V
Vadim Pisarevsky 已提交
1454

1455

1456
log
V
Vadim Pisarevsky 已提交
1457
---
1458
Calculates the natural logarithm of every array element.
1459

1460
.. ocv:function:: void log(InputArray src, OutputArray dst)
1461

1462 1463 1464 1465
.. ocv:pyfunction:: cv2.log(src[, dst]) -> dst

.. ocv:cfunction:: void cvLog(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Log(src, dst)-> None
1466

1467
    :param src: input array.
1468

1469
    :param dst: output array of the same size and type as  ``src`` .
1470

V
Vadim Pisarevsky 已提交
1471
The function ``log`` calculates the natural logarithm of the absolute value of every element of the input array:
1472 1473 1474

.. math::

V
Vadim Pisarevsky 已提交
1475 1476
    \texttt{dst} (I) =  \fork{\log |\texttt{src}(I)|}{if $\texttt{src}(I) \ne 0$ }{\texttt{C}}{otherwise}

1477
where ``C`` is a large negative number (about -700 in the current implementation).
1478 1479 1480 1481
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Special values (NaN, Inf) are not handled.

.. seealso::

1482 1483 1484 1485 1486 1487 1488
    :ocv:func:`exp`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`,
    :ocv:func:`magnitude`
1489 1490


1491

1492
LUT
V
Vadim Pisarevsky 已提交
1493
---
1494
Performs a look-up table transform of an array.
V
Vadim Pisarevsky 已提交
1495

1496
.. ocv:function:: void LUT( InputArray src, InputArray lut, OutputArray dst, int interpolation=0 )
1497

1498 1499 1500 1501
.. ocv:pyfunction:: cv2.LUT(src, lut[, dst[, interpolation]]) -> dst

.. ocv:cfunction:: void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut)
.. ocv:pyoldfunction:: cv.LUT(src, dst, lut)-> None
1502

1503
    :param src: input array of 8-bit elements.
1504

1505
    :param lut: look-up table of 256 elements; in case of multi-channel input array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the input array.
1506

1507
    :param dst: output array of the same size and number of channels as ``src``, and the same depth as ``lut``.
1508

1509
The function ``LUT`` fills the output array with values from the look-up table. Indices of the entries are taken from the input array. That is, the function processes each element of ``src`` as follows:
1510 1511 1512

.. math::

V
Vadim Pisarevsky 已提交
1513
    \texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}
1514 1515 1516 1517 1518

where

.. math::

V
Vadim Pisarevsky 已提交
1519
    d =  \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}
1520

1521 1522
.. seealso::

1523 1524
    :ocv:func:`convertScaleAbs`,
    :ocv:func:`Mat::convertTo`
1525

V
Vadim Pisarevsky 已提交
1526

1527

1528
magnitude
V
Vadim Pisarevsky 已提交
1529
---------
1530
Calculates the magnitude of 2D vectors.
V
Vadim Pisarevsky 已提交
1531

1532
.. ocv:function:: void magnitude(InputArray x, InputArray y, OutputArray magnitude)
1533

1534
.. ocv:pyfunction:: cv2.magnitude(x, y[, magnitude]) -> magnitude
1535

1536
    :param x: floating-point array of x-coordinates of the vectors.
1537

1538
    :param y: floating-point array of y-coordinates of the vectors; it must have the same size as ``x``.
1539

1540
    :param magnitude: output array of the same size and type as ``x``.
1541

1542
The function ``magnitude`` calculates the magnitude of 2D vectors formed from the corresponding elements of ``x`` and ``y`` arrays:
1543 1544 1545

.. math::

V
Vadim Pisarevsky 已提交
1546
    \texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}
1547

1548 1549
.. seealso::

1550 1551 1552 1553
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`sqrt`
1554

V
Vadim Pisarevsky 已提交
1555

1556

1557
Mahalanobis
V
Vadim Pisarevsky 已提交
1558
-----------
1559
Calculates the Mahalanobis distance between two vectors.
V
Vadim Pisarevsky 已提交
1560

1561
.. ocv:function:: double Mahalanobis( InputArray v1, InputArray v2, InputArray icovar )
1562

1563 1564
.. ocv:pyfunction:: cv2.Mahalanobis(v1, v2, icovar) -> retval

1565
.. ocv:cfunction:: double cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat )
1566

1567
.. ocv:pyoldfunction:: cv.Mahalonobis(vec1, vec2, mat) -> None
1568

1569
    :param vec1: first 1D input vector.
1570

1571
    :param vec2: second 1D input vector.
1572

1573
    :param icovar: inverse covariance matrix.
1574

1575
The function ``Mahalanobis`` calculates and returns the weighted distance between two vectors:
1576 1577 1578

.. math::

V
Vadim Pisarevsky 已提交
1579
    d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }
1580

V
Vadim Pisarevsky 已提交
1581
The covariance matrix may be calculated using the
1582 1583
:ocv:func:`calcCovarMatrix` function and then inverted using the
:ocv:func:`invert` function (preferably using the ``DECOMP_SVD`` method, as the most accurate).
1584

1585

1586

1587
max
V
Vadim Pisarevsky 已提交
1588
---
1589
Calculates per-element maximum of two arrays or an array and a scalar.
V
Vadim Pisarevsky 已提交
1590

1591
.. ocv:function:: MatExpr max( const Mat& a, const Mat& b )
1592

1593
.. ocv:function:: MatExpr max( const Mat& a, double s )
1594

1595
.. ocv:function:: MatExpr max( double s, const Mat& a )
1596

1597
.. ocv:function:: void max(InputArray src1, InputArray src2, OutputArray dst)
1598

1599
.. ocv:function:: void max(const Mat& src1, const Mat& src2, Mat& dst)
1600

1601
.. ocv:function:: void max( const Mat& src1, double src2, Mat& dst )
1602

1603 1604 1605 1606 1607 1608
.. ocv:pyfunction:: cv2.max(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMaxS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Max(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MaxS(src, value, dst)-> None
1609

1610
    :param src1: first input array.
1611

1612
    :param src2: second input array of the same size and type as  ``src1`` .
1613

1614
    :param value: real scalar value.
1615

1616
    :param dst: output array of the same size and type as ``src1``.
1617

1618
The functions ``max`` calculate the per-element maximum of two arrays:
1619 1620 1621

.. math::

V
Vadim Pisarevsky 已提交
1622
    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))
1623 1624 1625 1626 1627

or array and a scalar:

.. math::

V
Vadim Pisarevsky 已提交
1628
    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )
1629

1630
In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.
1631

V
Vadim Pisarevsky 已提交
1632
The first 3 variants of the function listed above are actually a part of
1633
:ref:`MatrixExpressions` . They return an expression object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.
1634

1635 1636
.. seealso::

1637 1638 1639 1640
    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
1641
    :ref:`MatrixExpressions`
V
Vadim Pisarevsky 已提交
1642

1643

1644
mean
V
Vadim Pisarevsky 已提交
1645
----
1646 1647 1648
Calculates an average (mean) of array elements.

.. ocv:function:: Scalar mean(InputArray src, InputArray mask=noArray())
1649

1650
.. ocv:pyfunction:: cv2.mean(src[, mask]) -> retval
1651

1652 1653
.. ocv:cfunction:: CvScalar cvAvg( const CvArr* arr, const CvArr* mask=NULL )

1654
.. ocv:pyoldfunction:: cv.Avg(arr, mask=None) -> scalar
1655

1656
    :param src: input array that should have from 1 to 4 channels so that the result can be stored in :ocv:class:`Scalar_` .
1657

1658
    :param mask: optional operation mask.
1659

1660
The function ``mean`` calculates the mean value ``M`` of array elements, independently for each channel, and return it:
1661 1662 1663

.. math::

V
Vadim Pisarevsky 已提交
1664
    \begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}
1665

V
Vadim Pisarevsky 已提交
1666
When all the mask elements are 0's, the functions return ``Scalar::all(0)`` .
1667

1668 1669
.. seealso::

1670 1671 1672 1673
    :ocv:func:`countNonZero`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`
1674

V
Vadim Pisarevsky 已提交
1675

1676

1677
meanStdDev
V
Vadim Pisarevsky 已提交
1678
----------
1679
Calculates a mean and standard deviation of array elements.
V
Vadim Pisarevsky 已提交
1680

1681
.. ocv:function:: void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())
1682

1683
.. ocv:pyfunction:: cv2.meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
1684

1685 1686
.. ocv:cfunction:: void cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev, const CvArr* mask=NULL )

1687
.. ocv:pyoldfunction:: cv.AvgSdv(arr, mask=None) -> (mean, stdDev)
1688

1689
    :param src: input array that should have from 1 to 4 channels so that the results can be stored in  :ocv:class:`Scalar_` 's.
1690

1691
    :param mean: output parameter: calculated mean value.
1692

1693
    :param stddev: output parameter: calculateded standard deviation.
1694

1695
    :param mask: optional operation mask.
1696

1697
The function ``meanStdDev`` calculates the mean and the standard deviation ``M`` of array elements independently for each channel and returns it via the output parameters:
1698 1699 1700

.. math::

A
Alexander Shishkov 已提交
1701
    \begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2}{N}} \end{array}
1702

V
Vadim Pisarevsky 已提交
1703
When all the mask elements are 0's, the functions return ``mean=stddev=Scalar::all(0)`` .
1704

1705
.. note:: The calculated standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array ``M x N`` to the single-channel array ``M*N x mtx.channels()`` (only possible when the matrix is continuous) and then pass the matrix to :ocv:func:`calcCovarMatrix` .
1706 1707 1708

.. seealso::

1709 1710 1711 1712 1713
    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`
1714

V
Vadim Pisarevsky 已提交
1715

1716

1717
merge
V
Vadim Pisarevsky 已提交
1718
-----
1719
Creates one multichannel array out of several single-channel ones.
1720

1721
.. ocv:function:: void merge(const Mat* mv, size_t count, OutputArray dst)
1722

1723
.. ocv:function:: void merge( InputArrayOfArrays mv, OutputArray dst )
1724

1725 1726 1727 1728
.. ocv:pyfunction:: cv2.merge(mv[, dst]) -> dst

.. ocv:cfunction:: void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
.. ocv:pyoldfunction:: cv.Merge(src0, src1, src2, src3, dst)-> None
1729

