operations_on_arrays.rst 138.7 KB
Newer Older
1 2 3 4 5
Operations on Arrays
====================

.. highlight:: cpp

6
abs
7
---
8 9
Computes an absolute value of each matrix element.

10 11
.. ocv:function:: MatExpr abs(const Mat& src)
.. ocv:function:: MatExpr abs(const MatExpr& src)
12

13
    :param src: Matrix or matrix expression.
V
Vadim Pisarevsky 已提交
14
    
15
``abs`` is a meta-function that is expanded to one of :ocv:func:`absdiff` forms:
16

17
    * ``C = abs(A-B)``     is equivalent to ``absdiff(A, B, C)``     
18

19
    * ``C = abs(A)``     is equivalent to ``absdiff(A, Scalar::all(0), C)``     
20

21
    * ``C = Mat_<Vec<uchar,n> >(abs(A*alpha + beta))``     is equivalent to :ocv:funcx:`convertScaleAbs` (A, C, alpha, beta)
V
Vadim Pisarevsky 已提交
22
    
23
The output matrix has the same size and the same type as the input one except for the last case, where ``C`` is ``depth=CV_8U`` .
24

25
    .. seealso:: :ref:`MatrixExpressions`, :ocv:func:`absdiff`
V
Vadim Pisarevsky 已提交
26

27

28
absdiff
29
-----------
30 31
Computes the per-element absolute difference between two arrays or between an array and a scalar.

32
.. ocv:function:: void absdiff(InputArray src1, InputArray src2, OutputArray dst)
33

34 35 36 37 38 39
.. ocv:pyfunction:: cv2.absdiff(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvAbsDiff(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvAbsDiffS(const CvArr* src, CvArr* dst, CvScalar value)
.. ocv:pyoldfunction:: cv.AbsDiff(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.AbsDiffS(src, dst, value)-> None
40

41 42 43 44 45
    :param src1: First input array or a scalar.
    
    :param src2: Second input array or a scalar.
    
    :param dst: Destination array that has the same size and type as ``src1`` (or ``src2``).
V
Vadim Pisarevsky 已提交
46
    
47
The function ``absdiff`` computes:
48

49 50
 *
    Absolute difference between two arrays when they have the same size and type:
51

52
    .. math::
53

54
        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2}(I)|)
55

56 57
 *
    Absolute difference between an array and a scalar when the second array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src1``:
58

59
    .. math::
60

61
        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1}(I) -  \texttt{src2} |)
62

63 64 65 66 67 68
 *
    Absolute difference between a scalar and an array when the first array is constructed from ``Scalar`` or has as many elements as the number of channels in ``src2``:

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} (| \texttt{src1} -  \texttt{src2}(I) |)
69

70
    where  ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
71

72

73
.. seealso:: :ocv:func:`abs`
V
Vadim Pisarevsky 已提交
74

75

76
add
77 78
-------

79 80 81
Computes the per-element sum of two arrays or an array and a scalar.

.. ocv:function:: void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
82 83 84 85 86 87 88

.. ocv:pyfunction:: cv2.add(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvAdd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAddS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Add(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AddS(src, value, dst, mask=None)-> None
89

90
    :param src1: First source array or a scalar.
91

92
    :param src2: Second source array or a scalar.
V
Vadim Pisarevsky 已提交
93
    
94
    :param dst: Destination array that has the same size and number of channels as the input array(s). The depth is defined by ``dtype`` or ``src1``/``src2``.
V
Vadim Pisarevsky 已提交
95
    
96
    :param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
97 98
    
    :param dtype: Optional depth of the output array. See the discussion below.
99

100
The function ``add`` computes:
101

102 103
 *
    Sum of two arrays when both input arrays have the same size and the same number of channels:
V
Vadim Pisarevsky 已提交
104

105
    .. math::
V
Vadim Pisarevsky 已提交
106

107
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
108

109 110
 *
    Sum of an array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
111 112 113 114 115

    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) +  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0

116 117
 *
    Sum of a scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
118

V
Vadim Pisarevsky 已提交
119
    .. math::
120

121
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} +  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
122

123
    where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
124

125
The first function in the list above can be replaced with matrix expressions: ::
126 127 128

    dst = src1 + src2;
    dst += src1; // equivalent to add(dst, src1, dst);
129

130
The input arrays and the destination array can all have the same or different depths. For example, you can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit floating-point array. Depth of the output array is determined by the ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case, the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
131

132 133
.. seealso::
   
134 135 136
    :ocv:func:`subtract`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
137
    :ocv:func:`Mat::convertTo`,
138 139
    :ref:`MatrixExpressions`

140 141


142
addWeighted
143
---------------
144 145
Computes the weighted sum of two arrays.

146
.. ocv:function:: void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype=-1)
147

148 149 150 151
.. ocv:pyfunction:: cv2.addWeighted(src1, alpha, src2, beta, gamma[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvAddWeighted(const CvArr* src1, double alpha, const CvArr* src2, double beta, double gamma, CvArr* dst)
.. ocv:pyoldfunction:: cv.AddWeighted(src1, alpha, src2, beta, gamma, dst)-> None
152

153
    :param src1: First source array.
154

155
    :param alpha: Weight for the first array elements.
156

157
    :param src2: Second source array of the same size and channel number as  ``src1`` .
V
Vadim Pisarevsky 已提交
158
    
159
    :param beta: Weight for the second array elements.
160

161
    :param dst: Destination array that has the same size and number of channels as the input arrays.
V
Vadim Pisarevsky 已提交
162
    
163
    :param gamma: Scalar added to each sum.
164 165
    
    :param dtype: Optional depth of the destination array. When both input arrays have the same depth, ``dtype`` can be set to ``-1``, which will be equivalent to ``src1.depth()``.
166

167
The function ``addWeighted`` calculates the weighted sum of two arrays as follows:
168 169 170

.. math::

V
Vadim Pisarevsky 已提交
171
    \texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} +  \texttt{src2} (I)* \texttt{beta} +  \texttt{gamma} )
172

173
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
174

175
The function can be replaced with a matrix expression: ::
176 177

    dst = src1*alpha + src2*beta + gamma;
178

179

180 181
.. seealso::

182 183 184
    :ocv:func:`add`,
    :ocv:func:`subtract`,
    :ocv:func:`scaleAdd`,
185
    :ocv:func:`Mat::convertTo`,
186 187
    :ref:`MatrixExpressions`

188 189 190 191


bitwise_and
-----------
192 193
Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.

194
.. ocv:function:: void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
195

196 197 198 199 200 201
.. ocv:pyfunction:: cv2.bitwise_and(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvAnd(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvAndS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.And(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.AndS(src, value, dst, mask=None)-> None
202

203
    :param src1: First source array or a scalar.
204

205
    :param src2: Second source array or a scalar.
206

207
    :param dst: Destination arrayb that has the same size and type as the input array(s).
V
Vadim Pisarevsky 已提交
208
    
209
    :param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
210

211
The function computes the per-element bit-wise logical conjunction for:
212

213 214
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
215

216
    .. math::
V
Vadim Pisarevsky 已提交
217 218

        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
219

220 221
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
222

223
    .. math::
V
Vadim Pisarevsky 已提交
224

225
        \texttt{dst} (I) =  \texttt{src1} (I)  \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
226

227 228
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
229 230 231 232

    .. math::

        \texttt{dst} (I) =  \texttt{src1}  \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
233 234


235
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
236

237

V
Vadim Pisarevsky 已提交
238

239 240
bitwise_not
-----------
241 242
Inverts every bit of an array.

243
.. ocv:function:: void bitwise_not(InputArray src, OutputArray dst, InputArray mask=noArray())
244

245 246 247 248
.. ocv:pyfunction:: cv2.bitwise_not(src[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvNot(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Not(src, dst)-> None
249

250
    :param src: Source array.
251

252
    :param dst: Destination array that has the same size and type as the input array.
253
    
254
    :param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
255

256
The function computes per-element bit-wise inversion of the source array:
257 258 259

.. math::

V
Vadim Pisarevsky 已提交
260
    \texttt{dst} (I) =  \neg \texttt{src} (I)
261

262
In case of a floating-point source array, its machine-specific bit representation (usually IEEE754-compliant) is used for the operation. In case of multi-channel arrays, each channel is processed independently.
263

264

265 266 267

bitwise_or
----------
268 269
Calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.

270
.. ocv:function:: void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
271

272 273 274 275 276 277
.. ocv:pyfunction:: cv2.bitwise_or(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvOr(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvOrS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Or(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.OrS(src, value, dst, mask=None)-> None
278

279
    :param src1: First source array or a scalar.
280

281
    :param src2: Second source array or a scalar.
282

283
    :param dst: Destination array that has the same size and type as the input array(s).
284

285
    :param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
286

287
The function computes the per-element bit-wise logical disjunction for:
288

289 290
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
291

292
        .. math::
V
Vadim Pisarevsky 已提交
293

294
            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
295

296 297
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
298

299
        .. math::
V
Vadim Pisarevsky 已提交
300

301
            \texttt{dst} (I) =  \texttt{src1} (I)  \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
302

303 304
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
305

306
        .. math::
307

308 309 310
            \texttt{dst} (I) =  \texttt{src1}  \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


311
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the second and third cases above, the scalar is first converted to the array type.
312 313
    

314 315
bitwise_xor
-----------
316 317
Calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.

318
.. ocv:function:: void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray())
319

320 321 322 323 324 325
.. ocv:pyfunction:: cv2.bitwise_xor(src1, src2[, dst[, mask]]) -> dst

.. ocv:cfunction:: void cvXor(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvXorS(const CvArr* src, CvScalar value, CvArr* dst, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Xor(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.XorS(src, value, dst, mask=None)-> None
326

327
    :param src1: First source array or a scalar.
328

329
    :param src2: Second source array or a scalar.
330

331
    :param dst: Destination array that has the same size and type as the input array(s).
332

333
    :param mask: Optional operation mask, 8-bit single channel array, that specifies elements of the destination array to be changed.
334

335
The function computes the per-element bit-wise logical "exclusive-or" operation for:
336

337 338
 *
    Two arrays when ``src1`` and ``src2`` have the same size:
V
Vadim Pisarevsky 已提交
339

340
        .. math::
V
Vadim Pisarevsky 已提交
341

342
            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0
343

344 345
 *
    An array and a scalar when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
346

347
        .. math::
V
Vadim Pisarevsky 已提交
348

349
            \texttt{dst} (I) =  \texttt{src1} (I)  \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0
V
Vadim Pisarevsky 已提交
350

351 352
 *
    A scalar and an array when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
353

354 355 356 357 358
        .. math::

            \texttt{dst} (I) =  \texttt{src1}  \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0


359
In case of floating-point arrays, their machine-specific bit representations (usually IEEE754-compliant) are used for the operation. In case of multi-channel arrays, each channel is processed independently. In the 2nd and 3rd cases above, the scalar is first converted to the array type.
360
    
361

362
calcCovarMatrix
V
Vadim Pisarevsky 已提交
363
---------------
364
Calculates the covariance matrix of a set of vectors.
V
Vadim Pisarevsky 已提交
365

366
.. ocv:function:: void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, int flags, int ctype=CV_64F)
367

368
.. ocv:function:: void calcCovarMatrix( InputArray samples, OutputArray covar, OutputArray mean, int flags, int ctype=CV_64F)
369

370 371 372 373
.. ocv:pyfunction:: cv2.calcCovarMatrix(samples, flags[, covar[, mean[, ctype]]]) -> covar, mean

.. ocv:cfunction:: void cvCalcCovarMatrix( const CvArr** vects, int count, CvArr* covMat, CvArr* avg, int flags)
.. ocv:pyoldfunction:: cv.CalcCovarMatrix(vects, covMat, avg, flags)-> None
374

375
    :param samples: Samples stored either as separate matrices or as rows/columns of a single matrix.
376

377
    :param nsamples: Number of samples when they are stored separately.
378

379
    :param covar: Output covariance matrix of the type ``ctype``  and square size.
380

381
    :param mean: Input or output (depending on the flags) array as the average value of the input vectors.
V
Vadim Pisarevsky 已提交
382

383
    :param flags: Operation flags as a combination of the following values:
V
Vadim Pisarevsky 已提交
384 385

            * **CV_COVAR_SCRAMBLED** The output covariance matrix is calculated as:
386 387

                .. math::
V
Vadim Pisarevsky 已提交
388

V
Vadim Pisarevsky 已提交
389 390
                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]^T  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...],
                      
391
                The covariance matrix will be  ``nsamples x nsamples``. Such an unusual covariance matrix is used for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of the "scrambled" covariance matrix.
392

V
Vadim Pisarevsky 已提交
393 394 395
            * **CV_COVAR_NORMAL** The output covariance matrix is calculated as:

                .. math::
396

V
Vadim Pisarevsky 已提交
397 398
                      \texttt{scale}   \cdot  [  \texttt{vects}  [0]-  \texttt{mean}  , \texttt{vects}  [1]-  \texttt{mean}  ,...]  \cdot  [ \texttt{vects}  [0]- \texttt{mean}  , \texttt{vects}  [1]- \texttt{mean}  ,...]^T,
                      
399
                ``covar``  will be a square matrix of the same size as the total number of elements in each input vector. One and only one of  ``CV_COVAR_SCRAMBLED``  and ``CV_COVAR_NORMAL``  must be specified.
400

401
            * **CV_COVAR_USE_AVG** If the flag is specified, the function does not calculate  ``mean``  from the input vectors but, instead, uses the passed  ``mean``  vector. This is useful if  ``mean``  has been pre-computed or known in advance, or if the covariance matrix is calculated by parts. In this case, ``mean``  is not a mean vector of the input sub-set of vectors but rather the mean vector of the whole set.
402

403
            * **CV_COVAR_SCALE** If the flag is specified, the covariance matrix is scaled. In the "normal" mode,  ``scale``  is  ``1./nsamples`` . In the "scrambled" mode,  ``scale``  is the reciprocal of the total number of elements in each input vector. By default (if the flag is not specified), the covariance matrix is not scaled (  ``scale=1`` ).
404

405
            * **CV_COVAR_ROWS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as rows of the  ``samples``  matrix.  ``mean``  should be a single-row vector in this case.
406

407
            * **CV_COVAR_COLS** [Only useful in the second variant of the function] If the flag is specified, all the input vectors are stored as columns of the  ``samples``  matrix.  ``mean``  should be a single-column vector in this case.
408

409
The functions ``calcCovarMatrix`` calculate the covariance matrix and, optionally, the mean vector of the set of input vectors.
410

411 412
.. seealso::

413 414 415
    :ocv:class:`PCA`,
    :ocv:func:`mulTransposed`,
    :ocv:func:`Mahalanobis`
416

V
Vadim Pisarevsky 已提交
417

418

419
cartToPolar
V
Vadim Pisarevsky 已提交
420
-----------
421
Calculates the magnitude and angle of 2D vectors.
V
Vadim Pisarevsky 已提交
422

423
.. ocv:function:: void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees=false)
424

425 426 427 428
.. ocv:pyfunction:: cv2.cartToPolar(x, y[, magnitude[, angle[, angleInDegrees]]]) -> magnitude, angle

.. ocv:cfunction:: void cvCartToPolar( const CvArr* x, const CvArr* y, CvArr* magnitude, CvArr* angle=NULL, int angleInDegrees=0)
.. ocv:pyoldfunction:: cv.CartToPolar(x, y, magnitude, angle=None, angleInDegrees=0)-> None
429

430
    :param x: Array of x-coordinates. This must be a single-precision or double-precision floating-point array.
431

432
    :param y: Array of y-coordinates that must have the same size and same type as  ``x`` .
V
Vadim Pisarevsky 已提交
433
    
434
    :param magnitude: Destination array of magnitudes of the same size and type as  ``x`` .
V
Vadim Pisarevsky 已提交
435
    
436
    :param angle: Destination array of angles that has the same size and type as  ``x`` . The angles are measured in radians  (from 0 to 2*Pi) or in degrees (0 to 360 degrees).
437

438
    :param angleInDegrees: Flag indicating whether the angles are measured in radians, which is the default mode, or in degrees.
439

440
The function ``cartToPolar`` calculates either the magnitude, angle, or both for every 2D vector (x(I),y(I)):
441 442 443

.. math::

V
Vadim Pisarevsky 已提交
444
    \begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}
445

446
The angles are calculated with accuracy about 0.3 degrees. For the point (0,0), the angle is set to 0.
447

448 449


450
checkRange
V
Vadim Pisarevsky 已提交
451
----------
452
Checks every element of an input array for invalid values.
453

454
.. ocv:function:: bool checkRange(InputArray src, bool quiet=true, Point* pos=0, double minVal=-DBL_MAX, double maxVal=DBL_MAX)
455

456
.. ocv:pyfunction:: cv2.checkRange(a[, quiet[, minVal[, maxVal]]]) -> retval, pt
457

458
    :param src: Array to check.
459

460
    :param quiet: Flag indicating whether the functions quietly return false when the array elements are out of range or they throw an exception.
461

462
    :param pos: Optional output parameter, where the position of the first outlier is stored. In the second function  ``pos`` , when not NULL, must be a pointer to array of  ``src.dims``  elements.
463

464
    :param minVal: Inclusive lower boundary of valid values range.
465

466
    :param maxVal: Exclusive upper boundary of valid values range.
467

468
The functions ``checkRange`` check that every array element is neither NaN nor
469
infinite. When ``minVal < -DBL_MAX`` and ``maxVal < DBL_MAX`` , the functions also check that each value is between ``minVal`` and ``maxVal`` . In case of multi-channel arrays, each channel is processed independently.
V
Vadim Pisarevsky 已提交
470
If some values are out of range, position of the first outlier is stored in ``pos`` (when
471 472
``pos != NULL``). Then, the functions either return false (when ``quiet=true`` ) or throw an exception.