1730
    :param mv: input array or vector of matrices to be merged; all the matrices in ``mv`` must have the same size and the same depth.
1731

1732
    :param count: number of input matrices when ``mv`` is a plain C array; it must be greater than zero.
1733

1734
    :param dst: output array of the same size and the same depth as ``mv[0]``; The number of channels will be the total number of channels in the matrix array.
1735

1736
The functions ``merge`` merge several arrays to make a single multi-channel array. That is, each element of the output array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as ``mv[i].channels()``-element vectors.
1737

V
Vadim Pisarevsky 已提交
1738
The function
1739 1740
:ocv:func:`split` does the reverse operation. If you need to shuffle channels in some other advanced way, use
:ocv:func:`mixChannels` .
1741

1742 1743
.. seealso::

1744 1745
    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
1746
    :ocv:func:`Mat::reshape`
1747

V
Vadim Pisarevsky 已提交
1748

1749

1750
min
V
Vadim Pisarevsky 已提交
1751
---
1752
Calculates per-element minimum of two arrays or an array and a scalar.
1753

1754
.. ocv:function:: MatExpr min( const Mat& a, const Mat& b )
1755

1756
.. ocv:function:: MatExpr min( const Mat& a, double s )
1757

1758
.. ocv:function:: MatExpr min( double s, const Mat& a )
1759

1760
.. ocv:function:: void min(InputArray src1, InputArray src2, OutputArray dst)
1761

1762
.. ocv:function:: void min(const Mat& src1, const Mat& src2, Mat& dst)
V
Vadim Pisarevsky 已提交
1763

1764
.. ocv:function:: void min( const Mat& src1, double src2, Mat& dst )
1765

1766 1767 1768 1769 1770 1771
.. ocv:pyfunction:: cv2.min(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMinS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Min(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MinS(src, value, dst)-> None
1772

1773
    :param src1: first input array.
1774

1775
    :param src2: second input array of the same size and type as ``src1``.
1776

1777
    :param value: real scalar value.
1778

1779
    :param dst: output array of the same size and type as ``src1``.
1780

1781
The functions ``min`` calculate the per-element minimum of two arrays:
1782 1783 1784

.. math::

V
Vadim Pisarevsky 已提交
1785
    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))
1786 1787 1788 1789 1790

or array and a scalar:

.. math::

V
Vadim Pisarevsky 已提交
1791
    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )
1792

1793
In the second variant, when the input array is multi-channel, each channel is compared with ``value`` independently.
1794

1795 1796
The first three variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return the expression object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.
1797

1798 1799
.. seealso::

1800 1801 1802 1803
    :ocv:func:`max`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
1804 1805
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1806

V
Vadim Pisarevsky 已提交
1807 1808 1809 1810 1811 1812
minMaxIdx
---------
Finds the global minimum and maximum in an array

.. ocv:function:: void minMaxIdx(InputArray src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0, InputArray mask=noArray())

1813
    :param src: input single-channel array.
V
Vadim Pisarevsky 已提交
1814

1815
    :param minVal: pointer to the returned minimum value; ``NULL`` is used if not required.
V
Vadim Pisarevsky 已提交
1816

1817
    :param maxVal: pointer to the returned maximum value; ``NULL`` is used if not required.
1818

1819
    :param minIdx: pointer to the returned minimum location (in nD case); ``NULL`` is used if not required; Otherwise, it must point to an array of ``src.dims`` elements, the coordinates of the minimum element in each dimension are stored there sequentially.
1820

V
Vadim Pisarevsky 已提交
1821
        .. note::
1822

1823
            When ``minIdx`` is not NULL, it must have at least 2 elements (as well as ``maxIdx``), even if ``src`` is a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 dimensions, i.e. single-column matrix is ``Mx1`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(i1,0)``/``(i2,0)``) and single-row matrix is ``1xN`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(0,j1)``/``(0,j2)``).
V
Vadim Pisarevsky 已提交
1824

1825
    :param maxIdx: pointer to the returned maximum location (in nD case). ``NULL`` is used if not required.
1826

V
Vadim Pisarevsky 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
    The function ``minMaxIdx`` finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if ``mask`` is not an empty array, in the specified array region.

    The function does not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
    :ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
    :ocv:func:`extractImageCOI` , or
    :ocv:func:`mixChannels` , or
    :ocv:func:`split` .

    In case of a sparse matrix, the minimum is found among non-zero elements only.


1838

1839
minMaxLoc
V
Vadim Pisarevsky 已提交
1840
---------
V
Vadim Pisarevsky 已提交
1841
Finds the global minimum and maximum in an array.
V
Vadim Pisarevsky 已提交
1842

1843
.. ocv:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())
1844

1845
.. ocv:function:: void minMaxLoc( const SparseMat& a, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0 )
1846

1847 1848
.. ocv:pyfunction:: cv2.minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

1849 1850
.. ocv:cfunction:: void cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val, CvPoint* min_loc=NULL, CvPoint* max_loc=NULL, const CvArr* mask=NULL )

1851
.. ocv:pyoldfunction:: cv.MinMaxLoc(arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)
1852

1853
    :param src: input single-channel array.
1854

1855
    :param minVal: pointer to the returned minimum value;  ``NULL`` is used if not required.
1856

1857
    :param maxVal: pointer to the returned maximum value;  ``NULL`` is used if not required.
1858

1859
    :param minLoc: pointer to the returned minimum location (in 2D case);  ``NULL`` is used if not required.
1860

1861
    :param maxLoc: pointer to the returned maximum location (in 2D case);  ``NULL`` is used if not required.
1862

1863
    :param mask: optional mask used to select a sub-array.
1864

1865
The functions ``minMaxLoc`` find the minimum and maximum element values and their positions. The extremums are searched across the whole array or,
V
Vadim Pisarevsky 已提交
1866
if ``mask`` is not an empty array, in the specified array region.
1867

V
Vadim Pisarevsky 已提交
1868
The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
1869
:ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
1870 1871 1872
:ocv:func:`extractImageCOI` , or
:ocv:func:`mixChannels` , or
:ocv:func:`split` .
1873

1874 1875
.. seealso::

1876 1877 1878 1879 1880 1881 1882
    :ocv:func:`max`,
    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`extractImageCOI`,
    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
1883
    :ocv:func:`Mat::reshape`
1884

1885 1886


1887
mixChannels
V
Vadim Pisarevsky 已提交
1888
-----------
1889
Copies specified channels from input arrays to the specified channels of output arrays.
V
Vadim Pisarevsky 已提交
1890

1891
.. ocv:function:: void mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )
1892

1893
.. ocv:function:: void mixChannels( const vector<Mat>& src, vector<Mat>& dst, const int* fromTo, size_t npairs )
1894

1895 1896
.. ocv:pyfunction:: cv2.mixChannels(src, dst, fromTo) -> None

1897 1898
.. ocv:cfunction:: void cvMixChannels( const CvArr** src, int src_count, CvArr** dst, int dst_count, const int* from_to, int pair_count )

1899
.. ocv:pyoldfunction:: cv.MixChannels(src, dst, fromTo) -> None
1900

1901
    :param src: input array or vector of matricesl; all of the matrices must have the same size and the same depth.
V
Vadim Pisarevsky 已提交
1902

1903
    :param nsrcs: number of matrices in ``src``.
1904

1905
    :param dst: output array or vector of matrices; all the matrices *must be allocated*; their size and depth must be the same as in ``src[0]``.
1906

1907
    :param ndsts: number of matrices in ``dst``.
1908

1909
    :param fromTo: array of index pairs specifying which channels are copied and where; ``fromTo[k*2]`` is a 0-based index of the input channel in ``src``, ``fromTo[k*2+1]`` is an index of the output channel in ``dst``; the continuous channel numbering is used: the first input image channels are indexed from ``0`` to ``src[0].channels()-1``, the second input image channels are indexed from ``src[0].channels()`` to ``src[0].channels() + src[1].channels()-1``,  and so on, the same scheme is used for the output image channels; as a special case, when ``fromTo[k*2]`` is negative, the corresponding output channel is filled with zero .
1910

1911
    :param npairs: number of index pairs in ``fromTo``.
1912

V
Vadim Pisarevsky 已提交
1913
The functions ``mixChannels`` provide an advanced mechanism for shuffling image channels.
1914

1915 1916 1917
:ocv:func:`split` and
:ocv:func:`merge` and some forms of
:ocv:func:`cvtColor` are partial cases of ``mixChannels`` .
1918

1919
In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped) and a separate alpha-channel image: ::
1920 1921 1922 1923

    Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
    Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
    Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
V
Vadim Pisarevsky 已提交
1924

1925
    // forming an array of matrices is a quite efficient operation,
1926 1927 1928 1929
    // because the matrix data is not copied, only the headers
    Mat out[] = { bgr, alpha };
    // rgba[0] -> bgr[2], rgba[1] -> bgr[1],
    // rgba[2] -> bgr[0], rgba[3] -> alpha[0]
V
Vadim Pisarevsky 已提交
1930
    int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
1931
    mixChannels( &rgba, 1, out, 2, from_to, 4 );
1932

1933

1934
.. note:: Unlike many other new-style C++ functions in OpenCV (see the introduction section and :ocv:func:`Mat::create` ), ``mixChannels`` requires the output arrays to be pre-allocated before calling the function.
1935 1936

.. seealso::
1937

1938 1939 1940
    :ocv:func:`split`,
    :ocv:func:`merge`,
    :ocv:func:`cvtColor`
1941

V
Vadim Pisarevsky 已提交
1942

1943

1944
mulSpectrums
V
Vadim Pisarevsky 已提交
1945
------------
1946
Performs the per-element multiplication of two Fourier spectrums.
V
Vadim Pisarevsky 已提交
1947

1948
.. ocv:function:: void mulSpectrums( InputArray a, InputArray b, OutputArray c, int flags, bool conjB=false )
1949

1950 1951 1952 1953
.. ocv:pyfunction:: cv2.mulSpectrums(a, b, flags[, c[, conjB]]) -> c

.. ocv:cfunction:: void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.MulSpectrums(src1, src2, dst, flags)-> None
1954

1955
    :param src1: first input array.
1956

1957
    :param src2: second input array of the same size and type as ``src1`` .
1958

1959
    :param dst: output array of the same size and type as ``src1`` .
1960

1961
    :param flags: operation flags; currently, the only supported flag is ``DFT_ROWS``, which indicates that each row of ``src1`` and ``src2`` is an independent 1D Fourier spectrum.
1962