473 474


V
Vadim Pisarevsky 已提交
475 476
compare
-------
477
Performs the per-element comparison of two arrays or an array and scalar value.
478

479
.. ocv:function:: void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop)
480

481
.. ocv:pyfunction:: cv2.compare(src1, src2, cmpop[, dst]) -> dst
482

483
.. ocv:cfunction:: void cvCmp(const CvArr* src1, const CvArr* src2, CvArr* dst, int cmpOp)
484

485 486 487 488 489 490 491 492 493
.. ocv:pyoldfunction:: cv.Cmp(src1, src2, dst, cmpOp)-> None

.. ocv:cfunction:: void cvCmpS(const CvArr* src1, double src2, CvArr* dst, int cmpOp)

.. ocv:pyoldfunction:: cv.CmpS(src1, src2, dst, cmpOp)-> None

    :param src1: First source array or a scalar (in the case of ``cvCmp``, ``cv.Cmp``, ``cvCmpS``, ``cv.CmpS`` it is always an array). When it is array, it must have a single channel.

    :param src2: Second source array or a scalar (in the case of ``cvCmp`` and ``cv.Cmp`` it is always an array; in the case of ``cvCmpS``, ``cv.CmpS`` it is always a scalar). When it is array, it must have a single channel.
V
Vadim Pisarevsky 已提交
494
    
495
    :param dst: Destination array that has the same size as the input array(s) and type= ``CV_8UC1`` .
V
Vadim Pisarevsky 已提交
496
    
497
    :param cmpop: Flag specifying the relation between the elements to be checked.
V
Vadim Pisarevsky 已提交
498

499 500 501 502 503 504
            * **CMP_EQ** ``src1`` equal to ``src2``.
            * **CMP_GT** ``src1`` greater than ``src2``.
            * **CMP_GE** ``src1`` greater than or equal to ``src2``.
            * **CMP_LT** ``src1`` less than ``src2``.   
            * **CMP_LE** ``src1`` less than or equal to ``src2``.             
            * **CMP_NE** ``src1`` not equal to ``src2``.
V
Vadim Pisarevsky 已提交
505
            
506
The function compares:
V
Vadim Pisarevsky 已提交
507

508

509 510
 *
   Elements of two arrays when ``src1`` and ``src2`` have the same size:
511 512 513

   .. math::

514
       \texttt{dst} (I) =  \texttt{src1} (I)  \,\texttt{cmpop}\, \texttt{src2} (I)
515

516 517
 *
   Elements of ``src1`` with a scalar ``src2` when ``src2`` is constructed from ``Scalar`` or has a single element:
518 519 520

   .. math::

521
       \texttt{dst} (I) =  \texttt{src1}(I) \,\texttt{cmpop}\,  \texttt{src2}
522

523 524
 *
   ``src1`` with elements of ``src2`` when ``src1`` is constructed from ``Scalar`` or has a single element:
525 526 527

   .. math::

528
       \texttt{dst} (I) =  \texttt{src1}  \,\texttt{cmpop}\, \texttt{src2} (I)
529 530 531


When the comparison result is true, the corresponding element of destination array is set to 255.    
V
Vadim Pisarevsky 已提交
532
The comparison operations can be replaced with the equivalent matrix expressions: ::
533 534 535 536

    Mat dst1 = src1 >= src2;
    Mat dst2 = src1 < 8;
    ...
537

538

539 540
.. seealso::

541 542 543 544
    :ocv:func:`checkRange`,
    :ocv:func:`min`,
    :ocv:func:`max`,
    :ocv:func:`threshold`,
545 546
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
547

548

549
completeSymm
V
Vadim Pisarevsky 已提交
550
------------
551
Copies the lower or the upper half of a square matrix to another half.
V
Vadim Pisarevsky 已提交
552

553
.. ocv:function:: void completeSymm(InputOutputArray mtx, bool lowerToUpper=false)
554

555
.. ocv:pyfunction:: cv2.completeSymm(mtx[, lowerToUpper]) -> None
556

557
    :param mtx: Input-output floating-point square matrix.
558

559
    :param lowerToUpper: Operation flag. If it is true, the lower half is copied to the upper half. Otherwise, the upper half is copied to the lower half.
560

561
The function ``completeSymm`` copies the lower half of a square matrix to its another half. The matrix diagonal remains unchanged:
562

563
 *
V
Vadim Pisarevsky 已提交
564
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
V
Vadim Pisarevsky 已提交
565 566
    :math:`i > j`     if ``lowerToUpper=false``
    
567
 *
V
Vadim Pisarevsky 已提交
568
    :math:`\texttt{mtx}_{ij}=\texttt{mtx}_{ji}`     for
V
Vadim Pisarevsky 已提交
569 570
    :math:`i < j`     if ``lowerToUpper=true``
    
571 572
.. seealso::

573 574
    :ocv:func:`flip`,
    :ocv:func:`transpose`
575

V
Vadim Pisarevsky 已提交
576

577

578
convertScaleAbs
V
Vadim Pisarevsky 已提交
579
---------------
580
Scales, computes absolute values, and converts the result to 8-bit.
V
Vadim Pisarevsky 已提交
581

582
.. ocv:function:: void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)
583

584 585 586 587
.. ocv:pyfunction:: cv2.convertScaleAbs(src[, dst[, alpha[, beta]]]) -> dst

.. ocv:cfunction:: void cvConvertScaleAbs(const CvArr* src, CvArr* dst, double scale=1, double shift=0)
.. ocv:pyoldfunction:: cv.ConvertScaleAbs(src, dst, scale=1.0, shift=0.0)-> None
588

589
    :param src: Source array.
590

591
    :param dst: Destination array.
592

593
    :param alpha: Optional scale factor.
594

595
    :param beta: Optional delta added to the scaled values.
596

597
On each element of the input array, the function ``convertScaleAbs`` performs three operations sequentially: scaling, taking an absolute value, conversion to an unsigned 8-bit type:
598

599

600 601
.. math::

V
Vadim Pisarevsky 已提交
602
    \texttt{dst} (I)= \texttt{saturate\_cast<uchar>} (| \texttt{src} (I)* \texttt{alpha} +  \texttt{beta} |)
603

604
In case of multi-channel arrays, the function processes each channel independently. When the output is not 8-bit, the operation can be emulated by calling the ``Mat::convertTo`` method (or by using matrix expressions) and then by computing an absolute value of the result. For example: ::
605 606 607 608 609 610 611

    Mat_<float> A(30,30);
    randu(A, Scalar(-100), Scalar(100));
    Mat_<float> B = A*5 + 3;
    B = abs(B);
    // Mat_<float> B = abs(A*5+3) will also do the job,
    // but it will allocate a temporary matrix
612

613

614 615
.. seealso::

616 617
    :ocv:func:`Mat::convertTo`,
    :ocv:func:`abs`
618

V
Vadim Pisarevsky 已提交
619

620

621
countNonZero
V
Vadim Pisarevsky 已提交
622
------------
623
Counts non-zero array elements.
624

625
.. ocv:function:: int countNonZero( InputArray mtx )
626

627 628 629 630
.. ocv:pyfunction:: cv2.countNonZero(src) -> retval

.. ocv:cfunction:: int cvCountNonZero(const CvArr* arr)
.. ocv:pyoldfunction:: cv.CountNonZero(arr)-> int
631

632
    :param mtx: Single-channel array.
633

634
The function returns the number of non-zero elements in ``mtx`` :
635

V
Vadim Pisarevsky 已提交
636
.. math::
637

V
Vadim Pisarevsky 已提交
638
    \sum _{I: \; \texttt{mtx} (I) \ne0 } 1
639

640 641
.. seealso::

642 643 644 645 646
    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`
647

V
Vadim Pisarevsky 已提交
648

649

650
cvarrToMat
V
Vadim Pisarevsky 已提交
651
----------
652
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.
V
Vadim Pisarevsky 已提交
653

654
.. ocv:function:: Mat cvarrToMat(const CvArr* src, bool copyData=false, bool allowND=true, int coiMode=0)
655

656
    :param src: Source ``CvMat``, ``IplImage`` , or  ``CvMatND`` .
V
Vadim Pisarevsky 已提交
657
    
658
    :param copyData: When it is false (default value), no data is copied and only the new header is created. In this case, the original array should not be deallocated while the new matrix header is used. If the parameter is true, all the data is copied and you may deallocate the original array right after the conversion.
659

660
    :param allowND: When it is true (default value), ``CvMatND`` is converted to 2-dimensional ``Mat``, if it is possible (see the discussion below). If it is not possible, or when the parameter is false, the function will report an error.
661

662
    :param coiMode: Parameter specifying how the IplImage COI (when set) is handled.
663

664
        *  If  ``coiMode=0`` and COI is set, the function reports an error.
V
Vadim Pisarevsky 已提交
665

666
        *  If  ``coiMode=1`` , the function never reports an error. Instead, it returns the header to the whole original image and you will have to check and process COI manually. See  :ocv:func:`extractImageCOI` .
V
Vadim Pisarevsky 已提交
667

668
The function ``cvarrToMat`` converts ``CvMat``, ``IplImage`` , or ``CvMatND`` header to
669
:ocv:class:`Mat` header, and optionally duplicates the underlying data. The constructed header is returned by the function.
V
Vadim Pisarevsky 已提交
670

671
When ``copyData=false`` , the conversion is done really fast (in O(1) time) and the newly created matrix header will have ``refcount=0`` , which means that no reference counting is done for the matrix data. In this case, you have to preserve the data until the new header is destructed. Otherwise, when ``copyData=true`` , the new buffer is allocated and managed as if you created a new matrix from scratch and copied the data there. That is, ``cvarrToMat(src, true)`` is equivalent to ``cvarrToMat(src, false).clone()`` (assuming that COI is not set). The function provides a uniform way of supporting
V
Vadim Pisarevsky 已提交
672
``CvArr`` paradigm in the code that is migrated to use new-style data structures internally. The reverse transformation, from
673
``Mat`` to
V
Vadim Pisarevsky 已提交
674
``CvMat`` or
675
``IplImage`` can be done by a simple assignment: ::
V
Vadim Pisarevsky 已提交
676

677 678 679 680 681 682 683 684 685
    CvMat* A = cvCreateMat(10, 10, CV_32F);
    cvSetIdentity(A);
    IplImage A1; cvGetImage(A, &A1);
    Mat B = cvarrToMat(A);
    Mat B1 = cvarrToMat(&A1);
    IplImage C = B;
    CvMat C1 = B1;
    // now A, A1, B, B1, C and C1 are different headers
    // for the same 10x10 floating-point array.
686 687
    // note that you will need to use "&"
    // to pass C & C1 to OpenCV functions, for example:
688
    printf("%g\n", cvNorm(&C1, 0, CV_L2));
689 690

Normally, the function is used to convert an old-style 2D array (
V
Vadim Pisarevsky 已提交
691
``CvMat`` or
692 693
``IplImage`` ) to ``Mat`` . However, the function can also take
``CvMatND`` as an input and create
694
:ocv:func:`Mat` for it, if it is possible. And, for ``CvMatND A`` , it is possible if and only if ``A.dim[i].size*A.dim.step[i] == A.dim.step[i-1]`` for all or for all but one ``i, 0 < i < A.dims`` . That is, the matrix data should be continuous or it should be representable as a sequence of continuous matrices. By using this function in this way, you can process
695
``CvMatND`` using an arbitrary element-wise function.
V
Vadim Pisarevsky 已提交
696

697
The last parameter, ``coiMode`` , specifies how to deal with an image with COI set. By default, it is 0 and the function reports an error when an image with COI comes in. And ``coiMode=1`` means that no error is signalled. You have to check COI presence and handle it manually. The modern structures, such as
698 699
:ocv:class:`Mat` and
``MatND`` do not support COI natively. To process an individual channel of a new-style array, you need either to organize a loop over the array (for example, using matrix iterators) where the channel of interest will be processed, or extract the COI using
700 701
:ocv:func:`mixChannels` (for new-style arrays) or
:ocv:func:`extractImageCOI` (for old-style arrays), process this individual channel, and insert it back to the destination array if needed (using
702
:ocv:func:`mixChannels` or
703
:ocv:func:`insertImageCOI` , respectively).
704

705
.. seealso::
V
Vadim Pisarevsky 已提交
706

707 708
    :ocv:cfunc:`cvGetImage`,
    :ocv:cfunc:`cvGetMat`,
709 710 711
    :ocv:func:`extractImageCOI`,
    :ocv:func:`insertImageCOI`,
    :ocv:func:`mixChannels` 
712

713
dct
714
-------
715 716
Performs a forward or inverse discrete Cosine transform of 1D or 2D array.

717
.. ocv:function:: void dct(InputArray src, OutputArray dst, int flags=0)
718

719 720 721 722
.. ocv:pyfunction:: cv2.dct(src[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvDCT(const CvArr* src, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.DCT(src, dst, flags)-> None
723

724
    :param src: Source floating-point array.
725

726
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
727
    
728
    :param flags: Transformation flags as a combination of the following values:
729

730
            * **DCT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
731

732
            * **DCT_ROWS** performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.
733

734
The function ``dct`` performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D floating-point array:
735

736 737
*
    Forward Cosine transform of a 1D vector of ``N`` elements:
738

739
    .. math::
740

741
        Y = C^{(N)}  \cdot X
742

743
    where
744

745
    .. math::
746

747
        C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )
748

749 750 751
    and
    
    :math:`\alpha_0=1`, :math:`\alpha_j=2` for *j > 0*.
752

753 754
*
    Inverse Cosine transform of a 1D vector of ``N`` elements:
755

756
    .. math::
757

758
        X =  \left (C^{(N)} \right )^{-1}  \cdot Y =  \left (C^{(N)} \right )^T  \cdot Y
759

760 761 762
    (since
    :math:`C^{(N)}` is an orthogonal matrix,
    :math:`C^{(N)} \cdot \left(C^{(N)}\right)^T = I` )
763

764 765
*
    Forward 2D Cosine transform of ``M x N`` matrix:
766

767 768 769
    .. math::

        Y = C^{(N)}  \cdot X  \cdot \left (C^{(N)} \right )^T
770

771 772
*
    Inverse 2D Cosine transform of ``M x N`` matrix:
773

774
    .. math::
775

776
        X =  \left (C^{(N)} \right )^T  \cdot X  \cdot C^{(N)}
777 778 779 780 781


The function chooses the mode of operation by looking at the flags and size of the input array:

*
782
    If ``(flags & DCT_INVERSE) == 0`` , the function does a forward 1D or 2D transform. Otherwise, it is an inverse 1D or 2D transform.
783 784

*
785
    If ``(flags & DCT_ROWS) != 0`` , the function performs a 1D transform of each row.
786 787

*
788
    If the array is a single column or a single row, the function performs a 1D transform.
789 790

*
791
    If none of the above is true, the function performs a 2D transform.
V
Vadim Pisarevsky 已提交
792

793 794 795
.. note::
 
    Currently ``dct`` supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you can pad the array when necessary.
796

797
    Also, the function performance depends very much, and not monotonically, on the array size (see
798
    :ocv:func:`getOptimalDFTSize` ). In the current implementation DCT of a vector of size ``N`` is computed via DFT of a vector of size ``N/2`` . Thus, the optimal DCT size ``N1 >= N`` can be computed as: ::
799

800 801
        size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); }
        N1 = getOptimalDCTSize(N);
802

803
.. seealso:: :ocv:func:`dft` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`idct`
804

V
Vadim Pisarevsky 已提交
805

806

807
dft
V
Vadim Pisarevsky 已提交
808
---
809
Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array.
V
Vadim Pisarevsky 已提交
810

811
.. ocv:function:: void dft(InputArray src, OutputArray dst, int flags=0, int nonzeroRows=0)
812

813 814 815 816
.. ocv:pyfunction:: cv2.dft(src[, dst[, flags[, nonzeroRows]]]) -> dst

.. ocv:cfunction:: void cvDFT(const CvArr* src, CvArr* dst, int flags, int nonzeroRows=0)
.. ocv:pyoldfunction:: cv.DFT(src, dst, flags, nonzeroRows=0)-> None
817

818
    :param src: Source array that could be real or complex.
819

820
    :param dst: Destination array whose size and type depends on the  ``flags`` .
V
Vadim Pisarevsky 已提交
821
    
822
    :param flags: Transformation flags representing a combination of the following values:
823

824
            * **DFT_INVERSE** performs an inverse 1D or 2D transform instead of the default forward transform.
825

826 827
            * **DFT_SCALE** scales the result: divide it by the number of array elements. Normally, it is combined with  ``DFT_INVERSE`` .             
            * **DFT_ROWS** performs a forward or inverse transform of every individual row of the input matrix. This flag enables you to transform multiple vectors simultaneously and can be used to decrease the overhead (which is sometimes several times larger than the processing itself) to perform 3D and higher-dimensional transforms and so forth.
828

829
            * **DFT_COMPLEX_OUTPUT** performs a forward transformation of 1D or 2D real array. The result, though being a complex array, has complex-conjugate symmetry (*CCS*, see the function description below for details). Such an array can be packed into a real array of the same size as input, which is the fastest option and which is what the function does by default. However, you may wish to get a full complex array (for simpler spectrum analysis, and so on). Pass the flag to enable the function to produce a full-size complex output array.
830

831
            * **DFT_REAL_OUTPUT** performs an inverse transformation of a 1D or 2D complex array. The result is normally a complex array of the same size. However, if the source array has conjugate-complex symmetry (for example, it is a result of forward transformation with  ``DFT_COMPLEX_OUTPUT``  flag), the output is a real array. While the function itself does not check whether the input is symmetrical or not, you can pass the flag and then the function will assume the symmetry and produce the real output array. Note that when the input is packed into a real array and inverse transformation is executed, the function treats the input as a packed complex-conjugate symmetrical array. So, the output will also be a real array.
832

833
    :param nonzeroRows: When the parameter is not zero, the function assumes that only the first  ``nonzeroRows``  rows of the input array ( ``DFT_INVERSE``  is not set) or only the first  ``nonzeroRows``  of the output array ( ``DFT_INVERSE``  is set) contain non-zeros. Thus, the function can handle the rest of the rows more efficiently and save some time. This technique is very useful for computing array cross-correlation or convolution using DFT.
834 835


836
The function performs one of the following:
837

838
*
839
    Forward the Fourier transform of a 1D vector of ``N`` elements:
840

841
    .. math::
842

843
        Y = F^{(N)}  \cdot X,
844

845 846 847 848 849
    where
    :math:`F^{(N)}_{jk}=\exp(-2\pi i j k/N)` and
    :math:`i=\sqrt{-1}`
    
*
850
    Inverse the Fourier transform of a 1D vector of ``N`` elements:
851

852
    .. math::
853

854
        \begin{array}{l} X'=  \left (F^{(N)} \right )^{-1}  \cdot Y =  \left (F^{(N)} \right )^*  \cdot y  \\ X = (1/N)  \cdot X, \end{array}
855

856 857
    where
    :math:`F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T`
858

859
*    
860
    Forward the 2D Fourier transform of a ``M x N`` matrix:
861

862
    .. math::
863

864
        Y = F^{(M)}  \cdot X  \cdot F^{(N)}
865

866
*
867
    Inverse the 2D Fourier transform of a ``M x N`` matrix:
868 869 870 871 872 873

    .. math::

        \begin{array}{l} X'=  \left (F^{(M)} \right )^*  \cdot Y  \cdot \left (F^{(N)} \right )^* \\ X =  \frac{1}{M \cdot N} \cdot X' \end{array}


874
In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* (complex-conjugate-symmetrical). It was borrowed from IPL (Intel* Image Processing Library). Here is how 2D *CCS* spectrum looks:
875 876 877

.. math::

V
Vadim Pisarevsky 已提交
878
    \begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} &  \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2}  \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} &  \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2}  \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} &  \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2}  \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} &  Re Y_{M-3,1}  & Im Y_{M-3,1} &  \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2}  \\ Im Y_{M/2-1,0} &  Re Y_{M-2,1}  & Im Y_{M-2,1} &  \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2}  \\ Re Y_{M/2,0}  &  Re Y_{M-1,1} &  Im Y_{M-1,1} &  \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}
879

880
In case of 1D transform of a real vector, the output looks like the first row of the matrix above.
881

882
So, the function chooses an operation mode depending on the flags and size of the input array:
883

884
 * If ``DFT_ROWS`` is set or the input array has a single row or single column, the function performs a 1D forward or inverse transform of each row of a matrix when ``DFT_ROWS`` is set. Otherwise, it performs a 2D transform.
885

886
 * If the input array is real and ``DFT_INVERSE`` is not set, the function performs a forward 1D or 2D transform:
V
Vadim Pisarevsky 已提交
887

888
    * When ``DFT_COMPLEX_OUTPUT`` is set, the output is a complex matrix of the same size as input.
V
Vadim Pisarevsky 已提交
889

890
    * When ``DFT_COMPLEX_OUTPUT`` is not set, the output is a real matrix of the same size as input. In case of 2D transform, it uses the packed format as shown above. In case of a single 1D transform, it looks like the first row of the matrix above. In case of multiple 1D transforms (when using the ``DCT_ROWS``         flag), each row of the output matrix looks like the first row of the matrix above.
891

892
 * If the input array is complex and either ``DFT_INVERSE``     or ``DFT_REAL_OUTPUT``     are not set, the output is a complex array of the same size as input. The function performs a forward or inverse 1D or 2D transform of the whole input array or each row of the input array independently, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
893

894
 * When ``DFT_INVERSE`` is set and the input array is real, or it is complex but ``DFT_REAL_OUTPUT``     is set, the output is a real array of the same size as input. The function performs a 1D or 2D inverse transformation of the whole input array or each individual row, depending on the flags ``DFT_INVERSE`` and ``DFT_ROWS``.
895

896
If ``DFT_SCALE`` is set, the scaling is done after the transformation.
897

898
Unlike :ocv:func:`dct` , the function supports arrays of arbitrary size. But only those arrays are processed efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the current implementation). Such an efficient DFT size can be computed using the :ocv:func:`getOptimalDFTSize` method.
899

900
The sample below illustrates how to compute a DFT-based convolution of two 2D real arrays: ::
901

902
    void convolveDFT(InputArray A, InputArray B, OutputArray C)
903 904 905 906 907 908 909
    {
        // reallocate the output array if needed
        C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
        Size dftSize;
        // compute the size of DFT transform
        dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1);
        dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1);
V
Vadim Pisarevsky 已提交
910

911 912 913
        // allocate temporary buffers and initialize them with 0's
        Mat tempA(dftSize, A.type(), Scalar::all(0));
        Mat tempB(dftSize, B.type(), Scalar::all(0));
V
Vadim Pisarevsky 已提交
914

915 916 917 918 919
        // copy A and B to the top-left corners of tempA and tempB, respectively
        Mat roiA(tempA, Rect(0,0,A.cols,A.rows));
        A.copyTo(roiA);
        Mat roiB(tempB, Rect(0,0,B.cols,B.rows));
        B.copyTo(roiB);
V
Vadim Pisarevsky 已提交
920

921 922 923 924
        // now transform the padded A & B in-place;
        // use "nonzeroRows" hint for faster processing
        dft(tempA, tempA, 0, A.rows);
        dft(tempB, tempB, 0, B.rows);
V
Vadim Pisarevsky 已提交
925

926 927 928
        // multiply the spectrums;
        // the function handles packed spectrum representations well
        mulSpectrums(tempA, tempB, tempA);
V
Vadim Pisarevsky 已提交
929

930 931
        // transform the product back from the frequency domain.
        // Even though all the result rows will be non-zero,
932
        // you need only the first C.rows of them, and thus you
933 934
        // pass nonzeroRows == C.rows
        dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows);
V
Vadim Pisarevsky 已提交
935

936 937
        // now copy the result back to C.
        tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C);
V
Vadim Pisarevsky 已提交
938

939 940
        // all the temporary buffers will be deallocated automatically
    }
941

942

943
To optimize this sample, consider the following approaches:
944 945

*
946
    Since ``nonzeroRows != 0`` is passed to the forward transform calls and since  ``A`` and ``B`` are copied to the top-left corners of ``tempA`` and ``tempB``, respectively, it is not necessary to clear the whole ``tempA`` and ``tempB``. It is only necessary to clear the ``tempA.cols - A.cols`` ( ``tempB.cols - B.cols``) rightmost columns of the matrices.
947

948 949
*
   This DFT-based convolution does not have to be applied to the whole big arrays, especially if ``B``     is significantly smaller than ``A`` or vice versa. Instead, you can compute convolution by parts. To do this, you need to split the destination array ``C``     into multiple tiles. For each tile, estimate which parts of ``A``     and ``B``     are required to compute convolution in this tile. If the tiles in ``C``     are too small, the speed will decrease a lot because of repeated work. In the ultimate case, when each tile in ``C``     is a single pixel, the algorithm becomes equivalent to the naive convolution algorithm. If the tiles are too big, the temporary arrays ``tempA``     and ``tempB``     become too big and there is also a slowdown because of bad cache locality. So, there is an optimal tile size somewhere in the middle.
950 951

*
952
    If different tiles in ``C``     can be computed in parallel and, thus, the convolution is done by parts, the loop can be threaded.
V
Vadim Pisarevsky 已提交
953

954
All of the above improvements have been implemented in :ocv:func:`matchTemplate` and :ocv:func:`filter2D` . Therefore, by using them, you can get the performance even better than with the above theoretically optimal implementation. Though, those two functions actually compute cross-correlation, not convolution, so you need to "flip" the second convolution operand ``B`` vertically and horizontally using :ocv:func:`flip` .
955

956
.. seealso:: :ocv:func:`dct` , :ocv:func:`getOptimalDFTSize` , :ocv:func:`mulSpectrums`, :ocv:func:`filter2D` , :ocv:func:`matchTemplate` , :ocv:func:`flip` , :ocv:func:`cartToPolar` , :ocv:func:`magnitude` , :ocv:func:`phase`
957

V
Vadim Pisarevsky 已提交
958

959

960
divide
961
----------
962 963
Performs per-element division of two arrays or a scalar by an array.

964
.. ocv:function:: void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
965

966
.. ocv:function:: void divide(double scale, InputArray src2, OutputArray dst, int dtype=-1)
967

968 969 970 971 972
.. ocv:pyfunction:: cv2.divide(src1, src2[, dst[, scale[, dtype]]]) -> dst
.. ocv:pyfunction:: cv2.divide(scale, src2[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvDiv(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Div(src1, src2, dst, scale)-> None
973

974
    :param src1: First source array.
975

976
    :param src2: Second source array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
977
    
978
    :param scale: Scalar factor.
979

980
    :param dst: Destination array of the same size and type as  ``src2`` .
V
Vadim Pisarevsky 已提交
981
    
982
    :param dtype: Optional depth of the destination array. If it is ``-1``, ``dst`` will have depth ``src2.depth()``. In case of an array-by-array division, you can only pass ``-1`` when ``src1.depth()==src2.depth()``.
983
    
V
Vadim Pisarevsky 已提交
984
The functions ``divide`` divide one array by another:
985 986 987

.. math::

V
Vadim Pisarevsky 已提交
988
    \texttt{dst(I) = saturate(src1(I)*scale/src2(I))}
989

990
or a scalar by an array when there is no ``src1`` :
991 992 993

.. math::

V
Vadim Pisarevsky 已提交
994
    \texttt{dst(I) = saturate(scale/src2(I))}
995

996
When ``src2(I)`` is zero, ``dst(I)`` will also be zero. Different channels of multi-channel arrays are processed independently.
997

998 999
.. seealso::

1000 1001 1002
    :ocv:func:`multiply`,
    :ocv:func:`add`,
    :ocv:func:`subtract`,
1003 1004
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1005

1006

1007
determinant
V
Vadim Pisarevsky 已提交
1008
-----------
1009
Returns the determinant of a square floating-point matrix.
V
Vadim Pisarevsky 已提交
1010

1011
.. ocv:function:: double determinant(InputArray mtx)
1012

1013 1014 1015 1016
.. ocv:pyfunction:: cv2.determinant(mtx) -> retval

.. ocv:cfunction:: double cvDet(const CvArr* mtx)
.. ocv:pyoldfunction:: cv.Det(mtx)-> double
1017

1018
    :param mtx: Input matrix that must have  ``CV_32FC1``  or  ``CV_64FC1``  type and square size.
1019

1020
The function ``determinant`` computes and returns the determinant of the specified matrix. For small matrices ( ``mtx.cols=mtx.rows<=3`` ),
1021
the direct method is used. For larger matrices, the function uses LU factorization with partial pivoting.
1022

1023
For symmetric positively-determined matrices, it is also possible to use :ocv:func:`eigen` decomposition to compute the determinant.
1024

1025 1026
.. seealso::

1027 1028 1029 1030
    :ocv:func:`trace`,
    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
1031 1032
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1033

1034

1035
eigen
V
Vadim Pisarevsky 已提交
1036 1037
-----

1038
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, int lowindex=-1, int highindex=-1)
1039

1040
.. ocv:function:: bool eigen(InputArray src, OutputArray eigenvalues, OutputArray eigenvectors, int lowindex=-1,int highindex=-1)
1041

1042 1043 1044 1045
.. ocv:cfunction:: void cvEigenVV( CvArr* src, CvArr* eigenvectors, CvArr* eigenvalues, double eps=0, int lowindex=-1, int highindex=-1)

.. ocv:pyoldfunction:: cv.EigenVV(src, eigenvectors, eigenvalues, eps, lowindex=-1, highindex=-1)-> None

1046 1047
    Computes eigenvalues and eigenvectors of a symmetric matrix.

1048 1049
.. ocv:pyfunction:: cv2.eigen(src, computeEigenvectors[, eigenvalues[, eigenvectors[, lowindex[, highindex]]]]) -> retval, eigenvalues, eigenvectors

1050
    :param src: Input matrix that must have  ``CV_32FC1``  or  ``CV_64FC1``  type, square size and be symmetrical (``src`` :sup:`T` == ``src``).
V
Vadim Pisarevsky 已提交
1051
    
1052
    :param eigenvalues: Output vector of eigenvalues of the same type as  ``src`` . The eigenvalues are stored in the descending order.
1053

1054
    :param eigenvectors: Output matrix of eigenvectors. It has the same size and type as  ``src`` . The eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding eigenvalues.
1055

1056
    :param lowindex: Optional index of largest eigenvalue/-vector to calculate. The parameter is ignored in the current implementation.
1057

1058
    :param highindex: Optional index of smallest eigenvalue/-vector to calculate. The parameter is ignored in the current implementation.
1059

1060
The functions ``eigen`` compute just eigenvalues, or eigenvalues and eigenvectors of the symmetric matrix ``src`` : ::
1061

1062
    src*eigenvectors.row(i).t() = eigenvalues.at<srcType>(i)*eigenvectors.row(i).t()
1063

1064 1065
.. note:: in the new and the old interfaces different ordering of eigenvalues and eigenvectors parameters is used.

1066
.. seealso:: :ocv:func:`completeSymm` , :ocv:class:`PCA`
1067

V
Vadim Pisarevsky 已提交
1068

1069

1070
exp
V
Vadim Pisarevsky 已提交
1071
---
1072
Calculates the exponent of every array element.
1073

1074
.. ocv:function:: void exp(InputArray src, OutputArray dst)
1075

1076 1077 1078 1079
.. ocv:pyfunction:: cv2.exp(src[, dst]) -> dst

.. ocv:cfunction:: void cvExp(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Exp(src, dst)-> None
1080

1081
    :param src: Source array.
1082

1083
    :param dst: Destination array of the same size and type as ``src``.
V
Vadim Pisarevsky 已提交
1084 1085

The function ``exp`` calculates the exponent of every element of the input array:
1086 1087 1088

.. math::

1089
    \texttt{dst} [I] = e^{ src(I) }
1090

1091 1092
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Currently, the function converts denormalized values to zeros on output. Special values (NaN, Inf) are not handled.