1963
    :param conjB: optional flag that conjugates the second input array before the multiplication (true) or not (false).
1964

1965
The function ``mulSpectrums`` performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.
1966

V
Vadim Pisarevsky 已提交
1967
The function, together with
1968
:ocv:func:`dft` and
1969
:ocv:func:`idft` , may be used to calculate convolution (pass ``conjB=false`` ) or correlation (pass ``conjB=true`` ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see
1970
:ocv:func:`dft` for details).
1971

1972

1973

1974
multiply
V
Vadim Pisarevsky 已提交
1975
--------
1976
Calculates the per-element scaled product of two arrays.
V
Vadim Pisarevsky 已提交
1977

1978
.. ocv:function:: void multiply( InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1 )
1979

1980 1981 1982
.. ocv:pyfunction:: cv2.multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst

.. ocv:cfunction:: void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
1983
.. ocv:pyoldfunction:: cv.Mul(src1, src2, dst, scale=1) -> None
1984

1985
    :param src1: first input array.
1986

1987
    :param src2: second input array of the same size and the same type as ``src1``.
1988

1989
    :param dst: output array of the same size and type as ``src1``.
1990

1991
    :param scale: optional scale factor.
1992

V
Vadim Pisarevsky 已提交
1993
The function ``multiply`` calculates the per-element product of two arrays:
1994

V
Vadim Pisarevsky 已提交
1995
.. math::
1996

V
Vadim Pisarevsky 已提交
1997
    \texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))
1998

1999
There is also a
2000
:ref:`MatrixExpressions` -friendly variant of the first function. See
2001
:ocv:func:`Mat::mul` .
2002

2003
For a not-per-element matrix product, see
2004
:ocv:func:`gemm` .
2005

2006 2007
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

2008 2009
.. seealso::

2010
    :ocv:func:`add`,
2011
    :ocv:func:`subtract`,
2012
    :ocv:func:`divide`,
2013
    :ref:`MatrixExpressions`,
2014 2015 2016 2017 2018 2019
    :ocv:func:`scaleAdd`,
    :ocv:func:`addWeighted`,
    :ocv:func:`accumulate`,
    :ocv:func:`accumulateProduct`,
    :ocv:func:`accumulateSquare`,
    :ocv:func:`Mat::convertTo`
2020

V
Vadim Pisarevsky 已提交
2021

2022

2023
mulTransposed
V
Vadim Pisarevsky 已提交
2024
-------------
2025
Calculates the product of a matrix and its transposition.
V
Vadim Pisarevsky 已提交
2026

2027
.. ocv:function:: void mulTransposed( InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int dtype=-1 )
2028

2029 2030
.. ocv:pyfunction:: cv2.mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst

2031 2032
.. ocv:cfunction:: void cvMulTransposed( const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1. )

2033
.. ocv:pyoldfunction:: cv.MulTransposed(src, dst, order, delta=None, scale=1.0) -> None
2034

2035
    :param src: input single-channel matrix. Note that unlike :ocv:func:`gemm`, the function can multiply not only floating-point matrices.
2036

2037
    :param dst: output square matrix.
2038

2039
    :param aTa: Flag specifying the multiplication ordering. See the description below.
2040

2041
    :param delta: Optional delta matrix subtracted from  ``src``  before the multiplication. When the matrix is empty ( ``delta=noArray()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as  ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see  :ocv:func:`repeat` ) to cover the full  ``src``  and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created output matrix. See the  ``dtype``  parameter description below.
2042

2043
    :param scale: Optional scale factor for the matrix product.
2044

2045
    :param dtype: Optional type of the output matrix. When it is negative, the output matrix will have the same type as  ``src`` . Otherwise, it will be ``type=CV_MAT_DEPTH(dtype)`` that should be either  ``CV_32F``  or  ``CV_64F`` .
2046

V
Vadim Pisarevsky 已提交
2047
The function ``mulTransposed`` calculates the product of ``src`` and its transposition:
2048 2049 2050

.. math::

V
Vadim Pisarevsky 已提交
2051
    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )
2052

V
Vadim Pisarevsky 已提交
2053
if ``aTa=true`` , and
2054 2055 2056

.. math::

V
Vadim Pisarevsky 已提交
2057
    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T
2058

2059
otherwise. The function is used to calculate the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product ``A*B`` when ``B=A'``
2060 2061 2062

.. seealso::

2063 2064 2065 2066
    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`gemm`,
    :ocv:func:`repeat`,
    :ocv:func:`reduce`
2067

V
Vadim Pisarevsky 已提交
2068

2069

2070
norm
V
Vadim Pisarevsky 已提交
2071
----
2072
Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.
V
Vadim Pisarevsky 已提交
2073

2074
.. ocv:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
2075

2076
.. ocv:function:: double norm( InputArray src1, InputArray src2, int normType=NORM_L2, InputArray mask=noArray() )
2077

2078
.. ocv:function:: double norm( const SparseMat& src, int normType )
2079

2080 2081 2082
.. ocv:pyfunction:: cv2.norm(src1[, normType[, mask]]) -> retval
.. ocv:pyfunction:: cv2.norm(src1, src2[, normType[, mask]]) -> retval

2083 2084
.. ocv:cfunction:: double cvNorm( const CvArr* arr1, const CvArr* arr2=NULL, int norm_type=CV_L2, const CvArr* mask=NULL )

2085
.. ocv:pyoldfunction:: cv.Norm(arr1, arr2, normType=CV_L2, mask=None) -> float
2086

2087
    :param src1: first input array.
2088

2089
    :param src2: second input array of the same size and the same type as ``src1``.
2090

2091
    :param normType: type of the norm (see the details below).
2092

2093
    :param mask: optional operation mask; it must have the same size as ``src1`` and ``CV_8UC1`` type.
2094

2095
The functions ``norm`` calculate an absolute norm of ``src1`` (when there is no ``src2`` ):
2096 2097 2098 2099 2100

.. math::

    norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
V
Vadim Pisarevsky 已提交
2101
    { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }
2102

V
Vadim Pisarevsky 已提交
2103
or an absolute or relative difference norm if ``src2`` is there:
2104 2105 2106 2107 2108

.. math::

    norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
V
Vadim Pisarevsky 已提交
2109
    { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }
2110 2111 2112 2113 2114 2115 2116

or

.. math::

    norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}$ }
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}$ }
V
Vadim Pisarevsky 已提交
2117
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}$ }
2118

V
Vadim Pisarevsky 已提交
2119
The functions ``norm`` return the calculated norm.
2120

2121
When the ``mask`` parameter is specified and it is not empty, the norm is calculated only over the region specified by the mask.
2122

2123
A multi-channel input arrays are treated as a single-channel, that is, the results for all channels are combined.
2124

2125

2126

2127
normalize
V
Vadim Pisarevsky 已提交
2128
---------
2129
Normalizes the norm or value range of an array.
V
Vadim Pisarevsky 已提交
2130

2131
.. ocv:function:: void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
2132

2133
.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
2134

2135
.. ocv:pyfunction:: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst
2136

2137
    :param src: input array.
2138

2139
    :param dst: output array of the same size as  ``src`` .
2140

2141
    :param alpha: norm value to normalize to or the lower range boundary in case of the range normalization.
2142

2143
    :param beta: upper range boundary in case of the range normalization; it is not used for the norm normalization.
2144

2145
    :param normType: normalization type (see the details below).
2146

2147
    :param dtype: when negative, the output array has the same type as ``src``; otherwise, it has the same number of channels as  ``src`` and the depth ``=CV_MAT_DEPTH(dtype)``.
2148

2149
    :param mask: optional operation mask.
2150 2151


2152
The functions ``normalize`` scale and shift the input array elements so that
2153

2154
.. math::
2155

2156
    \| \texttt{dst} \| _{L_p}= \texttt{alpha}
2157

2158
(where p=Inf, 1 or 2) when ``normType=NORM_INF``, ``NORM_L1``, or ``NORM_L2``, respectively; or so that
2159

2160
.. math::
2161

2162
    \min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}
2163

2164
when ``normType=NORM_MINMAX`` (for dense arrays only).
2165
The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or min-max but modify the whole array, you can use
2166 2167
:ocv:func:`norm` and
:ocv:func:`Mat::convertTo`.
2168

2169
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.
2170

2171 2172
.. seealso::

2173 2174 2175
    :ocv:func:`norm`,
    :ocv:func:`Mat::convertTo`,
    :ocv:func:`SparseMat::convertTo`
2176

2177 2178 2179 2180


PCA
---
2181
.. ocv:class:: PCA
2182

2183 2184
Principal Component Analysis class.

2185
The class is used to calculate a special basis for a set of vectors. The basis will consist of eigenvectors of the covariance matrix calculated from the input set of vectors. The class ``PCA`` can also transform vectors to/from the new coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and any linear combination of such vectors) can be quite accurately approximated by taking its first few components, corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that you calculate a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected vector's coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
2186
http://en.wikipedia.org/wiki/Principal\_component\_analysis .
2187

2188
The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector) that is used to calculate PCA. The second function stores another "test" set of vectors (a row per vector). First, these vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and printed for each vector. ::
2189

2190 2191
    PCA compressPCA(InputArray pcaset, int maxComponents,
                    const Mat& testset, OutputArray compressed)
2192 2193
    {
        PCA pca(pcaset, // pass the data
2194
                Mat(), // there is no pre-computed mean vector,
2195 2196 2197 2198 2199
                       // so let the PCA engine to compute it
                CV_PCA_DATA_AS_ROW, // indicate that the vectors
                                    // are stored as matrix rows
                                    // (use CV_PCA_DATA_AS_COL if the vectors are
                                    // the matrix columns)
2200
                maxComponents // specify how many principal components to retain
2201 2202 2203 2204 2205
                );
        // if there is no test data, just return the computed basis, ready-to-use
        if( !testset.data )
            return pca;
        CV_Assert( testset.cols == pcaset.cols );
V
Vadim Pisarevsky 已提交
2206

2207
        compressed.create(testset.rows, maxComponents, testset.type());
V
Vadim Pisarevsky 已提交
2208