1093
.. seealso::  :ocv:func:`log` , :ocv:func:`cartToPolar` , :ocv:func:`polarToCart` , :ocv:func:`phase` , :ocv:func:`pow` , :ocv:func:`sqrt` , :ocv:func:`magnitude`
1094

V
Vadim Pisarevsky 已提交
1095

1096

1097
extractImageCOI
V
Vadim Pisarevsky 已提交
1098
---------------
1099
Extracts the selected image channel.
V
Vadim Pisarevsky 已提交
1100

1101
.. ocv:function:: void extractImageCOI(const CvArr* src, OutputArray dst, int coi=-1)
1102

1103
    :param src: Source array. It should be a pointer to  ``CvMat``  or  ``IplImage`` .
V
Vadim Pisarevsky 已提交
1104
    
1105
    :param dst: Destination array with a single channel and the same size and depth as  ``src`` .
V
Vadim Pisarevsky 已提交
1106
    
1107
    :param coi: If the parameter is  ``>=0`` , it specifies the channel to extract. If it is  ``<0`` and ``src``  is a pointer to  ``IplImage``  with a  valid COI set, the selected COI is extracted.
1108

1109
The function ``extractImageCOI`` is used to extract an image COI from an old-style array and put the result to the new-style C++ matrix. As usual, the destination matrix is reallocated using ``Mat::create`` if needed.
1110

V
Vadim Pisarevsky 已提交
1111
To extract a channel from a new-style matrix, use
1112 1113
:ocv:func:`mixChannels` or
:ocv:func:`split` .
1114

1115
.. seealso::  :ocv:func:`mixChannels` , :ocv:func:`split` , :ocv:func:`merge` , :ocv:func:`cvarrToMat` , :ocv:cfunc:`cvSetImageCOI` , :ocv:cfunc:`cvGetImageCOI`
1116

1117 1118


1119
flip
1120
--------
1121 1122
Flips a 2D array around vertical, horizontal, or both axes.

1123
.. ocv:function:: void flip(InputArray src, OutputArray dst, int flipCode)
1124

1125 1126 1127 1128
.. ocv:pyfunction:: cv2.flip(src, flipCode[, dst]) -> dst

.. ocv:cfunction:: void cvFlip(const CvArr* src, CvArr* dst=NULL, int flipMode=0)
.. ocv:pyoldfunction:: cv.Flip(src, dst=None, flipMode=0)-> None
1129

1130
    :param src: Source array.
1131

1132
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
1133
    
1134
    :param flipCode: Flag to specify how to flip the array. 0 means flipping around the x-axis. Positive value (for example, 1) means flipping around y-axis. Negative value (for example, -1) means flipping around both axes. See the discussion below for the formulas.
1135

V
Vadim Pisarevsky 已提交
1136
The function ``flip`` flips the array in one of three different ways (row and column indices are 0-based):
1137 1138 1139

.. math::

1140 1141 1142 1143 1144 1145 1146 1147
    \texttt{dst} _{ij} =
    \left\{
    \begin{array}{l l}
    \texttt{src} _{\texttt{src.rows}-i-1,j} & if\;  \texttt{flipCode} = 0 \\
    \texttt{src} _{i, \texttt{src.cols} -j-1} & if\;  \texttt{flipCode} > 0 \\
    \texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\
    \end{array}
    \right.
1148

1149
The example scenarios of using the function are the following:
1150

1151
 *
1152
    Vertical flipping of the image (``flipCode == 0``) to switch between top-left and bottom-left image origin. This is a typical operation in video processing on Microsoft Windows* OS.
1153

1154
 *
1155
    Horizontal flipping of the image with the subsequent horizontal shift and absolute difference calculation to check for a vertical-axis symmetry (``flipCode > 0``).
1156

1157
 *
1158
    Simultaneous horizontal and vertical flipping of the image with the subsequent shift and absolute difference calculation to check for a central symmetry (``flipCode < 0``).
1159

1160
 *
1161 1162
    Reversing the order of point arrays (``flipCode > 0`` or ``flipCode == 0``).

1163
.. seealso:: :ocv:func:`transpose` , :ocv:func:`repeat` , :ocv:func:`completeSymm`
1164

V
Vadim Pisarevsky 已提交
1165

1166

1167
gemm
V
Vadim Pisarevsky 已提交
1168
----
1169
Performs generalized matrix multiplication.
V
Vadim Pisarevsky 已提交
1170

1171
.. ocv:function:: void gemm(InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, OutputArray dst, int flags=0)
1172

1173 1174 1175 1176
.. ocv:pyfunction:: cv2.gemm(src1, src2, alpha, src3, gamma[, dst[, flags]]) -> dst

.. ocv:cfunction:: void cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)
.. ocv:pyoldfunction:: cv.GEMM(src1, src2, alphs, src3, beta, dst, tABC=0)-> None
1177

1178
    :param src1: First multiplied input matrix that should have  ``CV_32FC1`` , ``CV_64FC1`` , ``CV_32FC2`` , or  ``CV_64FC2``  type.
1179

1180
    :param src2: Second multiplied input matrix of the same type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1181
    
1182
    :param alpha: Weight of the matrix product.
1183

1184
    :param src3: Third optional delta matrix added to the matrix product. It should have the same type as  ``src1``  and  ``src2`` .
V
Vadim Pisarevsky 已提交
1185
    
1186
    :param beta: Weight of  ``src3`` .
V
Vadim Pisarevsky 已提交
1187
    
1188
    :param dst: Destination matrix. It has the proper size and the same type as input matrices.
1189

V
Vadim Pisarevsky 已提交
1190
    :param flags: Operation flags:
1191

V
Vadim Pisarevsky 已提交
1192 1193 1194 1195
            * **GEMM_1_T** transpose  ``src1``
            * **GEMM_2_T** transpose  ``src2``
            * **GEMM_3_T** transpose  ``src3``
            
1196
The function performs generalized matrix multiplication similar to the ``gemm`` functions in BLAS level 3. For example, ``gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)`` corresponds to
1197 1198 1199

.. math::

V
Vadim Pisarevsky 已提交
1200
    \texttt{dst} =  \texttt{alpha} \cdot \texttt{src1} ^T  \cdot \texttt{src2} +  \texttt{beta} \cdot \texttt{src3} ^T
1201

1202
The function can be replaced with a matrix expression. For example, the above call can be replaced with: ::
1203 1204

    dst = alpha*src1.t()*src2 + beta*src3.t();
1205

1206

1207
.. seealso::  :ocv:func:`mulTransposed` , :ocv:func:`transform` , :ref:`MatrixExpressions`
1208

V
Vadim Pisarevsky 已提交
1209

1210

1211
getConvertElem
V
Vadim Pisarevsky 已提交
1212
--------------
1213
Returns a conversion function for a single pixel.
V
Vadim Pisarevsky 已提交
1214

1215
.. ocv:function:: ConvertData getConvertElem(int fromType, int toType)
1216

1217
.. ocv:function:: ConvertScaleData getConvertScaleElem(int fromType, int toType)
1218

1219
    :param fromType: Source pixel type.
1220

1221
    :param toType: Destination pixel type.
1222

1223
    :param from: Callback parameter: pointer to the input pixel.
1224

V
Vadim Pisarevsky 已提交
1225
    :param to: Callback parameter: pointer to the output pixel
1226

1227
    :param cn: Callback parameter: the number of channels. It can be arbitrary, 1, 100, 100000, ...
1228

1229
    :param alpha: ``ConvertScaleData`` callback optional parameter: the scale factor.
1230

1231
    :param beta: ``ConvertScaleData`` callback optional parameter: the delta or offset.
1232

V
Vadim Pisarevsky 已提交
1233
The functions ``getConvertElem`` and ``getConvertScaleElem`` return pointers to the functions for converting individual pixels from one type to another. While the main function purpose is to convert single pixels (actually, for converting sparse matrices from one type to another), you can use them to convert the whole row of a dense matrix or the whole matrix at once, by setting ``cn = matrix.cols*matrix.rows*matrix.channels()`` if the matrix data is continuous.
1234

1235 1236 1237 1238 1239 1240
``ConvertData`` and ``ConvertScaleData`` are defined as: ::

    typedef void (*ConvertData)(const void* from, void* to, int cn)
    typedef void (*ConvertScaleData)(const void* from, void* to,
                                     int cn, double alpha, double beta)

1241
.. seealso:: :ocv:func:`Mat::convertTo` , :ocv:func:`SparseMat::convertTo`
1242

V
Vadim Pisarevsky 已提交
1243

1244

1245
getOptimalDFTSize
V
Vadim Pisarevsky 已提交
1246
-----------------
1247
Returns the optimal DFT size for a given vector size.
V
Vadim Pisarevsky 已提交
1248

1249
.. ocv:function:: int getOptimalDFTSize(int vecsize)
1250

1251 1252 1253 1254
.. ocv:pyfunction:: cv2.getOptimalDFTSize(vecsize) -> retval

.. ocv:cfunction:: int cvGetOptimalDFTSize(int size0)
.. ocv:pyoldfunction:: cv.GetOptimalDFTSize(size0)-> int
1255

1256
    :param vecsize: Vector size.
1257

1258 1259
DFT performance is not a monotonic function of a vector size. Therefore, when you compute convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to pad the input data with zeros to get a bit larger array that can be transformed much faster than the original one.
Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5*5*3*2*2) are also processed quite efficiently.
1260

1261
The function ``getOptimalDFTSize`` returns the minimum number ``N`` that is greater than or equal to ``vecsize``  so that the DFT of a vector of size ``N`` can be computed efficiently. In the current implementation ``N`` = 2 :sup:`p` * 3 :sup:`q` * 5 :sup:`r` for some integer ``p``, ``q``, ``r``.
1262

V
Vadim Pisarevsky 已提交
1263
The function returns a negative number if ``vecsize`` is too large (very close to ``INT_MAX`` ).
1264

1265 1266
While the function cannot be used directly to estimate the optimal vector size for DCT transform (since the current DCT implementation supports only even-size vectors), it can be easily computed as ``getOptimalDFTSize((vecsize+1)/2)*2``.

1267
.. seealso:: :ocv:func:`dft` , :ocv:func:`dct` , :ocv:func:`idft` , :ocv:func:`idct` , :ocv:func:`mulSpectrums`
1268

V
Vadim Pisarevsky 已提交
1269

1270

1271
idct
V
Vadim Pisarevsky 已提交
1272
----
1273
Computes the inverse Discrete Cosine Transform of a 1D or 2D array.
V
Vadim Pisarevsky 已提交
1274

1275
.. ocv:function:: void idct(InputArray src, OutputArray dst, int flags=0)
1276

1277
.. ocv:pyfunction:: cv2.idct(src[, dst[, flags]]) -> dst
1278

1279
    :param src: Source floating-point single-channel array.
1280

1281
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
1282
    
1283
    :param flags: Operation flags.
V
Vadim Pisarevsky 已提交
1284 1285
    
``idct(src, dst, flags)`` is equivalent to ``dct(src, dst, flags | DCT_INVERSE)``.
1286

1287 1288
.. seealso::

1289 1290 1291 1292
    :ocv:func:`dct`,
    :ocv:func:`dft`,
    :ocv:func:`idft`,
    :ocv:func:`getOptimalDFTSize`
1293

V
Vadim Pisarevsky 已提交
1294

1295

1296
idft
V
Vadim Pisarevsky 已提交
1297
----
1298
Computes the inverse Discrete Fourier Transform of a 1D or 2D array.
V
Vadim Pisarevsky 已提交
1299

1300
.. ocv:function:: void idft(InputArray src, OutputArray dst, int flags=0, int outputRows=0)
1301

1302
.. ocv:pyfunction:: cv2.idft(src[, dst[, flags[, nonzeroRows]]]) -> dst
1303

1304
    :param src: Source floating-point real or complex array.
1305

1306
    :param dst: Destination array whose size and type depend on the  ``flags`` .
V
Vadim Pisarevsky 已提交
1307
    
1308
    :param flags: Operation flags. See  :ocv:func:`dft` .
V
Vadim Pisarevsky 已提交
1309
    
1310
    :param nonzeroRows: Number of  ``dst``  rows to compute. The rest of the rows have undefined content. See the convolution sample in  :ocv:func:`dft`  description.
V
Vadim Pisarevsky 已提交
1311 1312 1313
    
``idft(src, dst, flags)`` is equivalent to ``dct(src, dst, flags | DFT_INVERSE)`` .

1314
See :ocv:func:`dft` for details.
1315

1316
.. note:: None of ``dft`` and ``idft`` scales the result by default. So, you should pass ``DFT_SCALE`` to one of ``dft`` or ``idft`` explicitly to make these transforms mutually inverse.
1317 1318 1319

.. seealso::

1320 1321 1322 1323 1324
    :ocv:func:`dft`,
    :ocv:func:`dct`,
    :ocv:func:`idct`,
    :ocv:func:`mulSpectrums`,
    :ocv:func:`getOptimalDFTSize`
1325

V
Vadim Pisarevsky 已提交
1326

1327

1328
inRange
V
Vadim Pisarevsky 已提交
1329
-------
1330
Checks if array elements lie between the elements of two other arrays.
1331

1332
.. ocv:function:: void inRange(InputArray src, InputArray lowerb, InputArray upperb, OutputArray dst)
1333

1334 1335 1336 1337 1338 1339
.. ocv:pyfunction:: cv2.inRange(src, lowerb, upperb[, dst]) -> dst

.. ocv:cfunction:: void cvInRange(const CvArr* src, const CvArr* lower, const CvArr* upper, CvArr* dst)
.. ocv:cfunction:: void cvInRangeS(const CvArr* src, CvScalar lower, CvScalar upper, CvArr* dst)
.. ocv:pyoldfunction:: cv.InRange(src, lower, upper, dst)-> None
.. ocv:pyoldfunction:: cv.InRangeS(src, lower, upper, dst)-> None
1340

1341
    :param src: First source array.
1342

1343
    :param lowerb: Inclusive lower boundary array or a scalar.
V
Vadim Pisarevsky 已提交
1344
    
1345
    :param upperb: Inclusive upper boundary array or a scalar.
V
Vadim Pisarevsky 已提交
1346
    
1347
    :param dst: Destination array of the same size as  ``src``  and  ``CV_8U``  type.
1348

1349
The function checks the range as follows:
1350

1351
 * For every element of a single-channel input array:
1352

1353
   .. math::
1354

1355
      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0
1356

1357
 * For two-channel arrays:
1358

1359
   .. math::
1360

1361
      \texttt{dst} (I)= \texttt{lowerb} (I)_0  \leq \texttt{src} (I)_0 \leq  \texttt{upperb} (I)_0  \land \texttt{lowerb} (I)_1  \leq \texttt{src} (I)_1 \leq  \texttt{upperb} (I)_1
1362

1363
 * and so forth.
1364

1365
That is, ``dst`` (I) is set to 255 (all ``1`` -bits) if ``src`` (I) is within the specified 1D, 2D, 3D, ... box and 0 otherwise.
1366

1367
When the lower and/or upper bounary parameters are scalars, the indexes ``(I)`` at ``lowerb`` and ``upperb`` in the above formulas should be omitted.
1368

1369

1370
invert
V
Vadim Pisarevsky 已提交
1371
------
1372
Finds the inverse or pseudo-inverse of a matrix.
V
Vadim Pisarevsky 已提交
1373

1374
.. ocv:function:: double invert(InputArray src, OutputArray dst, int method=DECOMP_LU)
1375

1376 1377 1378 1379
.. ocv:pyfunction:: cv2.invert(src[, dst[, flags]]) -> retval, dst

.. ocv:cfunction:: double cvInvert(const CvArr* src, CvArr* dst, int method=CV_LU)
.. ocv:pyoldfunction:: cv.Invert(src, dst, method=CV_LU)-> double
1380

1381
    :param src: Source floating-point  ``M x N``  matrix.
1382

1383
    :param dst: Destination matrix of  ``N x M``  size and the same type as  ``src`` .
V
Vadim Pisarevsky 已提交
1384
    
1385
    :param flags: Inversion method :
1386

1387
            * **DECOMP_LU** Gaussian elimination with the optimal pivot element chosen.
1388

1389
            * **DECOMP_SVD** Singular value decomposition (SVD) method.
1390

1391
            * **DECOMP_CHOLESKY** Cholesky decomposion. The matrix must be symmetrical and positively defined.
1392

1393
The function ``invert`` inverts the matrix ``src`` and stores the result in ``dst`` .
1394
When the matrix ``src`` is singular or non-square, the function computes the pseudo-inverse matrix (the ``dst`` matrix) so that ``norm(src*dst - I)`` is minimal, where I is an identity matrix.
1395

1396
In case of the ``DECOMP_LU`` method, the function returns the ``src`` determinant ( ``src`` must be square). If it is 0, the matrix is not inverted and ``dst`` is filled with zeros.
1397

1398
In case of the ``DECOMP_SVD`` method, the function returns the inverse condition number of ``src`` (the ratio of the smallest singular value to the largest singular value) and 0 if ``src`` is singular. The SVD method calculates a pseudo-inverse matrix if ``src`` is singular.
1399

1400
Similarly to ``DECOMP_LU`` , the method ``DECOMP_CHOLESKY`` works only with non-singular square matrices that should also be symmetrical and positively defined. In this case, the function stores the inverted matrix in ``dst`` and returns non-zero. Otherwise, it returns 0.
1401

1402 1403
.. seealso::

1404 1405
    :ocv:func:`solve`,
    :ocv:class:`SVD`
1406

V
Vadim Pisarevsky 已提交
1407

1408

1409
log
V
Vadim Pisarevsky 已提交
1410
---
1411
Calculates the natural logarithm of every array element.
1412

1413
.. ocv:function:: void log(InputArray src, OutputArray dst)
1414

1415 1416 1417 1418
.. ocv:pyfunction:: cv2.log(src[, dst]) -> dst

.. ocv:cfunction:: void cvLog(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Log(src, dst)-> None
1419

1420
    :param src: Source array.
1421

1422
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
1423 1424
    
The function ``log`` calculates the natural logarithm of the absolute value of every element of the input array:
1425 1426 1427

.. math::

V
Vadim Pisarevsky 已提交
1428 1429
    \texttt{dst} (I) =  \fork{\log |\texttt{src}(I)|}{if $\texttt{src}(I) \ne 0$ }{\texttt{C}}{otherwise}

1430
where ``C`` is a large negative number (about -700 in the current implementation).
1431 1432 1433 1434
The maximum relative error is about ``7e-6`` for single-precision input and less than ``1e-10`` for double-precision input. Special values (NaN, Inf) are not handled.