2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
        Mat reconstructed;
        for( int i = 0; i < testset.rows; i++ )
        {
            Mat vec = testset.row(i), coeffs = compressed.row(i);
            // compress the vector, the result will be stored
            // in the i-th row of the output matrix
            pca.project(vec, coeffs);
            // and then reconstruct it
            pca.backProject(coeffs, reconstructed);
            // and measure the error
A
Alexander Shishkov 已提交
2219
            printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
2220 2221 2222
        }
        return pca;
    }
2223

2224

2225 2226
.. seealso::

2227 2228 2229 2230 2231
    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`mulTransposed`,
    :ocv:class:`SVD`,
    :ocv:func:`dft`,
    :ocv:func:`dct`
2232

V
Vadim Pisarevsky 已提交
2233

2234

2235
PCA::PCA
2236
------------
2237 2238
PCA constructors

2239
.. ocv:function:: PCA::PCA()
2240

2241
.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
2242

2243 2244
.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, double retainedVariance)

2245
    :param data: input samples stored as matrix rows or matrix columns.
2246

2247
    :param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.
2248

2249
    :param flags: operation flags; currently the parameter is only used to specify the data layout:
2250

2251
        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
2252

2253
        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
2254

2255
    :param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.
2256 2257
    
    :param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.
2258

2259
The default constructor initializes an empty PCA structure. The other constructors initialize the structure and call
2260
:ocv:funcx:`PCA::operator()` .
2261

2262

2263

2264
PCA::operator ()
V
Vadim Pisarevsky 已提交
2265
----------------
2266
Performs Principal Component Analysis of the supplied dataset.
V
Vadim Pisarevsky 已提交
2267

2268
.. ocv:function:: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)
2269

2270 2271
.. ocv:function:: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, double retainedVariance)

2272
.. ocv:pyfunction:: cv2.PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors
2273

2274
    :param data: input samples stored as the matrix rows or as the matrix columns.
2275

2276
    :param mean: optional mean value; if the matrix is empty (``noArray()``), the mean is computed from the data.
2277

2278
    :param flags: operation flags; currently the parameter is only used to specify the data layout.
2279

2280
        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
2281

2282
        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
2283

2284
    :param maxComponents: maximum number of components that PCA should retain; by default, all the components are retained.
2285 2286
    
    :param retainedVariance: Percentage of variance that PCA should retain. Using this parameter will let the PCA decided how many components to retain but it will always keep at least 2.
2287

2288
The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets. That is, if the  structure has been previously used with another dataset, the existing internal data is reclaimed and the new ``eigenvalues``, ``eigenvectors`` , and ``mean`` are allocated and computed.
V
Vadim Pisarevsky 已提交
2289 2290

The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as ``PCA::eigenvectors`` rows.
2291

2292

2293

2294
PCA::project
V
Vadim Pisarevsky 已提交
2295
------------
2296
Projects vector(s) to the principal component subspace.
V
Vadim Pisarevsky 已提交
2297

2298
.. ocv:function:: Mat PCA::project(InputArray vec) const
2299

2300
.. ocv:function:: void PCA::project(InputArray vec, OutputArray result) const
2301

2302
.. ocv:pyfunction:: cv2.PCAProject(data, mean, eigenvectors[, result]) -> result
2303

2304
    :param vec: input vector(s); must have the same dimensionality and the same layout as the input data used at PCA phase, that is, if ``CV_PCA_DATA_AS_ROW`` are specified, then ``vec.cols==data.cols`` (vector dimensionality) and ``vec.rows`` is the number of vectors to project, and the same is true for the ``CV_PCA_DATA_AS_COL`` case.
2305

2306
    :param result: output vectors; in case of ``CV_PCA_DATA_AS_COL``, the output matrix has as many columns as the number of input vectors, this means that ``result.cols==vec.cols`` and the number of rows match the number of principal components (for example, ``maxComponents`` parameter passed to the constructor).
2307

2308
The methods project one or more vectors to the principal component subspace, where each vector projection is represented by coefficients in the principal component basis. The first form of the method returns the matrix that the second form writes to the result. So the first form can be used as a part of expression while the second form can be more efficient in a processing loop.
2309

2310

2311

2312
PCA::backProject
V
Vadim Pisarevsky 已提交
2313
----------------
2314
Reconstructs vectors from their PC projections.
2315

2316
.. ocv:function:: Mat PCA::backProject(InputArray vec) const
V
Vadim Pisarevsky 已提交
2317

2318
.. ocv:function:: void PCA::backProject(InputArray vec, OutputArray result) const
2319

2320
.. ocv:pyfunction:: cv2.PCABackProject(data, mean, eigenvectors[, result]) -> result
2321

2322
    :param vec: coordinates of the vectors in the principal component subspace, the layout and size are the same as of ``PCA::project`` output vectors.
2323

2324
    :param result: reconstructed vectors; the layout and size are the same as of ``PCA::project`` input vectors.
2325

V
Vadim Pisarevsky 已提交
2326
The methods are inverse operations to
2327
:ocv:func:`PCA::project`. They take PC coordinates of projected vectors and reconstruct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are different from the originals. But typically, the difference is small if the number of components is large enough (but still much smaller than the original vector dimensionality). As a result, PCA is used.
2328

2329

2330

2331
perspectiveTransform
V
Vadim Pisarevsky 已提交
2332
--------------------
2333 2334
Performs the perspective matrix transformation of vectors.

2335
.. ocv:function:: void perspectiveTransform( InputArray src, OutputArray dst, InputArray m )
2336

2337 2338 2339 2340
.. ocv:pyfunction:: cv2.perspectiveTransform(src, m[, dst]) -> dst

.. ocv:cfunction:: void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat)
.. ocv:pyoldfunction:: cv.PerspectiveTransform(src, dst, mat)-> None
2341

2342
    :param src: input two-channel or three-channel floating-point array; each element is a 2D/3D vector to be transformed.
2343

2344
    :param dst: output array of the same size and type as ``src``.
2345

2346
    :param m: ``3x3`` or ``4x4`` floating-point transformation matrix.
2347

2348
The function ``perspectiveTransform`` transforms every element of ``src`` by treating it as a 2D or 3D vector, in the following way:
2349 2350 2351

.. math::

V
Vadim Pisarevsky 已提交
2352
    (x, y, z)  \rightarrow (x'/w, y'/w, z'/w)
2353 2354 2355 2356 2357

where

.. math::

V
Vadim Pisarevsky 已提交
2358
    (x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}
2359 2360 2361 2362 2363

and

.. math::

V
Vadim Pisarevsky 已提交
2364
    w =  \fork{w'}{if $w' \ne 0$}{\infty}{otherwise}
2365

2366 2367
Here a 3D vector transformation is shown. In case of a 2D vector transformation, the ``z`` component is omitted.

2368
.. note:: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use :ocv:func:`warpPerspective` . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use :ocv:func:`getPerspectiveTransform` or :ocv:func:`findHomography` .
2369

2370
.. seealso::
2371

2372 2373 2374 2375
    :ocv:func:`transform`,
    :ocv:func:`warpPerspective`,
    :ocv:func:`getPerspectiveTransform`,
    :ocv:func:`findHomography`
2376

V
Vadim Pisarevsky 已提交
2377

2378

2379
phase
V
Vadim Pisarevsky 已提交
2380
-----
2381
Calculates the rotation angle of 2D vectors.
V
Vadim Pisarevsky 已提交
2382

2383
.. ocv:function:: void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
2384

2385
.. ocv:pyfunction:: cv2.phase(x, y[, angle[, angleInDegrees]]) -> angle
2386

2387
    :param x: input floating-point array of x-coordinates of 2D vectors.
2388

2389
    :param y: input array of y-coordinates of 2D vectors; it must have the same size and the same type as ``x``.
2390

2391
    :param angle: output array of vector angles; it has the same size and same type as  ``x`` .
2392

2393
    :param angleInDegrees: when true, the function calculates the angle in degrees, otherwise, they are measured in radians.
2394

2395
The function ``phase`` calculates the rotation angle of each 2D vector that is formed from the corresponding elements of ``x`` and ``y`` :
2396 2397 2398

.. math::

V
Vadim Pisarevsky 已提交
2399
    \texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))
2400

2401
The angle estimation accuracy is about 0.3 degrees. When ``x(I)=y(I)=0`` , the corresponding ``angle(I)`` is set to 0.
2402 2403


2404
polarToCart
V
Vadim Pisarevsky 已提交
2405
-----------
2406
Calculates x and y coordinates of 2D vectors from their magnitude and angle.
V
Vadim Pisarevsky 已提交
2407

2408
.. ocv:function:: void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees=false)
2409

2410 2411
.. ocv:pyfunction:: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y

2412 2413
.. ocv:cfunction:: void cvPolarToCart( const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angle_in_degrees=0 )

2414
.. ocv:pyoldfunction:: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0)-> None
2415

2416
    :param magnitude: input floating-point array of magnitudes of 2D vectors; it can be an empty matrix (``=Mat()``), in this case, the function assumes that all the magnitudes are =1; if it is not empty, it must have the same size and type as ``angle``.
2417

2418
    :param angle: input floating-point array of angles of 2D vectors.
2419

2420
    :param x: output array of x-coordinates of 2D vectors; it has the same size and type as ``angle``.
2421

2422
    :param y: output array of y-coordinates of 2D vectors; it has the same size and type as ``angle``.
2423

2424
    :param angleInDegrees: when true, the input angles are measured in degrees, otherwise, they are measured in radians.
2425

2426
The function ``polarToCart`` calculates the Cartesian coordinates of each 2D vector represented by the corresponding elements of ``magnitude`` and ``angle`` :
2427 2428 2429

.. math::

V
Vadim Pisarevsky 已提交
2430
    \begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}
2431

2432 2433 2434 2435
The relative accuracy of the estimated coordinates is about ``1e-6``.

.. seealso::

2436 2437 2438 2439 2440 2441 2442
    :ocv:func:`cartToPolar`,
    :ocv:func:`magnitude`,
    :ocv:func:`phase`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`
2443

V
Vadim Pisarevsky 已提交
2444

2445

2446
pow
V
Vadim Pisarevsky 已提交
2447
---
2448
Raises every array element to a power.
V
Vadim Pisarevsky 已提交
2449

2450
.. ocv:function:: void pow( InputArray src, double power, OutputArray dst )
2451

2452 2453 2454 2455
.. ocv:pyfunction:: cv2.pow(src, power[, dst]) -> dst

.. ocv:cfunction:: void cvPow( const CvArr* src, CvArr* dst, double power)
.. ocv:pyoldfunction:: cv.Pow(src, dst, power)-> None
2456

2457
    :param src: input array.
2458

2459
    :param power: exponent of power.
2460

2461
    :param dst: output array of the same size and type as ``src``.
V
Vadim Pisarevsky 已提交
2462

2463
The function ``pow`` raises every element of the input array to ``power`` :
2464 2465 2466

.. math::

2467
    \texttt{dst} (I) =  \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}
2468

2469
So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array ``src``  shows: ::
2470 2471 2472 2473

    Mat mask = src < 0;
    pow(src, 1./5, dst);
    subtract(Scalar::all(0), dst, dst, mask);
2474

2475

2476
For some values of ``power`` , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.
2477

2478 2479
Special values (NaN, Inf) are not handled.

2480 2481
.. seealso::

2482 2483 2484 2485 2486
    :ocv:func:`sqrt`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`
2487

V
Vadim Pisarevsky 已提交
2488 2489 2490


RNG
V
Vadim Pisarevsky 已提交
2491
---
2492

2493
.. ocv:class:: RNG
2494

2495
Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to return scalar random values and to fill arrays with random values. Currently it supports uniform and Gaussian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
2496
http://en.wikipedia.org/wiki/Multiply-with-carry
2497
). Gaussian-distribution random numbers are generated using the Ziggurat algorithm (
2498
http://en.wikipedia.org/wiki/Ziggurat_algorithm
V
Vadim Pisarevsky 已提交
2499
), introduced by G. Marsaglia and W. W. Tsang.
2500

2501

2502

2503
RNG::RNG
2504
------------
2505 2506
The constructors

2507
.. ocv:function:: RNG::RNG()
2508

2509
.. ocv:function:: RNG::RNG(uint64 state)
2510

2511
    :param state: 64-bit value used to initialize the RNG.
2512

2513
These are the RNG constructors. The first form sets the state to some pre-defined value, equal to ``2**32-1`` in the current implementation. The second form sets the state to the specified value. If you passed ``state=0`` , the constructor uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.
2514

2515

2516

2517
RNG::next
2518
-------------
2519
Returns the next random number.
2520

2521
.. ocv:function:: unsigned RNG::next()
2522

2523
The method updates the state using the MWC algorithm and returns the next 32-bit random number.
2524

2525

2526

2527
RNG::operator T
V
Vadim Pisarevsky 已提交
2528
---------------
2529
Returns the next random number of the specified type.
V
Vadim Pisarevsky 已提交
2530

2531
.. ocv:function:: RNG::operator uchar()
V
Vadim Pisarevsky 已提交
2532

2533
.. ocv:function:: RNG::operator schar()
V
Vadim Pisarevsky 已提交
2534

2535
.. ocv:function:: RNG::operator ushort()
V
Vadim Pisarevsky 已提交
2536

2537
.. ocv:function:: RNG::operator short()
V
Vadim Pisarevsky 已提交
2538

2539
.. ocv:function:: RNG::operator int()
V
Vadim Pisarevsky 已提交
2540

2541
.. ocv:function:: RNG::operator unsigned()
2542

2543
.. ocv:function:: RNG::operator float()
V
Vadim Pisarevsky 已提交
2544

2545
.. ocv:function:: RNG::operator double()
2546

2547
Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified type. In case of integer types, the returned number is from the available value range for the specified type. In case of floating-point types, the returned value is from ``[0,1)`` range.
2548

2549

2550

2551
RNG::operator ()
2552
--------------------
2553 2554
Returns the next random number.

2555
.. ocv:function:: unsigned RNG::operator ()()
2556

2557
.. ocv:function:: unsigned RNG::operator ()(unsigned N)
2558

2559
    :param N: upper non-inclusive boundary of the returned random number.
2560

2561
The methods transform the state using the MWC algorithm and return the next random number. The first form is equivalent to
2562
:ocv:func:`RNG::next` . The second form returns the random number modulo ``N`` , which means that the result is in the range ``[0, N)`` .
2563

2564

2565

2566
RNG::uniform
2567
----------------
2568 2569
Returns the next random number sampled from the uniform distribution.

2570
.. ocv:function:: int RNG::uniform(int a, int b)
2571

2572
.. ocv:function:: float RNG::uniform(float a, float b)
2573

2574
.. ocv:function:: double RNG::uniform(double a, double b)
2575

2576
    :param a: lower inclusive boundary of the returned random numbers.
2577

2578
    :param b: upper non-inclusive boundary of the returned random numbers.
2579

2580
The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number of the specified type, deduced from the input parameter type, from the range ``[a, b)`` . There is a nuance illustrated by the following sample: ::
2581

2582
    RNG rng;
V
Vadim Pisarevsky 已提交
2583

2584
    // always produces 0
2585
    double a = rng.uniform(0, 1);
V
Vadim Pisarevsky 已提交
2586

2587
    // produces double from [0, 1)
2588
    double a1 = rng.uniform((double)0, (double)1);
V
Vadim Pisarevsky 已提交
2589

2590
    // produces float from [0, 1)
2591
    double b = rng.uniform(0.f, 1.f);
V
Vadim Pisarevsky 已提交
2592

2593
    // produces double from [0, 1)
2594
    double c = rng.uniform(0., 1.);
V
Vadim Pisarevsky 已提交
2595

2596
    // may cause compiler error because of ambiguity:
2597 2598
    //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
    double d = rng.uniform(0, 0.999999);
2599

2600

2601
The compiler does not take into account the type of the variable to which you assign the result of ``RNG::uniform`` . The only thing that matters to the compiler is the type of ``a`` and ``b`` parameters. So, if you want a floating-point random number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit type cast operators, as in the ``a1`` initialization above.
2602

2603

2604

2605
RNG::gaussian
2606
-----------------
2607
Returns the next random number sampled from the Gaussian distribution.
2608

2609
.. ocv:function:: double RNG::gaussian(double sigma)
2610

2611
    :param sigma: standard deviation of the distribution.
2612

2613
The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian distribution ``N(0,sigma)`` . That is, the mean value of the returned random numbers is zero and the standard deviation is the specified ``sigma`` .
2614

2615

2616

2617
RNG::fill
2618
-------------
2619
Fills arrays with random numbers.
2620

2621
.. ocv:function:: void RNG::fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange=false )
2622

2623
    :param mat: 2D or N-dimensional matrix; currently matrices with more than 4 channels are not supported by the methods, use  :ocv:func:`Mat::reshape` as a possible workaround.
2624

2625
    :param distType: distribution type, ``RNG::UNIFORM`` or ``RNG::NORMAL``.
2626

2627
    :param a: first distribution parameter; in case of the uniform distribution, this is an inclusive lower boundary, in case of the normal distribution, this is a mean value.
2628

2629
    :param b: second distribution parameter; in case of the uniform distribution, this is a non-inclusive upper boundary, in case of the normal distribution, this is a standard deviation (diagonal of the standard deviation matrix or the full standard deviation matrix).
2630

2631
    :param saturateRange: pre-saturation flag; for uniform distribution only; if true, the method will first convert a and b to the acceptable value range (according to the mat datatype) and then will generate uniformly distributed random numbers within the range ``[saturate(a), saturate(b))``, if ``saturateRange=false``, the method will generate uniformly distributed random numbers in the original range ``[a, b)`` and then will saturate them, it means, for example, that ``theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX)`` will likely produce array mostly filled with 0's and 255's, since the range ``(0, 255)`` is significantly smaller than ``[-DBL_MAX, DBL_MAX)``.
2632

2633
Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using :ocv:func:`transform` to get samples from the specified Gaussian distribution.
2634

2635
randu
V
Vadim Pisarevsky 已提交
2636
-----
2637
Generates a single uniformly-distributed random number or an array of random numbers.
V
Vadim Pisarevsky 已提交
2638

2639
.. ocv:function:: template<typename _Tp> _Tp randu()
2640

2641
.. ocv:function:: void randu( InputOutputArray dst, InputArray low, InputArray high )
2642

2643
.. ocv:pyfunction:: cv2.randu(dst, low, high) -> None
2644

2645
    :param dst: output array of random numbers; the array must be pre-allocated.
2646

2647
    :param low: inclusive lower boundary of the generated random numbers.
2648

2649
    :param high: exclusive upper boundary of the generated random numbers.
2650

2651
The template functions ``randu`` generate and return the next uniformly-distributed random value of the specified type. ``randu<int>()`` is an equivalent to ``(int)theRNG();`` , and so on. See
2652
:ocv:class:`RNG` description.
2653

2654
The second non-template variant of the function fills the matrix ``dst`` with uniformly-distributed random numbers from the specified range:
2655 2656 2657

.. math::

2658
    \texttt{low} _c  \leq \texttt{dst} (I)_c <  \texttt{high} _c
2659

2660 2661
.. seealso::

2662 2663
    :ocv:class:`RNG`,
    :ocv:func:`randn`,
2664
    :ocv:func:`theRNG`
2665

2666 2667


2668
randn
V
Vadim Pisarevsky 已提交
2669
-----
2670
Fills the array with normally distributed random numbers.
V
Vadim Pisarevsky 已提交
2671

2672
.. ocv:function:: void randn( InputOutputArray dst, InputArray mean, InputArray stddev )
2673

2674
.. ocv:pyfunction:: cv2.randn(dst, mean, stddev) -> None
2675

2676
    :param dst: output array of random numbers; the array must be pre-allocated and have 1 to 4 channels.
2677

2678
    :param mean: mean value (expectation) of the generated random numbers.
2679

2680
    :param stddev: standard deviation of the generated random numbers; it can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.
2681

2682
The function ``randn`` fills the matrix ``dst`` with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the output array data type.
2683

2684 2685
.. seealso::

2686 2687
    :ocv:class:`RNG`,
    :ocv:func:`randu`
2688

V
Vadim Pisarevsky 已提交
2689

2690

2691
randShuffle
V
Vadim Pisarevsky 已提交
2692
-----------
2693
Shuffles the array elements randomly.
V
Vadim Pisarevsky 已提交
2694

2695
.. ocv:function:: void randShuffle( InputOutputArray dst, double iterFactor=1., RNG* rng=0 )
2696