.. seealso::

1435 1436 1437 1438 1439 1440 1441
    :ocv:func:`exp`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`,
    :ocv:func:`magnitude`
1442 1443


1444

1445
LUT
V
Vadim Pisarevsky 已提交
1446
---
1447
Performs a look-up table transform of an array.
V
Vadim Pisarevsky 已提交
1448

1449
.. ocv:function:: void LUT(InputArray src, InputArray lut, OutputArray dst)
1450

1451 1452 1453 1454
.. ocv:pyfunction:: cv2.LUT(src, lut[, dst[, interpolation]]) -> dst

.. ocv:cfunction:: void cvLUT(const CvArr* src, CvArr* dst, const CvArr* lut)
.. ocv:pyoldfunction:: cv.LUT(src, dst, lut)-> None
1455

1456
    :param src: Source array of 8-bit elements.
1457

1458
    :param lut: Look-up table of 256 elements. In case of multi-channel source array, the table should either have a single channel (in this case the same table is used for all channels) or the same number of channels as in the source array.
1459

1460
    :param dst: Destination array of the same size and the same number of channels as  ``src`` , and the same depth as  ``lut`` .
V
Vadim Pisarevsky 已提交
1461 1462
    
The function ``LUT`` fills the destination array with values from the look-up table. Indices of the entries are taken from the source array. That is, the function processes each element of ``src`` as follows:
1463 1464 1465

.. math::

V
Vadim Pisarevsky 已提交
1466
    \texttt{dst} (I)  \leftarrow \texttt{lut(src(I) + d)}
1467 1468 1469 1470 1471

where

.. math::

V
Vadim Pisarevsky 已提交
1472
    d =  \fork{0}{if \texttt{src} has depth \texttt{CV\_8U}}{128}{if \texttt{src} has depth \texttt{CV\_8S}}
1473

1474 1475
.. seealso::

1476 1477
    :ocv:func:`convertScaleAbs`,
    :ocv:func:`Mat::convertTo`
1478

V
Vadim Pisarevsky 已提交
1479

1480

1481
magnitude
V
Vadim Pisarevsky 已提交
1482
---------
1483
Calculates the magnitude of 2D vectors.
V
Vadim Pisarevsky 已提交
1484

1485
.. ocv:function:: void magnitude(InputArray x, InputArray y, OutputArray magnitude)
1486

1487
.. ocv:pyfunction:: cv2.magnitude(x, y[, magnitude]) -> magnitude
1488

1489
    :param x: Floating-point array of x-coordinates of the vectors.
1490

1491
    :param y: Floating-point array of y-coordinates of the vectors. It must have the same size as  ``x`` .
V
Vadim Pisarevsky 已提交
1492
    
1493
    :param dst: Destination array of the same size and type as  ``x`` .
V
Vadim Pisarevsky 已提交
1494
    
1495
The function ``magnitude`` calculates the magnitude of 2D vectors formed from the corresponding elements of ``x`` and ``y`` arrays:
1496 1497 1498

.. math::

V
Vadim Pisarevsky 已提交
1499
    \texttt{dst} (I) =  \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}
1500

1501 1502
.. seealso::

1503 1504 1505 1506
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`,
    :ocv:func:`phase`,
    :ocv:func:`sqrt`
1507

V
Vadim Pisarevsky 已提交
1508

1509

1510
Mahalanobis
V
Vadim Pisarevsky 已提交
1511
-----------
1512
Calculates the Mahalanobis distance between two vectors.
V
Vadim Pisarevsky 已提交
1513

1514
.. ocv:function:: double Mahalanobis(InputArray vec1, InputArray vec2, InputArray icovar)
1515

1516 1517 1518 1519 1520
.. ocv:pyfunction:: cv2.Mahalanobis(v1, v2, icovar) -> retval

.. ocv:cfunction:: double cvMahalanobis( const CvArr* vec1, const CvArr* vec2, CvArr* icovar)

.. ocv:pyoldfunction:: cv.Mahalanobis(vec1, vec2, icovar)-> None
1521

1522
    :param vec1: First 1D source vector.
1523

1524
    :param vec2: Second 1D source vector.
1525

1526
    :param icovar: Inverse covariance matrix.
1527

1528
The function ``Mahalanobis`` calculates and returns the weighted distance between two vectors:
1529 1530 1531

.. math::

V
Vadim Pisarevsky 已提交
1532
    d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }
1533

V
Vadim Pisarevsky 已提交
1534
The covariance matrix may be calculated using the
1535 1536
:ocv:func:`calcCovarMatrix` function and then inverted using the
:ocv:func:`invert` function (preferably using the ``DECOMP_SVD`` method, as the most accurate).
1537

1538

1539

1540
max
V
Vadim Pisarevsky 已提交
1541
---
1542
Calculates per-element maximum of two arrays or an array and a scalar.
V
Vadim Pisarevsky 已提交
1543

1544
.. ocv:function:: MatExpr max(const Mat& src1, const Mat& src2)
1545

1546
.. ocv:function:: MatExpr max(const Mat& src1, double value)
1547

1548
.. ocv:function:: MatExpr max(double value, const Mat& src1)
1549

1550
.. ocv:function:: void max(InputArray src1, InputArray src2, OutputArray dst)
1551

1552
.. ocv:function:: void max(const Mat& src1, const Mat& src2, Mat& dst)
1553

1554
.. ocv:function:: void max(const Mat& src1, double value, Mat& dst)
1555

1556 1557 1558 1559 1560 1561
.. ocv:pyfunction:: cv2.max(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMax(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMaxS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Max(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MaxS(src, value, dst)-> None
1562

1563
    :param src1: First source array.
1564

1565
    :param src2: Second source array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1566
    
1567
    :param value: Real scalar value.
1568

1569
    :param dst: Destination array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1570
    
1571
The functions ``max`` compute the per-element maximum of two arrays:
1572 1573 1574

.. math::

V
Vadim Pisarevsky 已提交
1575
    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))
1576 1577 1578 1579 1580

or array and a scalar:

.. math::

V
Vadim Pisarevsky 已提交
1581
    \texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )
1582

V
Vadim Pisarevsky 已提交
1583
In the second variant, when the source array is multi-channel, each channel is compared with ``value`` independently.
1584

V
Vadim Pisarevsky 已提交
1585
The first 3 variants of the function listed above are actually a part of
1586
:ref:`MatrixExpressions` . They return an expression object that can be further either transformed/ assigned to a matrix, or passed to a function, and so on.
1587

1588 1589
.. seealso::

1590 1591 1592 1593
    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
1594
    :ref:`MatrixExpressions`
V
Vadim Pisarevsky 已提交
1595

1596

1597
mean
V
Vadim Pisarevsky 已提交
1598
----
1599 1600 1601
Calculates an average (mean) of array elements.

.. ocv:function:: Scalar mean(InputArray src, InputArray mask=noArray())
1602

1603
.. ocv:pyfunction:: cv2.mean(src[, mask]) -> retval
1604

1605 1606
.. ocv:cfunction:: CvScalar cvAvg(const CvArr* src, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Avg(src, mask=None)-> CvScalar
1607

1608
    :param src: Source array that should have from 1 to 4 channels so that the result can be stored in  :ocv:class:`Scalar_` .
1609

1610
    :param mask: Optional operation mask.
1611

1612
The function ``mean`` computes the mean value ``M`` of array elements, independently for each channel, and return it:
1613 1614 1615

.. math::

V
Vadim Pisarevsky 已提交
1616
    \begin{array}{l} N =  \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c =  \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}
1617

V
Vadim Pisarevsky 已提交
1618
When all the mask elements are 0's, the functions return ``Scalar::all(0)`` .
1619

1620 1621
.. seealso::

1622 1623 1624 1625
    :ocv:func:`countNonZero`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`
1626

V
Vadim Pisarevsky 已提交
1627

1628

1629
meanStdDev
V
Vadim Pisarevsky 已提交
1630
----------
1631
Calculates a mean and standard deviation of array elements.
V
Vadim Pisarevsky 已提交
1632

1633
.. ocv:function:: void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, InputArray mask=noArray())
1634

1635
.. ocv:pyfunction:: cv2.meanStdDev(src[, mean[, stddev[, mask]]]) -> mean, stddev
1636

1637 1638 1639
.. ocv:cfunction:: void cvAvgSdv(const CvArr* src, CvScalar* mean, CvScalar* stdDev, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.AvgSdv(src, mask=None)-> (mean, stdDev)

1640
    :param src: Source array that should have from 1 to 4 channels so that the results can be stored in  :ocv:class:`Scalar_` 's.
1641

1642
    :param mean: Output parameter: computed mean value.
1643

1644
    :param stddev: Output parameter: computed standard deviation.
1645

1646
    :param mask: Optional operation mask.
1647

1648
The function ``meanStdDev`` computes the mean and the standard deviation ``M`` of array elements independently for each channel and returns it via the output parameters:
1649 1650 1651

.. math::

V
Vadim Pisarevsky 已提交
1652
    \begin{array}{l} N =  \sum _{I, \texttt{mask} (I)  \ne 0} 1 \\ \texttt{mean} _c =  \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c =  \sqrt{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c -  \texttt{mean} _c \right )^2} \end{array}
1653

V
Vadim Pisarevsky 已提交
1654
When all the mask elements are 0's, the functions return ``mean=stddev=Scalar::all(0)`` .
1655

1656
.. note:: The computed standard deviation is only the diagonal of the complete normalized covariance matrix. If the full matrix is needed, you can reshape the multi-channel array ``M x N`` to the single-channel array ``M*N x mtx.channels()`` (only possible when the matrix is continuous) and then pass the matrix to :ocv:func:`calcCovarMatrix` .
1657 1658 1659

.. seealso::

1660 1661 1662 1663 1664
    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`calcCovarMatrix`
1665

V
Vadim Pisarevsky 已提交
1666

1667

1668
merge
V
Vadim Pisarevsky 已提交
1669
-----
1670
Composes a multi-channel array from several single-channel arrays.
1671

1672
.. ocv:function:: void merge(const Mat* mv, size_t count, OutputArray dst)
1673

1674
.. ocv:function:: void merge(const vector<Mat>& mv, OutputArray dst)
1675

1676 1677 1678 1679
.. ocv:pyfunction:: cv2.merge(mv[, dst]) -> dst

.. ocv:cfunction:: void cvMerge(const CvArr* src0, const CvArr* src1, const CvArr* src2, const CvArr* src3, CvArr* dst)
.. ocv:pyoldfunction:: cv.Merge(src0, src1, src2, src3, dst)-> None
1680

1681
    :param mv: Source array or vector of matrices to be merged. All the matrices in ``mv``  must have the same size and the same depth.
1682

1683
    :param count: Number of source matrices when  ``mv``  is a plain C array. It must be greater than zero.
1684

1685
    :param dst: Destination array of the same size and the same depth as  ``mv[0]`` . The number of channels will be the total number of channels in the matrix array.
1686

1687
The functions ``merge`` merge several arrays to make a single multi-channel array. That is, each element of the output array will be a concatenation of the elements of the input arrays, where elements of i-th input array are treated as ``mv[i].channels()``-element vectors.
1688

V
Vadim Pisarevsky 已提交
1689
The function
1690 1691
:ocv:func:`split` does the reverse operation. If you need to shuffle channels in some other advanced way, use
:ocv:func:`mixChannels` .
1692

1693 1694
.. seealso::

1695 1696
    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
1697
    :ocv:func:`Mat::reshape`
1698

V
Vadim Pisarevsky 已提交
1699

1700

1701
min
V
Vadim Pisarevsky 已提交
1702
---
1703
Calculates per-element minimum of two arrays or array and a scalar.
1704

1705
.. ocv:function:: MatExpr min(const Mat& src1, const Mat& src2)
1706

1707
.. ocv:function:: MatExpr min(const Mat& src1, double value)
1708

1709
.. ocv:function:: MatExpr min(double value, const Mat& src1)
1710

1711
.. ocv:function:: void min(InputArray src1, InputArray src2, OutputArray dst)
1712

1713
.. ocv:function:: void min(const Mat& src1, const Mat& src2, Mat& dst)
V
Vadim Pisarevsky 已提交
1714

1715
.. ocv:function:: void min(const Mat& src1, double value, Mat& dst)
1716

1717 1718 1719 1720 1721 1722
.. ocv:pyfunction:: cv2.min(src1, src2[, dst]) -> dst

.. ocv:cfunction:: void cvMin(const CvArr* src1, const CvArr* src2, CvArr* dst)
.. ocv:cfunction:: void cvMinS(const CvArr* src, double value, CvArr* dst)
.. ocv:pyoldfunction:: cv.Min(src1, src2, dst)-> None
.. ocv:pyoldfunction:: cv.MinS(src, value, dst)-> None
1723

1724
    :param src1: First source array.
1725

1726
    :param src2: Second source array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1727
    
1728
    :param value: Real scalar value.
1729

1730
    :param dst: Destination array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1731
    
1732
The functions ``min`` compute the per-element minimum of two arrays:
1733 1734 1735

.. math::

V
Vadim Pisarevsky 已提交
1736
    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))
1737 1738 1739 1740 1741

or array and a scalar:

.. math::

V
Vadim Pisarevsky 已提交
1742
    \texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )
1743

V
Vadim Pisarevsky 已提交
1744
In the second variant, when the source array is multi-channel, each channel is compared with ``value`` independently.
1745

1746 1747
The first three variants of the function listed above are actually a part of
:ref:`MatrixExpressions` . They return the expression object that can be further either transformed/assigned to a matrix, or passed to a function, and so on.
1748

1749 1750
.. seealso::

1751 1752 1753 1754
    :ocv:func:`max`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`minMaxLoc`,
1755 1756
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
1757

V
Vadim Pisarevsky 已提交
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
minMaxIdx
---------
Finds the global minimum and maximum in an array

.. ocv:function:: void minMaxIdx(InputArray src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0, InputArray mask=noArray())

    :param src: Source single-channel array.

    :param minVal: Pointer to the returned minimum value.  ``NULL`` is used if not required.

    :param maxVal: Pointer to the returned maximum value.  ``NULL`` is used if not required.
    
    :param minIdx: Pointer to the returned minimum location (in nD case). ``NULL`` is used if not required. Otherwise, it must point to an array of  ``src.dims``  elements. The coordinates of the minimum element in each dimension are stored there sequentially.
    
        .. note::
        
            When ``minIdx`` is not NULL, it must have at least 2 elements (as well as ``maxIdx``), even if ``src`` is a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 dimensions, i.e. single-row matrix is ``Mx1`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(i1,0)``/``(i2,0)``) and single-column matrix is ``1xN`` matrix (and therefore ``minIdx``/``maxIdx`` will be ``(0,j1)``/``(0,j2)``).

    :param maxIdx: Pointer to the returned maximum location (in nD case).  ``NULL`` is used if not required.
    
    The function ``minMaxIdx`` finds the minimum and maximum element values and their positions. The extremums are searched across the whole array or, if ``mask`` is not an empty array, in the specified array region.

    The function does not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
    :ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
    :ocv:func:`extractImageCOI` , or
    :ocv:func:`mixChannels` , or
    :ocv:func:`split` .

    In case of a sparse matrix, the minimum is found among non-zero elements only.


1789

1790
minMaxLoc
V
Vadim Pisarevsky 已提交
1791
---------
V
Vadim Pisarevsky 已提交
1792
Finds the global minimum and maximum in an array.
V
Vadim Pisarevsky 已提交
1793

1794
.. ocv:function:: void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray())
1795

1796
.. ocv:function:: void minMaxLoc(const SparseMat& src, double* minVal, double* maxVal, int* minIdx=0, int* maxIdx=0)
1797

1798 1799 1800 1801
.. ocv:pyfunction:: cv2.minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

.. ocv:cfunction:: void cvMinMaxLoc(const CvArr* arr, double* minVal, double* maxVal, CvPoint* minLoc=NULL, CvPoint* maxLoc=NULL, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.MinMaxLoc(arr, mask=None)-> (minVal, maxVal, minLoc, maxLoc)
1802

1803
    :param src: Source single-channel array.
1804

1805
    :param minVal: Pointer to the returned minimum value.  ``NULL`` is used if not required.
1806

1807
    :param maxVal: Pointer to the returned maximum value.  ``NULL`` is used if not required.
1808

1809
    :param minLoc: Pointer to the returned minimum location (in 2D case).  ``NULL`` is used if not required.
1810

1811
    :param maxLoc: Pointer to the returned maximum location (in 2D case).  ``NULL`` is used if not required.
1812

1813
    :param mask: Optional mask used to select a sub-array.
1814

1815
The functions ``minMaxLoc`` find the minimum and maximum element values and their positions. The extremums are searched across the whole array or,
V
Vadim Pisarevsky 已提交
1816
if ``mask`` is not an empty array, in the specified array region.
1817

V
Vadim Pisarevsky 已提交
1818
The functions do not work with multi-channel arrays. If you need to find minimum or maximum elements across all the channels, use
1819
:ocv:func:`Mat::reshape` first to reinterpret the array as single-channel. Or you may extract the particular channel using either
1820 1821 1822
:ocv:func:`extractImageCOI` , or
:ocv:func:`mixChannels` , or
:ocv:func:`split` .
1823

1824 1825
.. seealso::

1826 1827 1828 1829 1830 1831 1832
    :ocv:func:`max`,
    :ocv:func:`min`,
    :ocv:func:`compare`,
    :ocv:func:`inRange`,
    :ocv:func:`extractImageCOI`,
    :ocv:func:`mixChannels`,
    :ocv:func:`split`,
1833
    :ocv:func:`Mat::reshape` 
1834

1835 1836


1837
mixChannels
V
Vadim Pisarevsky 已提交
1838
-----------
1839
Copies specified channels from input arrays to the specified channels of output arrays.
V
Vadim Pisarevsky 已提交
1840

1841
.. ocv:function:: void mixChannels(const Mat* src, int nsrc, Mat* dst, int ndst, const int* fromTo, size_t npairs)
1842

1843
.. ocv:function:: void mixChannels(const vector<Mat>& src, vector<Mat>& dst, const int* fromTo, int npairs)
1844

1845 1846 1847 1848
.. ocv:pyfunction:: cv2.mixChannels(src, dst, fromTo) -> None

.. ocv:cfunction:: void cvMixChannels(const CvArr** src, int srcCount, CvArr** dst, int dstCount, const int* fromTo, int pairCount)
.. ocv:pyoldfunction:: cv.MixChannels(src, dst, fromTo) -> None
1849

1850
    :param src: Input array or vector of matrices. All the matrices must have the same size and the same depth.
V
Vadim Pisarevsky 已提交
1851

1852
    :param nsrc: Number of matrices in  ``src`` .
V
Vadim Pisarevsky 已提交
1853
    
1854
    :param dst: Output array or vector of matrices. All the matrices  *must be allocated* . Their size and depth must be the same as in  ``src[0]`` .
V
Vadim Pisarevsky 已提交
1855
        
1856
    :param ndst: Number of matrices in  ``dst`` .
V
Vadim Pisarevsky 已提交
1857
    
1858 1859 1860
    :param fromTo: Array of index pairs specifying which channels are copied and where. ``fromTo[k*2]``  is a 0-based index of the input channel in  ``src`` . ``fromTo[k*2+1]``  is an index of the output channel in  ``dst`` . The continuous channel numbering is used: the first input image channels are indexed from  ``0``  to  ``src[0].channels()-1`` , the second input image channels are indexed from  ``src[0].channels()``  to ``src[0].channels() + src[1].channels()-1``,  and so on. The same scheme is used for the output image channels. As a special case, when  ``fromTo[k*2]``  is negative, the corresponding output channel is filled with zero .
    
    :param npairs: Number of index pairs in ``fromTo``.
V
Vadim Pisarevsky 已提交
1861 1862 1863
    
The functions ``mixChannels`` provide an advanced mechanism for shuffling image channels.
    
1864 1865 1866
:ocv:func:`split` and
:ocv:func:`merge` and some forms of
:ocv:func:`cvtColor` are partial cases of ``mixChannels`` .
1867

1868
In the example below, the code splits a 4-channel RGBA image into a 3-channel BGR (with R and B channels swapped) and a separate alpha-channel image: ::
1869 1870 1871 1872

    Mat rgba( 100, 100, CV_8UC4, Scalar(1,2,3,4) );
    Mat bgr( rgba.rows, rgba.cols, CV_8UC3 );
    Mat alpha( rgba.rows, rgba.cols, CV_8UC1 );
V
Vadim Pisarevsky 已提交
1873

1874
    // forming an array of matrices is a quite efficient operation,
1875 1876 1877 1878
    // because the matrix data is not copied, only the headers
    Mat out[] = { bgr, alpha };
    // rgba[0] -> bgr[2], rgba[1] -> bgr[1],
    // rgba[2] -> bgr[0], rgba[3] -> alpha[0]
V
Vadim Pisarevsky 已提交
1879
    int from_to[] = { 0,2, 1,1, 2,0, 3,3 };
1880
    mixChannels( &rgba, 1, out, 2, from_to, 4 );
1881

1882

1883
.. note:: Unlike many other new-style C++ functions in OpenCV (see the introduction section and :ocv:func:`Mat::create` ), ``mixChannels`` requires the destination arrays to be pre-allocated before calling the function.
1884 1885

.. seealso::
1886

1887 1888 1889
    :ocv:func:`split`,
    :ocv:func:`merge`,
    :ocv:func:`cvtColor`
1890

V
Vadim Pisarevsky 已提交
1891

1892

1893
mulSpectrums
V
Vadim Pisarevsky 已提交
1894
------------
1895
Performs the per-element multiplication of two Fourier spectrums.
V
Vadim Pisarevsky 已提交
1896

1897
.. ocv:function:: void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conj=false)
1898

1899 1900 1901 1902
.. ocv:pyfunction:: cv2.mulSpectrums(a, b, flags[, c[, conjB]]) -> c

.. ocv:cfunction:: void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags)
.. ocv:pyoldfunction:: cv.MulSpectrums(src1, src2, dst, flags)-> None
1903

1904
    :param src1: First source array.
1905

1906
    :param src2: Second source array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1907
    
1908
    :param dst: Destination array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1909
    
1910
    :param flags: Operation flags. Currently, the only supported flag is ``DFT_ROWS``, which indicates that each row of ``src1`` and ``src2`` is an independent 1D Fourier spectrum.
1911

1912
    :param conj: Optional flag that conjugates the second source array before the multiplication (true) or not (false).
1913

1914
The function ``mulSpectrums`` performs the per-element multiplication of the two CCS-packed or complex matrices that are results of a real or complex Fourier transform.
1915

V
Vadim Pisarevsky 已提交
1916
The function, together with
1917 1918 1919
:ocv:func:`dft` and
:ocv:func:`idft` , may be used to calculate convolution (pass ``conj=false`` ) or correlation (pass ``conj=false`` ) of two arrays rapidly. When the arrays are complex, they are simply multiplied (per element) with an optional conjugation of the second-array elements. When the arrays are real, they are assumed to be CCS-packed (see
:ocv:func:`dft` for details).
1920

1921

1922

1923
multiply
V
Vadim Pisarevsky 已提交
1924
--------
1925
Calculates the per-element scaled product of two arrays.
V
Vadim Pisarevsky 已提交
1926

1927
.. ocv:function:: void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale=1)
1928

1929 1930 1931 1932
.. ocv:pyfunction:: cv2.multiply(src1, src2[, dst[, scale[, dtype]]]) -> dst

.. ocv:cfunction:: void cvMul(const CvArr* src1, const CvArr* src2, CvArr* dst, double scale=1)
.. ocv:pyoldfunction:: cv.Mul(src1, src2, dst, scale)-> None
1933

1934
    :param src1: First source array.
1935

1936
    :param src2: Second source array of the same size and the same type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1937
    
1938
    :param dst: Destination array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
1939
    
1940
    :param scale: Optional scale factor.
1941

V
Vadim Pisarevsky 已提交
1942
The function ``multiply`` calculates the per-element product of two arrays:
1943

V
Vadim Pisarevsky 已提交
1944
.. math::
1945

V
Vadim Pisarevsky 已提交
1946
    \texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I)  \cdot \texttt{src2} (I))
1947

1948
There is also a
1949
:ref:`MatrixExpressions` -friendly variant of the first function. See
1950
:ocv:func:`Mat::mul` .
1951

1952
For a not-per-element matrix product, see
1953
:ocv:func:`gemm` .
1954

1955 1956
.. seealso::

1957
    :ocv:func:`add`,
1958
    :ocv:func:`subtract`,
1959
    :ocv:func:`divide`,
1960
    :ref:`MatrixExpressions`,
1961 1962 1963 1964 1965 1966
    :ocv:func:`scaleAdd`,
    :ocv:func:`addWeighted`,
    :ocv:func:`accumulate`,
    :ocv:func:`accumulateProduct`,
    :ocv:func:`accumulateSquare`,
    :ocv:func:`Mat::convertTo`
1967

V
Vadim Pisarevsky 已提交
1968

1969

1970
mulTransposed
V
Vadim Pisarevsky 已提交
1971
-------------
1972
Calculates the product of a matrix and its transposition.
V
Vadim Pisarevsky 已提交
1973

1974
.. ocv:function:: void mulTransposed(InputArray src, OutputArray dst, bool aTa, InputArray delta=noArray(), double scale=1, int rtype=-1)
1975

1976 1977 1978 1979
.. ocv:pyfunction:: cv2.mulTransposed(src, aTa[, dst[, delta[, scale[, dtype]]]]) -> dst

.. ocv:cfunction:: void cvMulTransposed(const CvArr* src, CvArr* dst, int order, const CvArr* delta=NULL, double scale=1.0)
.. ocv:pyoldfunction:: cv.MulTransposed(src, dst, order, delta=None, scale)-> None
1980

1981
    :param src: Source single-channel matrix. Note that unlike :ocv:func:`gemm`, the function can multiply not only floating-point matrices.
1982

1983
    :param dst: Destination square matrix.
1984

1985
    :param aTa: Flag specifying the multiplication ordering. See the description below.
1986

1987
    :param delta: Optional delta matrix subtracted from  ``src``  before the multiplication. When the matrix is empty ( ``delta=noArray()`` ), it is assumed to be zero, that is, nothing is subtracted. If it has the same size as  ``src`` , it is simply subtracted. Otherwise, it is "repeated" (see  :ocv:func:`repeat` ) to cover the full  ``src``  and then subtracted. Type of the delta matrix, when it is not empty, must be the same as the type of created destination matrix. See the  ``rtype``  parameter description below.
1988

1989
    :param scale: Optional scale factor for the matrix product.
1990

1991
    :param rtype: Optional type of the destination matrix. When it is negative, the destination matrix will have the same type as  ``src`` . Otherwise, it will be ``type=CV_MAT_DEPTH(rtype)`` that should be either  ``CV_32F``  or  ``CV_64F`` .
V
Vadim Pisarevsky 已提交
1992 1993
    
The function ``mulTransposed`` calculates the product of ``src`` and its transposition:
1994 1995 1996

.. math::

V
Vadim Pisarevsky 已提交
1997
    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )
1998

V
Vadim Pisarevsky 已提交
1999
if ``aTa=true`` , and
2000 2001 2002

.. math::

V
Vadim Pisarevsky 已提交
2003
    \texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T
2004

2005 2006 2007 2008
otherwise. The function is used to compute the covariance matrix. With zero delta, it can be used as a faster substitute for general matrix product ``A*B`` when ``B=A'``

.. seealso::

2009 2010 2011 2012
    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`gemm`,
    :ocv:func:`repeat`,
    :ocv:func:`reduce`
2013

V
Vadim Pisarevsky 已提交
2014

2015

2016
norm
V
Vadim Pisarevsky 已提交
2017
----
2018
Calculates an absolute array norm, an absolute difference norm, or a relative difference norm.
V
Vadim Pisarevsky 已提交
2019

2020
.. ocv:function:: double norm(InputArray src1, int normType=NORM_L2, InputArray mask=noArray())
2021

2022
.. ocv:function:: double norm(InputArray src1, InputArray src2, int normType, InputArray mask=noArray())
2023

2024
.. ocv:function:: double norm( const SparseMat& src, int normType )
2025

2026 2027 2028 2029 2030
.. ocv:pyfunction:: cv2.norm(src1[, normType[, mask]]) -> retval
.. ocv:pyfunction:: cv2.norm(src1, src2[, normType[, mask]]) -> retval

.. ocv:cfunction:: double cvNorm(const CvArr* arr1, const CvArr* arr2=NULL, int normType=CV_L2, const CvArr* mask=NULL)
.. ocv:pyoldfunction:: cv.Norm(arr1, arr2, normType=CV_L2, mask=None)-> double
2031

2032
    :param src1: First source array.
2033

2034
    :param src2: Second source array of the same size and the same type as  ``src1`` .
V
Vadim Pisarevsky 已提交
2035
    
2036
    :param normType: Type of the norm. See the details below.
2037

2038
    :param mask: Optional operation mask. It must have the same size as ``src1`` and ``CV_8UC1`` type.
2039

2040
The functions ``norm`` calculate an absolute norm of ``src1`` (when there is no ``src2`` ):
2041 2042 2043 2044 2045

.. math::

    norm =  \forkthree{\|\texttt{src1}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} \| _{L_1} =  \sum _I | \texttt{src1} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
V
Vadim Pisarevsky 已提交
2046
    { \| \texttt{src1} \| _{L_2} =  \sqrt{\sum_I \texttt{src1}(I)^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }
2047

V
Vadim Pisarevsky 已提交
2048
or an absolute or relative difference norm if ``src2`` is there:
2049 2050 2051 2052 2053

.. math::

    norm =  \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} =  \max _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_INF}$ }
    { \| \texttt{src1} - \texttt{src2} \| _{L_1} =  \sum _I | \texttt{src1} (I) -  \texttt{src2} (I)|}{if  $\texttt{normType} = \texttt{NORM\_L1}$ }
V
Vadim Pisarevsky 已提交
2054
    { \| \texttt{src1} - \texttt{src2} \| _{L_2} =  \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if  $\texttt{normType} = \texttt{NORM\_L2}$ }
2055 2056 2057 2058 2059 2060 2061

or

.. math::

    norm =  \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}}    }{\|\texttt{src2}\|_{L_{\infty}} }}{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_INF}$ }
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L1}$ }
V
Vadim Pisarevsky 已提交
2062
    { \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if  $\texttt{normType} = \texttt{NORM\_RELATIVE\_L2}$ }
2063

V
Vadim Pisarevsky 已提交
2064
The functions ``norm`` return the calculated norm.
2065