2697
.. ocv:pyfunction:: cv2.randShuffle(dst[, iterFactor]) -> None
2698

2699
    :param dst: input/output numerical 1D array.
2700

2701
    :param iterFactor: scale factor that determines the number of random swap operations (see the details below).
2702

2703
    :param rng: optional random number generator used for shuffling; if it is zero, :ocv:func:`theRNG` () is used instead.
2704

2705
The function ``randShuffle`` shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be ``dst.rows*dst.cols*iterFactor`` .
2706

2707 2708
.. seealso::

2709 2710
    :ocv:class:`RNG`,
    :ocv:func:`sort`
2711

V
Vadim Pisarevsky 已提交
2712

2713

2714
reduce
V
Vadim Pisarevsky 已提交
2715
------
2716
Reduces a matrix to a vector.
V
Vadim Pisarevsky 已提交
2717

2718
.. ocv:function:: void reduce( InputArray src, OutputArray dst, int dim, int rtype, int dtype=-1 )
2719

2720 2721 2722 2723
.. ocv:pyfunction:: cv2.reduce(src, dim, rtype[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvReduce(const CvArr* src, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
.. ocv:pyoldfunction:: cv.Reduce(src, dst, dim=-1, op=CV_REDUCE_SUM)-> None
2724

2725
    :param src: input 2D matrix.
2726

2727
    :param dst: output vector. Its size and type is defined by  ``dim``  and  ``dtype``  parameters.
2728

2729
    :param dim: dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
2730

2731
    :param rtype: reduction operation that could be one of the following:
2732

2733
            * **CV_REDUCE_SUM**: the output is the sum of all rows/columns of the matrix.
2734

2735
            * **CV_REDUCE_AVG**: the output is the mean vector of all rows/columns of the matrix.
2736

2737
            * **CV_REDUCE_MAX**: the output is the maximum (column/row-wise) of all rows/columns of the matrix.
2738

2739
            * **CV_REDUCE_MIN**: the output is the minimum (column/row-wise) of all rows/columns of the matrix.
2740

2741
    :param dtype: when negative, the output vector will have the same type as the input matrix, otherwise, its type will be ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels())``.
2742

2743
The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.
2744

2745
.. seealso:: :ocv:func:`repeat`
2746

V
Vadim Pisarevsky 已提交
2747

2748

2749
repeat
V
Vadim Pisarevsky 已提交
2750
------
2751
Fills the output array with repeated copies of the input array.
2752

2753
.. ocv:function:: void repeat(InputArray src, int ny, int nx, OutputArray dst)
V
Vadim Pisarevsky 已提交
2754

2755
.. ocv:function:: Mat repeat( const Mat& src, int ny, int nx )
2756

2757 2758 2759
.. ocv:pyfunction:: cv2.repeat(src, ny, nx[, dst]) -> dst

.. ocv:cfunction:: void cvRepeat(const CvArr* src, CvArr* dst)
2760

2761
.. ocv:pyoldfunction:: cv.Repeat(src, dst)-> None
2762

2763
    :param src: input array to replicate.
2764

2765
    :param dst: output array of the same type as ``src``.
2766

2767
    :param ny: Flag to specify how many times the ``src`` is repeated along the vertical axis.
2768

2769
    :param nx: Flag to specify how many times the ``src`` is repeated along the horizontal axis.
2770

V
Vadim Pisarevsky 已提交
2771
The functions
2772
:ocv:func:`repeat` duplicate the input array one or more times along each of the two axes:
2773 2774 2775

.. math::

2776
    \texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }
2777

V
Vadim Pisarevsky 已提交
2778
The second variant of the function is more convenient to use with
2779
:ref:`MatrixExpressions` .
2780

2781
.. seealso::
2782

2783
    :ocv:func:`reduce`,
2784
    :ref:`MatrixExpressions`
2785

V
Vadim Pisarevsky 已提交
2786

2787

2788
scaleAdd
V
Vadim Pisarevsky 已提交
2789
--------
2790
Calculates the sum of a scaled array and another array.
V
Vadim Pisarevsky 已提交
2791

2792
.. ocv:function:: void scaleAdd( InputArray src1, double alpha, InputArray src2, OutputArray dst )
2793

2794 2795 2796 2797
.. ocv:pyfunction:: cv2.scaleAdd(src1, alpha, src2[, dst]) -> dst

.. ocv:cfunction:: void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst)
.. ocv:pyoldfunction:: cv.ScaleAdd(src1, scale, src2, dst)-> None
2798

2799
    :param src1: first input array.
2800

2801
    :param scale: scale factor for the first array.
2802

2803
    :param src2: second input array of the same size and type as ``src1``.
2804

2805
    :param dst: output array of the same size and type as ``src1``.
2806

V
Vadim Pisarevsky 已提交
2807
The function ``scaleAdd`` is one of the classical primitive linear algebra operations, known as ``DAXPY`` or ``SAXPY`` in `BLAS <http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms>`_. It calculates the sum of a scaled array and another array:
2808

V
Vadim Pisarevsky 已提交
2809
.. math::
2810

V
Vadim Pisarevsky 已提交
2811
    \texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)
2812

V
Vadim Pisarevsky 已提交
2813
The function can also be emulated with a matrix expression, for example: ::
2814 2815 2816 2817

    Mat A(3, 3, CV_64F);
    ...
    A.row(0) = A.row(1)*2 + A.row(2);
2818

2819

2820 2821
.. seealso::

2822 2823 2824 2825 2826
    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`subtract`,
    :ocv:func:`Mat::dot`,
    :ocv:func:`Mat::convertTo`,
2827 2828
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
2829

2830

2831
setIdentity
V
Vadim Pisarevsky 已提交
2832
-----------
2833
Initializes a scaled identity matrix.
V
Vadim Pisarevsky 已提交
2834

2835
.. ocv:function:: void setIdentity( InputOutputArray mtx, const Scalar& s=Scalar(1) )
2836

2837 2838 2839
.. ocv:pyfunction:: cv2.setIdentity(mtx[, s]) -> None

.. ocv:cfunction:: void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1))
2840

2841
.. ocv:pyoldfunction:: cv.SetIdentity(mat, value=1)-> None
2842

2843
    :param mtx: matrix to initialize (not necessarily square).
2844

2845
    :param value: value to assign to diagonal elements.
2846

V
Vadim Pisarevsky 已提交
2847
The function
2848
:ocv:func:`setIdentity` initializes a scaled identity matrix:
2849 2850 2851

.. math::

2852
    \texttt{mtx} (i,j)= \fork{\texttt{value}}{ if $i=j$}{0}{otherwise}
2853

V
Vadim Pisarevsky 已提交
2854
The function can also be emulated using the matrix initializers and the matrix expressions: ::
2855 2856 2857

    Mat A = Mat::eye(4, 3, CV_32F)*5;
    // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
2858

2859

2860 2861
.. seealso::

2862 2863
    :ocv:func:`Mat::zeros`,
    :ocv:func:`Mat::ones`,
2864
    :ref:`MatrixExpressions`,
2865 2866
    :ocv:func:`Mat::setTo`,
    :ocv:func:`Mat::operator=`
2867

V
Vadim Pisarevsky 已提交
2868

2869

2870
solve
V
Vadim Pisarevsky 已提交
2871
-----
2872
Solves one or more linear systems or least-squares problems.
V
Vadim Pisarevsky 已提交
2873

2874
.. ocv:function:: bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
2875

2876 2877 2878 2879
.. ocv:pyfunction:: cv2.solve(src1, src2[, dst[, flags]]) -> retval, dst

.. ocv:cfunction:: int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU)
.. ocv:pyoldfunction:: cv.Solve(A, B, X, method=CV_LU)-> None
2880

2881
    :param src1: input matrix on the left-hand side of the system.
2882

2883
    :param src2: input matrix on the right-hand side of the system.
2884

2885
    :param dst: output solution.
2886

2887
    :param flags: solution (matrix inversion) method.
2888

2889
            * **DECOMP_LU** Gaussian elimination with optimal pivot element chosen.
2890

2891
            * **DECOMP_CHOLESKY** Cholesky  :math:`LL^T`  factorization; the matrix ``src1`` must be symmetrical and positively defined.
2892

2893
            * **DECOMP_EIG** eigenvalue decomposition; the matrix ``src1`` must be symmetrical.
2894

2895
            * **DECOMP_SVD** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix ``src1`` can be singular.
2896

2897
            * **DECOMP_QR** QR factorization; the system can be over-defined and/or the matrix ``src1`` can be singular.
2898

2899
            * **DECOMP_NORMAL** while all the previous flags are mutually exclusive, this flag can be used together with any of the previous; it means that the normal equations  :math:`\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}`  are solved instead of the original system  :math:`\texttt{src1}\cdot\texttt{dst}=\texttt{src2}` .
2900

V
Vadim Pisarevsky 已提交
2901
The function ``solve`` solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag ``DECOMP_NORMAL`` ):
2902

V
Vadim Pisarevsky 已提交
2903
.. math::
2904

V
Vadim Pisarevsky 已提交
2905
    \texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|
2906

V
Vadim Pisarevsky 已提交
2907
If ``DECOMP_LU`` or ``DECOMP_CHOLESKY`` method is used, the function returns 1 if ``src1`` (or
2908 2909
:math:`\texttt{src1}^T\texttt{src1}` ) is non-singular. Otherwise, it returns 0. In the latter case, ``dst`` is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

2910
.. note:: If you want to find a unity-norm solution of an under-defined singular system :math:`\texttt{src1}\cdot\texttt{dst}=0` , the function ``solve`` will not do the work. Use :ocv:func:`SVD::solveZ` instead.
2911

2912 2913
.. seealso::

2914 2915 2916
    :ocv:func:`invert`,
    :ocv:class:`SVD`,
    :ocv:func:`eigen`
2917

V
Vadim Pisarevsky 已提交
2918

2919

2920
solveCubic
2921
--------------
2922 2923
Finds the real roots of a cubic equation.