2066
When the ``mask`` parameter is specified and it is not empty, the norm is computed only over the region specified by the mask.
2067

2068
A multi-channel source arrays are treated as a single-channel, that is, the results for all channels are combined.
2069

2070

2071

2072
normalize
V
Vadim Pisarevsky 已提交
2073
---------
2074
Normalizes the norm or value range of an array.
V
Vadim Pisarevsky 已提交
2075

2076
.. ocv:function:: void normalize(const InputArray src, OutputArray dst, double alpha=1, double beta=0, int normType=NORM_L2, int rtype=-1, InputArray mask=noArray())
2077

2078
.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
2079

2080
.. ocv:pyfunction:: cv2.normalize(src[, dst[, alpha[, beta[, norm_type[, dtype[, mask]]]]]]) -> dst
2081

2082
    :param src: Source array.
2083

2084
    :param dst: Destination array of the same size as  ``src`` .
V
Vadim Pisarevsky 已提交
2085
    
2086
    :param alpha: Norm value to normalize to or the lower range boundary in case of the range normalization.
2087

2088
    :param beta: Upper range boundary in case ofthe range normalization. It is not used for the norm normalization.
2089

2090
    :param normType: Normalization type. See the details below.
2091

2092
    :param rtype: When the parameter is negative, the destination array has the same type as  ``src``. Otherwise, it has the same number of channels as  ``src``  and the depth ``=CV_MAT_DEPTH(rtype)`` .
V
Vadim Pisarevsky 已提交
2093
    
2094
    :param mask: Optional operation mask.
2095 2096


2097
The functions ``normalize`` scale and shift the source array elements so that
2098

2099
.. math::
2100

2101
    \| \texttt{dst} \| _{L_p}= \texttt{alpha}
2102

2103
(where p=Inf, 1 or 2) when ``normType=NORM_INF``, ``NORM_L1``, or ``NORM_L2``, respectively; or so that
2104

2105
.. math::
2106

2107
    \min _I  \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I  \texttt{dst} (I)= \texttt{beta}
2108

2109
when ``normType=NORM_MINMAX`` (for dense arrays only).
2110
The optional mask specifies a sub-array to be normalized. This means that the norm or min-n-max are computed over the sub-array, and then this sub-array is modified to be normalized. If you want to only use the mask to compute the norm or min-max but modify the whole array, you can use
2111 2112
:ocv:func:`norm` and
:ocv:func:`Mat::convertTo`.
2113

2114
In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, the range transformation for sparse matrices is not allowed since it can shift the zero level.
2115

2116 2117
.. seealso::

2118 2119 2120
    :ocv:func:`norm`,
    :ocv:func:`Mat::convertTo`,
    :ocv:func:`SparseMat::convertTo`
2121

2122 2123 2124 2125


PCA
---
2126
.. ocv:class:: PCA
2127

2128 2129 2130 2131
Principal Component Analysis class.

The class is used to compute a special basis for a set of vectors. The basis will consist of eigenvectors of the covariance matrix computed from the input set of vectors. The class ``PCA`` can also transform vectors to/from the new coordinate space defined by the basis. Usually, in this new coordinate system, each vector from the original set (and any linear combination of such vectors) can be quite accurately approximated by taking its first few components, corresponding to the eigenvectors of the largest eigenvalues of the covariance matrix. Geometrically it means that you compute a projection of the vector to a subspace formed by a few eigenvectors corresponding to the dominant eigenvalues of the covariance matrix. And usually such a projection is very close to the original vector. So, you can represent the original vector from a high-dimensional space with a much shorter vector consisting of the projected vector's coordinates in the subspace. Such a transformation is also known as Karhunen-Loeve Transform, or KLT. See
http://en.wikipedia.org/wiki/Principal\_component\_analysis .
2132

2133
The sample below is the function that takes two matrices. The first function stores a set of vectors (a row per vector) that is used to compute PCA. The second function stores another "test" set of vectors (a row per vector). First, these vectors are compressed with PCA, then reconstructed back, and then the reconstruction error norm is computed and printed for each vector. ::
2134

2135 2136
    PCA compressPCA(InputArray pcaset, int maxComponents,
                    const Mat& testset, OutputArray compressed)
2137 2138
    {
        PCA pca(pcaset, // pass the data
2139
                Mat(), // there is no pre-computed mean vector,
2140 2141 2142 2143 2144
                       // so let the PCA engine to compute it
                CV_PCA_DATA_AS_ROW, // indicate that the vectors
                                    // are stored as matrix rows
                                    // (use CV_PCA_DATA_AS_COL if the vectors are
                                    // the matrix columns)
2145
                maxComponents // specify how many principal components to retain
2146 2147 2148 2149 2150
                );
        // if there is no test data, just return the computed basis, ready-to-use
        if( !testset.data )
            return pca;
        CV_Assert( testset.cols == pcaset.cols );
V
Vadim Pisarevsky 已提交
2151

2152
        compressed.create(testset.rows, maxComponents, testset.type());
V
Vadim Pisarevsky 已提交
2153

2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
        Mat reconstructed;
        for( int i = 0; i < testset.rows; i++ )
        {
            Mat vec = testset.row(i), coeffs = compressed.row(i);
            // compress the vector, the result will be stored
            // in the i-th row of the output matrix
            pca.project(vec, coeffs);
            // and then reconstruct it
            pca.backProject(coeffs, reconstructed);
            // and measure the error
A
Alexander Shishkov 已提交
2164
            printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2));
2165 2166 2167
        }
        return pca;
    }
2168

2169

2170 2171
.. seealso::

2172 2173 2174 2175 2176
    :ocv:func:`calcCovarMatrix`,
    :ocv:func:`mulTransposed`,
    :ocv:class:`SVD`,
    :ocv:func:`dft`,
    :ocv:func:`dct`
2177

V
Vadim Pisarevsky 已提交
2178

2179

2180
PCA::PCA
2181
------------
2182 2183
PCA constructors

2184
.. ocv:function:: PCA::PCA()
2185

2186
.. ocv:function:: PCA::PCA(InputArray data, InputArray mean, int flags, int maxComponents=0)
2187

2188
    :param data: Input samples stored as matrix rows or matrix columns.
2189

2190
    :param mean: Optional mean value. If the matrix is empty ( ``noArray()`` ), the mean is computed from the data.
2191

2192
    :param flags: Operation flags. Currently the parameter is only used to specify the data layout.
2193

2194
        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
2195

2196
        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
2197

2198
    :param maxComponents: Maximum number of components that PCA should retain. By default, all the components are retained.
2199

2200
The default constructor initializes an empty PCA structure. The second constructor initializes the structure and calls
2201
:ocv:funcx:`PCA::operator()` .
2202

2203

2204

2205
PCA::operator ()
V
Vadim Pisarevsky 已提交
2206
----------------
2207
Performs Principal Component Analysis of the supplied dataset.
V
Vadim Pisarevsky 已提交
2208

2209
.. ocv:function:: PCA& PCA::operator()(InputArray data, InputArray mean, int flags, int maxComponents=0)
2210

2211
.. ocv:pyfunction:: cv2.PCACompute(data[, mean[, eigenvectors[, maxComponents]]]) -> mean, eigenvectors
2212

2213
    :param data: Input samples stored as the matrix rows or as the matrix columns.
2214

2215
    :param mean: Optional mean value. If the matrix is empty ( ``noArray()`` ), the mean is computed from the data.
2216

2217
    :param flags: Operation flags. Currently the parameter is only used to specify the data layout.
2218

2219
        * **CV_PCA_DATA_AS_ROW** indicates that the input samples are stored as matrix rows.
2220

2221
        * **CV_PCA_DATA_AS_COL** indicates that the input samples are stored as matrix columns.
2222

2223
    :param maxComponents: Maximum number of components that PCA should retain. By default, all the components are retained.
2224

2225
The operator performs PCA of the supplied dataset. It is safe to reuse the same PCA structure for multiple datasets. That is, if the  structure has been previously used with another dataset, the existing internal data is reclaimed and the new ``eigenvalues``, ``eigenvectors`` , and ``mean`` are allocated and computed.
V
Vadim Pisarevsky 已提交
2226 2227

The computed eigenvalues are sorted from the largest to the smallest and the corresponding eigenvectors are stored as ``PCA::eigenvectors`` rows.
2228

2229

2230

2231
PCA::project
V
Vadim Pisarevsky 已提交
2232
------------
2233
Projects vector(s) to the principal component subspace.
V
Vadim Pisarevsky 已提交
2234

2235
.. ocv:function:: Mat PCA::project(InputArray vec) const
2236

2237
.. ocv:function:: void PCA::project(InputArray vec, OutputArray result) const
2238

2239
.. ocv:pyfunction:: cv2.PCAProject(vec, mean, eigenvectors[, result]) -> result
2240

2241
    :param vec: Input vector(s). They must have the same dimensionality and the same layout as the input data used at PCA phase. That is, if  ``CV_PCA_DATA_AS_ROW``  are specified, then  ``vec.cols==data.cols``  (vector dimensionality) and  ``vec.rows``  is the number of vectors to project. The same is true for the  ``CV_PCA_DATA_AS_COL``  case.
2242

2243
    :param result: Output vectors. In case of  ``CV_PCA_DATA_AS_COL``  , the output matrix has as many columns as the number of input vectors. This means that  ``result.cols==vec.cols``  and the number of rows match the number of principal components (for example,  ``maxComponents``  parameter passed to the constructor).
2244

2245
The methods project one or more vectors to the principal component subspace, where each vector projection is represented by coefficients in the principal component basis. The first form of the method returns the matrix that the second form writes to the result. So the first form can be used as a part of expression while the second form can be more efficient in a processing loop.
2246

2247

2248

2249
PCA::backProject
V
Vadim Pisarevsky 已提交
2250
----------------
2251
Reconstructs vectors from their PC projections.
2252

2253
.. ocv:function:: Mat PCA::backProject(InputArray vec) const
V
Vadim Pisarevsky 已提交
2254

2255
.. ocv:function:: void PCA::backProject(InputArray vec, OutputArray result) const
2256

2257
.. ocv:pyfunction:: cv2.PCABackProject(vec, mean, eigenvectors[, result]) -> result
2258

V
Vadim Pisarevsky 已提交
2259
    :param vec: Coordinates of the vectors in the principal component subspace. The layout and size are the same as of  ``PCA::project``  output vectors.
2260

2261
    :param result: Reconstructed vectors. The layout and size are the same as of  ``PCA::project``  input vectors.
2262

V
Vadim Pisarevsky 已提交
2263
The methods are inverse operations to
2264
:ocv:func:`PCA::project` . They take PC coordinates of projected vectors and reconstruct the original vectors. Unless all the principal components have been retained, the reconstructed vectors are different from the originals. But typically, the difference is small if the number of components is large enough (but still much smaller than the original vector dimensionality). As a result, PCA is used.
2265

2266

2267

2268
perspectiveTransform
V
Vadim Pisarevsky 已提交
2269
--------------------
2270 2271
Performs the perspective matrix transformation of vectors.

2272
.. ocv:function:: void perspectiveTransform(InputArray src, OutputArray dst, InputArray mtx)
2273

2274 2275 2276 2277
.. ocv:pyfunction:: cv2.perspectiveTransform(src, m[, dst]) -> dst

.. ocv:cfunction:: void cvPerspectiveTransform(const CvArr* src, CvArr* dst, const CvMat* mat)
.. ocv:pyoldfunction:: cv.PerspectiveTransform(src, dst, mat)-> None
2278

2279
    :param src: Source two-channel or three-channel floating-point array. Each element is a 2D/3D vector to be transformed.
2280

2281
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
2282
    
2283
    :param mtx: ``3x3`` or ``4x4`` floating-point transformation matrix.
2284

2285
The function ``perspectiveTransform`` transforms every element of ``src`` by treating it as a 2D or 3D vector, in the following way:
2286 2287 2288

.. math::

V
Vadim Pisarevsky 已提交
2289
    (x, y, z)  \rightarrow (x'/w, y'/w, z'/w)
2290 2291 2292 2293 2294

where

.. math::

V
Vadim Pisarevsky 已提交
2295
    (x', y', z', w') =  \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1  \end{bmatrix}
2296 2297 2298 2299 2300

and

.. math::

V
Vadim Pisarevsky 已提交
2301
    w =  \fork{w'}{if $w' \ne 0$}{\infty}{otherwise}
2302

2303 2304
Here a 3D vector transformation is shown. In case of a 2D vector transformation, the ``z`` component is omitted.

2305
.. note:: The function transforms a sparse set of 2D or 3D vectors. If you want to transform an image using perspective transformation, use :ocv:func:`warpPerspective` . If you have an inverse problem, that is, you want to compute the most probable perspective transformation out of several pairs of corresponding points, you can use :ocv:func:`getPerspectiveTransform` or :ocv:func:`findHomography` .
2306

2307
.. seealso::
2308

2309 2310 2311 2312
    :ocv:func:`transform`,
    :ocv:func:`warpPerspective`,
    :ocv:func:`getPerspectiveTransform`,
    :ocv:func:`findHomography`
2313

V
Vadim Pisarevsky 已提交
2314

2315

2316
phase
V
Vadim Pisarevsky 已提交
2317
-----
2318
Calculates the rotation angle of 2D vectors.
V
Vadim Pisarevsky 已提交
2319

2320
.. ocv:function:: void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees=false)
2321

2322
.. ocv:pyfunction:: cv2.phase(x, y[, angle[, angleInDegrees]]) -> angle
2323

2324
    :param x: Source floating-point array of x-coordinates of 2D vectors.
2325

2326
    :param y: Source array of y-coordinates of 2D vectors. It must have the same size and the same type as  ``x``  .   
V
Vadim Pisarevsky 已提交
2327
    
2328
    :param angle: Destination array of vector angles. It has the same size and same type as  ``x`` .
V
Vadim Pisarevsky 已提交
2329
    
2330
    :param angleInDegrees: When it is true, the function computes the angle in degrees. Otherwise, they are measured in radians.
2331

V
Vadim Pisarevsky 已提交
2332
The function ``phase`` computes the rotation angle of each 2D vector that is formed from the corresponding elements of ``x`` and ``y`` :
2333 2334 2335

.. math::

V
Vadim Pisarevsky 已提交
2336
    \texttt{angle} (I) =  \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))
2337

2338
The angle estimation accuracy is about 0.3 degrees. When ``x(I)=y(I)=0`` , the corresponding ``angle(I)`` is set to 0.
2339 2340


2341
polarToCart
V
Vadim Pisarevsky 已提交
2342
-----------
2343
Computes x and y coordinates of 2D vectors from their magnitude and angle.
V
Vadim Pisarevsky 已提交
2344

2345
.. ocv:function:: void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees=false)
2346

2347 2348 2349 2350
.. ocv:pyfunction:: cv2.polarToCart(magnitude, angle[, x[, y[, angleInDegrees]]]) -> x, y

.. ocv:cfunction:: void cvPolarToCart( const CvArr* magnitude, const CvArr* angle, CvArr* x, CvArr* y, int angleInDegrees=0)
.. ocv:pyoldfunction:: cv.PolarToCart(magnitude, angle, x, y, angleInDegrees=0)-> None
2351

2352
    :param magnitude: Source floating-point array of magnitudes of 2D vectors. It can be an empty matrix ( ``=Mat()`` ). In this case, the function assumes that all the magnitudes are =1. If it is not empty, it must have the same size and type as  ``angle`` .
V
Vadim Pisarevsky 已提交
2353
    
2354
    :param angle: Source floating-point array of angles of 2D vectors.
2355

2356
    :param x: Destination array of x-coordinates of 2D vectors. It has the same size and type as  ``angle``.
V
Vadim Pisarevsky 已提交
2357
    
2358
    :param y: Destination array of y-coordinates of 2D vectors. It has the same size and type as  ``angle``.
V
Vadim Pisarevsky 已提交
2359
    
2360
    :param angleInDegrees: When it is true, the input angles are measured in degrees. Otherwise. they are measured in radians.
2361

2362
The function ``polarToCart`` computes the Cartesian coordinates of each 2D vector represented by the corresponding elements of ``magnitude`` and ``angle`` :
2363 2364 2365

.. math::

V
Vadim Pisarevsky 已提交
2366
    \begin{array}{l} \texttt{x} (I) =  \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) =  \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}
2367

2368 2369 2370 2371
The relative accuracy of the estimated coordinates is about ``1e-6``.