2924
.. ocv:function:: int solveCubic( InputArray coeffs, OutputArray roots )
2925

2926 2927
.. ocv:pyfunction:: cv2.solveCubic(coeffs[, roots]) -> retval, roots

2928 2929
.. ocv:cfunction:: int cvSolveCubic( const CvMat* coeffs, CvMat* roots )

2930
.. ocv:pyoldfunction:: cv.SolveCubic(coeffs, roots)-> None
2931

2932
    :param coeffs: equation coefficients, an array of 3 or 4 elements.
2933

2934
    :param roots: output array of real roots that has 1 or 3 elements.
2935

V
Vadim Pisarevsky 已提交
2936
The function ``solveCubic`` finds the real roots of a cubic equation:
2937

2938
* if ``coeffs`` is a 4-element vector:
2939 2940 2941

.. math::

V
Vadim Pisarevsky 已提交
2942
    \texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0
2943

2944
* if ``coeffs`` is a 3-element vector:
2945 2946 2947

.. math::

V
Vadim Pisarevsky 已提交
2948
    x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0
2949

2950
The roots are stored in the ``roots`` array.
2951

2952

2953

2954
solvePoly
V
Vadim Pisarevsky 已提交
2955
---------
2956
Finds the real or complex roots of a polynomial equation.
V
Vadim Pisarevsky 已提交
2957

2958
.. ocv:function:: double solvePoly( InputArray coeffs, OutputArray roots, int maxIters=300 )
2959

2960
.. ocv:pyfunction:: cv2.solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
2961

2962
    :param coeffs: array of polynomial coefficients.
2963

2964
    :param roots: output (complex) array of roots.
2965

2966
    :param maxIters: maximum number of iterations the algorithm does.
2967

V
Vadim Pisarevsky 已提交
2968
The function ``solvePoly`` finds real and complex roots of a polynomial equation:
2969 2970 2971

.. math::

2972
    \texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0
2973

2974

2975

2976
sort
V
Vadim Pisarevsky 已提交
2977
----
2978
Sorts each row or each column of a matrix.
V
Vadim Pisarevsky 已提交
2979

2980
.. ocv:function:: void sort(InputArray src, OutputArray dst, int flags)
2981

2982
.. ocv:pyfunction:: cv2.sort(src, flags[, dst]) -> dst
2983

2984
    :param src: input single-channel array.
2985

2986
    :param dst: output array of the same size and type as ``src``.
2987

2988
    :param flags: operation flags, a combination of the following values:
2989

2990
            * **CV_SORT_EVERY_ROW** each matrix row is sorted independently.
2991

2992
            * **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.
2993

2994
            * **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.
2995

2996
            * **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; this flag and the previous one are also mutually exclusive.
2997

2998
The function ``sort`` sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL ``std::sort`` generic function with the proper comparison predicate.
2999

3000 3001
.. seealso::

3002 3003
    :ocv:func:`sortIdx`,
    :ocv:func:`randShuffle`
3004

V
Vadim Pisarevsky 已提交
3005

3006

3007
sortIdx
V
Vadim Pisarevsky 已提交
3008
-------
3009
Sorts each row or each column of a matrix.
V
Vadim Pisarevsky 已提交
3010

3011
.. ocv:function:: void sortIdx(InputArray src, OutputArray dst, int flags)
3012

3013
.. ocv:pyfunction:: cv2.sortIdx(src, flags[, dst]) -> dst
3014

3015
    :param src: input single-channel array.
3016

3017
    :param dst: output integer array of the same size as ``src``.
3018

3019
    :param flags: operation flags that could be a combination of the following values:
3020

3021
            * **CV_SORT_EVERY_ROW** each matrix row is sorted independently.
3022

3023
            * **CV_SORT_EVERY_COLUMN** each matrix column is sorted independently; this flag and the previous one are mutually exclusive.
3024

3025
            * **CV_SORT_ASCENDING** each matrix row is sorted in the ascending order.
3026

3027
            * **CV_SORT_DESCENDING** each matrix row is sorted in the descending order; his flag and the previous one are also mutually exclusive.
3028

3029
The function ``sortIdx`` sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array. For example: ::
3030 3031 3032 3033 3034 3035

    Mat A = Mat::eye(3,3,CV_32F), B;
    sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);
    // B will probably contain
    // (because of equal elements in A some permutations are possible):
    // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
3036

3037

3038 3039
.. seealso::

3040 3041
    :ocv:func:`sort`,
    :ocv:func:`randShuffle`
3042

V
Vadim Pisarevsky 已提交
3043

3044

3045
split
V
Vadim Pisarevsky 已提交
3046
-----
3047
Divides a multi-channel array into several single-channel arrays.
3048

3049
.. ocv:function:: void split( const Mat& src, Mat* mvbegin )
3050

3051
.. ocv:function:: void split( InputArray m, OutputArrayOfArrays mv )
3052

3053
.. ocv:pyfunction:: cv2.split(m[, mv]) -> mv
3054 3055

.. ocv:cfunction:: void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3)
3056

3057
.. ocv:pyoldfunction:: cv.Split(src, dst0, dst1, dst2, dst3)-> None
3058

3059
    :param src: input multi-channel array.
3060

3061
    :param mv: output array or vector of arrays; in the first variant of the function the number of arrays must match ``src.channels()``; the arrays themselves are reallocated, if needed.
3062

3063
The functions ``split`` split a multi-channel array into separate single-channel arrays:
3064 3065 3066

.. math::

3067
    \texttt{mv} [c](I) =  \texttt{src} (I)_c
3068

3069
If you need to extract a single channel or do some other sophisticated channel permutation, use
3070
:ocv:func:`mixChannels` .
3071

3072 3073
.. seealso::

3074 3075 3076
    :ocv:func:`merge`,
    :ocv:func:`mixChannels`,
    :ocv:func:`cvtColor`
3077

V
Vadim Pisarevsky 已提交
3078

3079

3080
sqrt
V
Vadim Pisarevsky 已提交
3081
----
3082
Calculates a square root of array elements.
V
Vadim Pisarevsky 已提交
3083

3084
.. ocv:function:: void sqrt(InputArray src, OutputArray dst)
3085

3086 3087 3088 3089
.. ocv:pyfunction:: cv2.sqrt(src[, dst]) -> dst

.. ocv:cfunction:: float cvSqrt(float value)
.. ocv:pyoldfunction:: cv.Sqrt(value)-> float
3090

3091
    :param src: input floating-point array.
3092

3093
    :param dst: output array of the same size and type as ``src``.
3094

3095
The functions ``sqrt`` calculate a square root of each input array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in ``std::sqrt`` .
3096

3097 3098
.. seealso::

3099 3100
    :ocv:func:`pow`,
    :ocv:func:`magnitude`
3101

V
Vadim Pisarevsky 已提交
3102

3103

3104
subtract
V
Vadim Pisarevsky 已提交
3105
--------
3106
Calculates the per-element difference between two arrays or array and a scalar.
3107

3108
.. ocv:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
3109

3110 3111 3112
.. ocv:pyfunction:: cv2.subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
3113 3114
.. ocv:cfunction:: void cvSubRS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )
.. ocv:cfunction:: void cvSubS( const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL )
3115

3116 3117 3118
.. ocv:pyoldfunction:: cv.Sub(src1, src2, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubRS(src, value, dst, mask=None) -> None
.. ocv:pyoldfunction:: cv.SubS(src, value, dst, mask=None) -> None
3119

3120
    :param src1: first input array or a scalar.
3121

3122
    :param src2: second input array or a scalar.
3123

3124
    :param dst: output array of the same size and the same number of channels as the input array.
3125

3126
    :param mask: optional operation mask; this is an 8-bit single channel array that specifies elements of the output array to be changed.
3127

3128
    :param dtype: optional depth of the output array (see the details below).
3129

3130
The function ``subtract`` calculates:
3131

3132 3133
 *
    Difference between two arrays, when both input arrays have the same size and the same number of channels:
V
Vadim Pisarevsky 已提交
3134

3135
    .. math::
V
Vadim Pisarevsky 已提交
3136

3137
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
3138

3139 3140
 *
    Difference between an array and a scalar, when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
3141

3142
    .. math::
V
Vadim Pisarevsky 已提交
3143

3144
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0
3145

3146 3147
 *
    Difference between a scalar and an array, when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
3148

V
Vadim Pisarevsky 已提交
3149
    .. math::
3150

3151
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
3152

3153 3154
 *
    The reverse difference between a scalar and an array in the case of ``SubRS``:
3155

3156 3157 3158
    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0
3159

3160
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
3161

3162
The first function in the list above can be replaced with matrix expressions: ::
3163 3164

    dst = src1 - src2;
3165
    dst -= src1; // equivalent to subtract(dst, src1, dst);
3166

3167
The input arrays and the output array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
3168

3169 3170
.. note:: Saturation is not applied when the output array has the depth ``CV_32S``. You may even get result of an incorrect sign in the case of overflow.

3171 3172
.. seealso::

3173 3174 3175
    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
3176
    :ocv:func:`Mat::convertTo`,
3177 3178
    :ref:`MatrixExpressions`

3179 3180 3181 3182


SVD
---
3183
.. ocv:class:: SVD
3184

3185
Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers, and so on.
3186

3187
For a faster operation, you can pass ``flags=SVD::MODIFY_A|...`` to modify the decomposed matrix when it is not necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant, you do not need ``u`` and ``vt`` . You can pass ``flags=SVD::NO_UV|...`` . Another flag ``FULL_UV`` indicates that full-size ``u`` and ``vt`` must be computed, which is not necessary most of the time.
3188

3189 3190
.. seealso::

3191 3192 3193 3194
    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
    :ocv:func:`determinant`
3195

V
Vadim Pisarevsky 已提交
3196

3197

3198
SVD::SVD
V
Vadim Pisarevsky 已提交
3199
--------
3200
The constructors.
V
Vadim Pisarevsky 已提交
3201

3202
.. ocv:function:: SVD::SVD()
3203

3204
.. ocv:function:: SVD::SVD( InputArray src, int flags=0 )
3205

3206
    :param src: decomposed matrix.
3207

3208
    :param flags: operation flags.
3209

3210
        * **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.
3211

3212
        * **SVD::NO_UV** indicates that only a vector of singular values ``w`` is to be processed, while ``u`` and ``vt`` will be set to empty matrices.
3213

3214
        * **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however, ``FULL_UV`` flag is specified, ``u`` and ``vt``will be full-size square orthogonal matrices.
3215

3216
The first constructor initializes an empty ``SVD`` structure. The second constructor initializes an empty ``SVD`` structure and then calls
3217
:ocv:funcx:`SVD::operator()` .
3218

3219

3220
SVD::operator ()
V
Vadim Pisarevsky 已提交
3221
----------------
3222
Performs SVD of a matrix.
V
Vadim Pisarevsky 已提交
3223

3224
.. ocv:function:: SVD& SVD::operator()( InputArray src, int flags=0 )
3225

3226
    :param src: decomposed matrix.
3227

3228
    :param flags: operation flags.
3229

3230
        * **SVD::MODIFY_A** use the algorithm to modify the decomposed matrix; it can save space and speed up processing.
3231

3232
        * **SVD::NO_UV** use only singular values; the algorithm does not compute ``u`` and ``vt`` matrices.
3233

3234
        * **SVD::FULL_UV** when the matrix is not square, by default the algorithm produces ``u`` and ``vt`` matrices of sufficiently large size for the further ``A`` reconstruction; if, however, the ``FULL_UV``  flag is specified, ``u``  and  ``vt``  are full-size square orthogonal matrices.
3235

3236
The operator performs the singular value decomposition of the supplied matrix. The ``u``,``vt`` , and the vector of singular values ``w`` are stored in the structure. The same ``SVD`` structure can be reused many times with different matrices. Each time, if needed, the previous ``u``,``vt`` , and ``w`` are reclaimed and the new matrices are created, which is all handled by
3237
:ocv:func:`Mat::create` .
3238

3239

3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
SVD::compute
------------
Performs SVD of a matrix

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 )

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, int flags=0 )

.. ocv:pyfunction:: cv2.SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt

3250
.. ocv:cfunction:: void cvSVD( CvArr* A, CvArr* W, CvArr* U=NULL, CvArr* V=NULL, int flags=0 )
3251

3252
.. ocv:pyoldfunction:: cv.SVD(A, W, U=None, V=None, flags=0) -> None
3253

3254
    :param src: decomposed matrix
3255

3256
    :param w: calculated singular values
3257

3258
    :param u: calculated left singular vectors
3259

3260
    :param V: calculated right singular vectors
3261

3262
    :param vt: transposed matrix of right singular values
3263

3264
    :param flags: operation flags - see :ocv:func:`SVD::SVD`.
3265

3266
The methods/functions perform SVD of matrix. Unlike ``SVD::SVD`` constructor and ``SVD::operator()``, they store the results to the user-provided matrices. ::
3267 3268 3269

    Mat A, w, u, vt;
    SVD::compute(A, w, u, vt);
3270

3271

3272
SVD::solveZ
V
Vadim Pisarevsky 已提交
3273
-----------
3274
Solves an under-determined singular linear system.
V
Vadim Pisarevsky 已提交
3275

3276
.. ocv:function:: static void SVD::solveZ( InputArray src, OutputArray dst )
3277

3278
    :param src: left-hand-side matrix.
3279

3280
    :param dst: found solution.
3281

3282
The method finds a unit-length solution ``x`` of a singular linear system
3283
``A*x = 0``. Depending on the rank of ``A``, there can be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following problem:
3284 3285 3286

.. math::

3287
    dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|
3288

3289

3290
SVD::backSubst
V
Vadim Pisarevsky 已提交
3291
--------------
3292 3293 3294 3295 3296 3297 3298
Performs a singular value back substitution.

.. ocv:function:: void SVD::backSubst( InputArray rhs, OutputArray dst ) const

.. ocv:function:: static void SVD::backSubst( InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst )

.. ocv:pyfunction:: cv2.SVBackSubst(w, u, vt, rhs[, dst]) -> dst
V
Vadim Pisarevsky 已提交
3299

3300
.. ocv:cfunction:: void cvSVBkSb( const CvArr* W, const CvArr* U, const CvArr* V, const CvArr* B, CvArr* X, int flags )
3301

3302
.. ocv:pyoldfunction:: cv.SVBkSb(W, U, V, B, X, flags) -> None
3303

3304
    :param w: singular values
3305

3306
    :param u: left singular vectors
3307

3308
    :param V: right singular vectors
3309

3310
    :param vt: transposed matrix of right singular vectors.
3311

3312
    :param rhs: right-hand side of a linear system ``(u*w*v')*dst = rhs`` to be solved, where ``A`` has been previously decomposed.
3313

3314
    :param dst: found solution of the system.
3315

3316
The method calculates a back substitution for the specified right-hand side:
3317 3318 3319

.. math::

V
Vadim Pisarevsky 已提交
3320
    \texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}
3321

3322
Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the least-squares terms) pseudo-solution of an overdetermined linear system.
3323

3324
.. note:: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems with the same left-hand side (for example, ``src`` ). If all you need is to solve a single system (possibly with multiple ``rhs`` immediately available), simply call :ocv:func:`solve` add pass ``DECOMP_SVD`` there. It does absolutely the same thing.
3325

3326 3327


3328
sum
V
Vadim Pisarevsky 已提交
3329
---
3330 3331
Calculates the sum of array elements.

3332
.. ocv:function:: Scalar sum( InputArray src )
3333

3334
.. ocv:pyfunction:: cv2.sumElems(src) -> retval
3335

3336
.. ocv:cfunction:: CvScalar cvSum(const CvArr* arr)
3337

3338
.. ocv:pyoldfunction:: cv.Sum(arr) -> scalar
3339

3340
    :param arr: input array that must have from 1 to 4 channels.
3341

V
Vadim Pisarevsky 已提交
3342
The functions ``sum`` calculate and return the sum of array elements, independently for each channel.
3343

3344 3345
.. seealso::

3346 3347 3348 3349 3350 3351
    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`reduce`
3352

V
Vadim Pisarevsky 已提交
3353

3354

3355
theRNG
V
Vadim Pisarevsky 已提交
3356
------
3357
Returns the default random number generator.
V
Vadim Pisarevsky 已提交
3358

3359
.. ocv:function:: RNG& theRNG()
3360

3361
The function ``theRNG`` returns the default random number generator. For each thread, there is a separate random number generator, so you can use the function safely in multi-thread environments. If you just need to get a single random number using this generator or initialize an array, you can use
3362 3363
:ocv:func:`randu` or
:ocv:func:`randn` instead. But if you are going to generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then use ``RNG::operator _Tp()`` .
3364

3365 3366
.. seealso::

3367 3368 3369
    :ocv:class:`RNG`,
    :ocv:func:`randu`,
    :ocv:func:`randn`
3370

V
Vadim Pisarevsky 已提交
3371

3372

3373
trace
V
Vadim Pisarevsky 已提交
3374
-----
3375 3376
Returns the trace of a matrix.

3377
.. ocv:function:: Scalar trace( InputArray mtx )
V
Vadim Pisarevsky 已提交
3378

3379
.. ocv:pyfunction:: cv2.trace(mtx) -> retval
3380

3381
.. ocv:cfunction:: CvScalar cvTrace(const CvArr* mat)
3382

3383
.. ocv:pyoldfunction:: cv.Trace(mat) -> scalar
3384

3385
    :param mat: input matrix.
3386

V
Vadim Pisarevsky 已提交
3387
The function ``trace`` returns the sum of the diagonal elements of the matrix ``mtx`` .
3388 3389 3390

.. math::

V
Vadim Pisarevsky 已提交
3391
    \mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)
3392

3393

3394

3395
transform
V
Vadim Pisarevsky 已提交
3396
---------
3397
Performs the matrix transformation of every array element.
V
Vadim Pisarevsky 已提交
3398

3399
.. ocv:function:: void transform( InputArray src, OutputArray dst, InputArray m )
3400

3401
.. ocv:pyfunction:: cv2.transform(src, m[, dst]) -> dst
3402

3403 3404
.. ocv:cfunction:: void cvTransform( const CvArr* src, CvArr* dst, const CvMat* transmat, const CvMat* shiftvec=NULL )

3405
.. ocv:pyoldfunction:: cv.Transform(src, dst, transmat, shiftvec=None)-> None
3406

3407
    :param src: input array that must have as many channels (1 to 4) as ``m.cols`` or ``m.cols-1``.
3408

3409
    :param dst: output array of the same size and depth as ``src``; it has as many channels as ``m.rows``.
3410

3411
    :param m: transformation ``2x2`` or ``2x3`` floating-point matrix.
3412

3413
    :param shiftvec: optional translation vector (when ``m`` is ``2x2``)
3414

3415
The function ``transform`` performs the matrix transformation of every element of the array ``src`` and stores the results in ``dst`` :
3416 3417 3418

.. math::

3419
    \texttt{dst} (I) =  \texttt{m} \cdot \texttt{src} (I)
3420

3421
(when ``m.cols=src.channels()`` ), or
3422

V
Vadim Pisarevsky 已提交
3423
.. math::
3424

3425
    \texttt{dst} (I) =  \texttt{m} \cdot [ \texttt{src} (I); 1]
3426

3427
(when ``m.cols=src.channels()+1`` )
3428

3429
Every element of the ``N`` -channel array ``src`` is interpreted as ``N`` -element vector that is transformed using
3430
the ``M x N`` or ``M x (N+1)`` matrix ``m``
3431
to ``M``-element vector - the corresponding element of the output array ``dst`` .
3432

V
Vadim Pisarevsky 已提交
3433
The function may be used for geometrical transformation of
3434 3435 3436 3437 3438
``N`` -dimensional
points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

.. seealso::

3439 3440 3441 3442 3443
    :ocv:func:`perspectiveTransform`,
    :ocv:func:`getAffineTransform`,
    :ocv:func:`estimateRigidTransform`,
    :ocv:func:`warpAffine`,
    :ocv:func:`warpPerspective`
3444

V
Vadim Pisarevsky 已提交
3445

3446

3447
transpose
V
Vadim Pisarevsky 已提交
3448
---------
3449
Transposes a matrix.
V
Vadim Pisarevsky 已提交
3450

3451
.. ocv:function:: void transpose(InputArray src, OutputArray dst)
3452

3453 3454 3455 3456
.. ocv:pyfunction:: cv2.transpose(src[, dst]) -> dst

.. ocv:cfunction:: void cvTranspose(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Transpose(src, dst)-> None
3457

3458
    :param src: input array.
3459

3460
    :param dst: output array of the same type as ``src``.
3461

3462
The function :ocv:func:`transpose` transposes the matrix ``src`` :
3463 3464 3465

.. math::

V
Vadim Pisarevsky 已提交
3466
    \texttt{dst} (i,j) =  \texttt{src} (j,i)
3467

3468
.. note:: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.