.. seealso::

2372 2373 2374 2375 2376 2377 2378
    :ocv:func:`cartToPolar`,
    :ocv:func:`magnitude`,
    :ocv:func:`phase`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`pow`,
    :ocv:func:`sqrt`
2379

V
Vadim Pisarevsky 已提交
2380

2381

2382
pow
V
Vadim Pisarevsky 已提交
2383
---
2384
Raises every array element to a power.
V
Vadim Pisarevsky 已提交
2385

2386
.. ocv:function:: void pow(InputArray src, double p, OutputArray dst)
2387

2388 2389 2390 2391
.. ocv:pyfunction:: cv2.pow(src, power[, dst]) -> dst

.. ocv:cfunction:: void cvPow( const CvArr* src, CvArr* dst, double power)
.. ocv:pyoldfunction:: cv.Pow(src, dst, power)-> None
2392

2393
    :param src: Source array.
2394

2395
    :param p: Exponent of power.
2396

2397
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
2398 2399

The function ``pow`` raises every element of the input array to ``p`` :
2400 2401 2402

.. math::

V
Vadim Pisarevsky 已提交
2403
    \texttt{dst} (I) =  \fork{\texttt{src}(I)^p}{if \texttt{p} is integer}{|\texttt{src}(I)|^p}{otherwise}
2404

2405
So, for a non-integer power exponent, the absolute values of input array elements are used. However, it is possible to get true values for negative values using some extra operations. In the example below, computing the 5th root of array ``src``  shows: ::
2406 2407 2408 2409

    Mat mask = src < 0;
    pow(src, 1./5, dst);
    subtract(Scalar::all(0), dst, dst, mask);
2410

2411

2412
For some values of ``p`` , such as integer values, 0.5 and -0.5, specialized faster algorithms are used.
2413

2414 2415
.. seealso::

2416 2417 2418 2419 2420
    :ocv:func:`sqrt`,
    :ocv:func:`exp`,
    :ocv:func:`log`,
    :ocv:func:`cartToPolar`,
    :ocv:func:`polarToCart`
2421

V
Vadim Pisarevsky 已提交
2422 2423 2424


RNG
V
Vadim Pisarevsky 已提交
2425
---
2426

2427
.. ocv:class:: RNG
2428

2429
Random number generator. It encapsulates the state (currently, a 64-bit integer) and has methods to return scalar random values and to fill arrays with random values. Currently it supports uniform and Gaussian (normal) distributions. The generator uses Multiply-With-Carry algorithm, introduced by G. Marsaglia (
2430
http://en.wikipedia.org/wiki/Multiply-with-carry
2431
). Gaussian-distribution random numbers are generated using the Ziggurat algorithm (
2432
http://en.wikipedia.org/wiki/Ziggurat_algorithm
V
Vadim Pisarevsky 已提交
2433
), introduced by G. Marsaglia and W. W. Tsang.
2434

2435

2436

2437
RNG::RNG
2438
------------
2439 2440
The constructors

2441
.. ocv:function:: RNG::RNG()
2442

2443
.. ocv:function:: RNG::RNG(uint64 state)
2444

2445
    :param state: 64-bit value used to initialize the RNG.
2446

2447
These are the RNG constructors. The first form sets the state to some pre-defined value, equal to ``2**32-1`` in the current implementation. The second form sets the state to the specified value. If you passed ``state=0`` , the constructor uses the above default value instead to avoid the singular random number sequence, consisting of all zeros.
2448

2449

2450

2451
RNG::next
2452
-------------
2453
Returns the next random number.
2454

2455
.. ocv:function:: unsigned RNG::next()
2456

2457
The method updates the state using the MWC algorithm and returns the next 32-bit random number.
2458

2459

2460

2461
RNG::operator T
V
Vadim Pisarevsky 已提交
2462
---------------
2463
Returns the next random number of the specified type.
V
Vadim Pisarevsky 已提交
2464

2465
.. ocv:function:: RNG::operator uchar()
V
Vadim Pisarevsky 已提交
2466

2467
.. ocv:function:: RNG::operator schar()
V
Vadim Pisarevsky 已提交
2468

2469
.. ocv:function:: RNG::operator ushort()
V
Vadim Pisarevsky 已提交
2470

2471
.. ocv:function:: RNG::operator short()
V
Vadim Pisarevsky 已提交
2472

2473
.. ocv:function:: RNG::operator int()
V
Vadim Pisarevsky 已提交
2474

2475
.. ocv:function:: RNG::operator unsigned()
2476

2477
.. ocv:function:: RNG::operator float()
V
Vadim Pisarevsky 已提交
2478

2479
.. ocv:function:: RNG::operator double()
2480

2481
Each of the methods updates the state using the MWC algorithm and returns the next random number of the specified type. In case of integer types, the returned number is from the available value range for the specified type. In case of floating-point types, the returned value is from ``[0,1)`` range.
2482

2483

2484

2485
RNG::operator ()
2486
--------------------
2487 2488
Returns the next random number.

2489
.. ocv:function:: unsigned RNG::operator ()()
2490

2491
.. ocv:function:: unsigned RNG::operator ()(unsigned N)
2492

2493
    :param N: Upper non-inclusive boundary of the returned random number.
2494

2495
The methods transform the state using the MWC algorithm and return the next random number. The first form is equivalent to
2496
:ocv:func:`RNG::next` . The second form returns the random number modulo ``N`` , which means that the result is in the range ``[0, N)`` .
2497

2498

2499

2500
RNG::uniform
2501
----------------
2502 2503
Returns the next random number sampled from the uniform distribution.

2504
.. ocv:function:: int RNG::uniform(int a, int b)
2505

2506
.. ocv:function:: float RNG::uniform(float a, float b)
2507

2508
.. ocv:function:: double RNG::uniform(double a, double b)
2509

2510
    :param a: Lower inclusive boundary of the returned random numbers.
2511

2512
    :param b: Upper non-inclusive boundary of the returned random numbers.
2513

2514
The methods transform the state using the MWC algorithm and return the next uniformly-distributed random number of the specified type, deduced from the input parameter type, from the range ``[a, b)`` . There is a nuance illustrated by the following sample: ::
2515

2516
    RNG rng;
V
Vadim Pisarevsky 已提交
2517

2518
    // always produces 0
2519
    double a = rng.uniform(0, 1);
V
Vadim Pisarevsky 已提交
2520

2521
    // produces double from [0, 1)
2522
    double a1 = rng.uniform((double)0, (double)1);
V
Vadim Pisarevsky 已提交
2523

2524
    // produces float from [0, 1)
2525
    double b = rng.uniform(0.f, 1.f);
V
Vadim Pisarevsky 已提交
2526

2527
    // produces double from [0, 1)
2528
    double c = rng.uniform(0., 1.);
V
Vadim Pisarevsky 已提交
2529

2530
    // may cause compiler error because of ambiguity:
2531 2532
    //  RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)?
    double d = rng.uniform(0, 0.999999);
2533

2534

2535
The compiler does not take into account the type of the variable to which you assign the result of ``RNG::uniform`` . The only thing that matters to the compiler is the type of ``a`` and ``b`` parameters. So, if you want a floating-point random number, but the range boundaries are integer numbers, either put dots in the end, if they are constants, or use explicit type cast operators, as in the ``a1`` initialization above.
2536

2537

2538

2539
RNG::gaussian
2540
-----------------
2541
Returns the next random number sampled from the Gaussian distribution.
2542

2543
.. ocv:function:: double RNG::gaussian(double sigma)
2544

2545
    :param sigma: Standard deviation of the distribution.
2546

2547
The method transforms the state using the MWC algorithm and returns the next random number from the Gaussian distribution ``N(0,sigma)`` . That is, the mean value of the returned random numbers is zero and the standard deviation is the specified ``sigma`` .
2548

2549

2550

2551
RNG::fill
2552
-------------
2553
Fills arrays with random numbers.
2554

2555
.. ocv:function:: void RNG::fill( InputOutputArray mat, int distType, InputArray a, InputArray b )
2556

2557
    :param mat: 2D or N-dimensional matrix. Currently matrices with more than 4 channels are not supported by the methods. Use  :ocv:func:`Mat::reshape`  as a possible workaround.
2558

2559
    :param distType: Distribution type, ``RNG::UNIFORM``  or  ``RNG::NORMAL`` .
V
Vadim Pisarevsky 已提交
2560
    
2561
    :param a: First distribution parameter. In case of the uniform distribution, this is an inclusive lower boundary. In case of the normal distribution, this is a mean value.
2562

2563
    :param b: Second distribution parameter. In case of the uniform distribution, this is a non-inclusive upper boundary. In case of the normal distribution, this is a standard deviation (diagonal of the standard deviation matrix or the full standard deviation matrix).
2564

2565
Each of the methods fills the matrix with the random values from the specified distribution. As the new numbers are generated, the RNG state is updated accordingly. In case of multiple-channel images, every channel is filled independently, which means that RNG cannot generate samples from the multi-dimensional Gaussian distribution with non-diagonal covariance matrix directly. To do that, the method generates samples from multi-dimensional standard Gaussian distribution with zero mean and identity covariation matrix, and then transforms them using :ocv:func:`transform` to get samples from the specified Gaussian distribution.
2566

2567
randu
V
Vadim Pisarevsky 已提交
2568
-----
2569
Generates a single uniformly-distributed random number or an array of random numbers.
V
Vadim Pisarevsky 已提交
2570

2571
.. ocv:function:: template<typename _Tp> _Tp randu()
2572

2573
.. ocv:function:: void randu(InputOutputArray mtx, InputArray low, InputArray high)
2574

2575
.. ocv:pyfunction:: cv2.randu(dst, low, high) -> None
2576

2577
    :param mtx: Output array of random numbers. The array must be pre-allocated.
2578

2579
    :param low: Inclusive lower boundary of the generated random numbers.
2580

2581
    :param high: Exclusive upper boundary of the generated random numbers.
2582

2583
The template functions ``randu`` generate and return the next uniformly-distributed random value of the specified type. ``randu<int>()`` is an equivalent to ``(int)theRNG();`` , and so on. See
2584
:ocv:class:`RNG` description.
2585

V
Vadim Pisarevsky 已提交
2586
The second non-template variant of the function fills the matrix ``mtx`` with uniformly-distributed random numbers from the specified range:
2587 2588 2589

.. math::

V
Vadim Pisarevsky 已提交
2590
    \texttt{low} _c  \leq \texttt{mtx} (I)_c <  \texttt{high} _c
2591

2592 2593
.. seealso::

2594 2595 2596
    :ocv:class:`RNG`,
    :ocv:func:`randn`,
    :ocv:func:`theRNG` 
2597

2598 2599


2600
randn
V
Vadim Pisarevsky 已提交
2601
-----
2602
Fills the array with normally distributed random numbers.
V
Vadim Pisarevsky 已提交
2603

2604
.. ocv:function:: void randn(InputOutputArray mtx, InputArray mean, InputArray stddev)
2605

2606
.. ocv:pyfunction:: cv2.randn(dst, mean, stddev) -> None
2607

2608
    :param mtx: Output array of random numbers. The array must be pre-allocated and have 1 to 4 channels.
2609

2610
    :param mean: Mean value (expectation) of the generated random numbers.
2611

2612
    :param stddev: Standard deviation of the generated random numbers. It can be either a vector (in which case a diagonal standard deviation matrix is assumed) or a square matrix.
2613

2614
The function ``randn`` fills the matrix ``mtx`` with normally distributed random numbers with the specified mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the value range of the destination array data type.
2615

2616 2617
.. seealso::

2618 2619
    :ocv:class:`RNG`,
    :ocv:func:`randu`
2620

V
Vadim Pisarevsky 已提交
2621

2622

2623
randShuffle
V
Vadim Pisarevsky 已提交
2624
-----------
2625
Shuffles the array elements randomly.
V
Vadim Pisarevsky 已提交
2626

2627
.. ocv:function:: void randShuffle(InputOutputArray mtx, double iterFactor=1., RNG* rng=0)
2628

2629
.. ocv:pyfunction:: cv2.randShuffle(src[, dst[, iterFactor]]) -> dst
2630

2631
    :param mtx: Input/output numerical 1D array.
2632

2633
    :param iterFactor: Scale factor that determines the number of random swap operations. See the details below.
2634

2635
    :param rng: Optional random number generator used for shuffling. If it is zero, :ocv:func:`theRNG` () is used instead.
2636

2637 2638
The function ``randShuffle`` shuffles the specified 1D array by randomly choosing pairs of elements and swapping them. The number of such swap operations will be ``mtx.rows*mtx.cols*iterFactor`` .

2639 2640
.. seealso::

2641 2642
    :ocv:class:`RNG`,
    :ocv:func:`sort`
2643

V
Vadim Pisarevsky 已提交
2644

2645

2646
reduce
V
Vadim Pisarevsky 已提交
2647
------
2648
Reduces a matrix to a vector.
V
Vadim Pisarevsky 已提交
2649

2650
.. ocv:function:: void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype=-1)
2651

2652 2653 2654 2655
.. ocv:pyfunction:: cv2.reduce(src, dim, rtype[, dst[, dtype]]) -> dst

.. ocv:cfunction:: void cvReduce(const CvArr* src, CvArr* dst, int dim=-1, int op=CV_REDUCE_SUM)
.. ocv:pyoldfunction:: cv.Reduce(src, dst, dim=-1, op=CV_REDUCE_SUM)-> None
2656

2657
    :param mtx: Source 2D matrix.
2658

2659
    :param vec: Destination vector. Its size and type is defined by  ``dim``  and  ``dtype``  parameters.
2660

2661
    :param dim: Dimension index along which the matrix is reduced. 0 means that the matrix is reduced to a single row. 1 means that the matrix is reduced to a single column.
2662

2663
    :param reduceOp: Reduction operation that could be one of the following:
2664

2665
            * **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix.
2666

2667
            * **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix.
2668

2669
            * **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the matrix.
2670

2671
            * **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the matrix.
2672

2673
    :param dtype: When it is negative, the destination vector will have the same type as the source matrix. Otherwise, its type will be  ``CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels())`` .
V
Vadim Pisarevsky 已提交
2674
    
2675
The function ``reduce`` reduces the matrix to a vector by treating the matrix rows/columns as a set of 1D vectors and performing the specified operation on the vectors until a single row/column is obtained. For example, the function can be used to compute horizontal and vertical projections of a raster image. In case of ``CV_REDUCE_SUM`` and ``CV_REDUCE_AVG`` , the output may have a larger element bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction modes.
2676

2677
.. seealso:: :ocv:func:`repeat`
2678

V
Vadim Pisarevsky 已提交
2679

2680

2681
repeat
V
Vadim Pisarevsky 已提交
2682
------
2683
Fills the destination array with repeated copies of the source array.
2684

2685
.. ocv:function:: void repeat(InputArray src, int ny, int nx, OutputArray dst)
V
Vadim Pisarevsky 已提交
2686

2687
.. ocv:function:: Mat repeat(InputArray src, int ny, int nx)
2688

2689 2690 2691 2692
.. ocv:pyfunction:: cv2.repeat(src, ny, nx[, dst]) -> dst

.. ocv:cfunction:: void cvRepeat(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Repeat(src, dst)-> None
2693

2694
    :param src: Source array to replicate.
2695

2696
    :param dst: Destination array of the same type as  ``src`` .
V
Vadim Pisarevsky 已提交
2697
    
2698
    :param ny: Flag to specify how many times the  ``src``  is repeated along the vertical axis.
2699

2700
    :param nx: Flag to specify how many times the  ``src``  is repeated along the horizontal axis.
2701

V
Vadim Pisarevsky 已提交
2702
The functions
2703
:ocv:func:`repeat` duplicate the source array one or more times along each of the two axes:
2704 2705 2706

.. math::

2707
    \texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }
2708

V
Vadim Pisarevsky 已提交
2709
The second variant of the function is more convenient to use with
2710 2711
:ref:`MatrixExpressions` . 

2712
.. seealso::
2713

2714
    :ocv:func:`reduce`,
2715
    :ref:`MatrixExpressions`
2716

V
Vadim Pisarevsky 已提交
2717

2718

2719
scaleAdd
V
Vadim Pisarevsky 已提交
2720
--------
2721
Calculates the sum of a scaled array and another array.
V
Vadim Pisarevsky 已提交
2722

2723
.. ocv:function:: void scaleAdd(InputArray src1, double scale, InputArray src2, OutputArray dst)
2724

2725 2726 2727 2728
.. ocv:pyfunction:: cv2.scaleAdd(src1, alpha, src2[, dst]) -> dst

.. ocv:cfunction:: void cvScaleAdd(const CvArr* src1, CvScalar scale, const CvArr* src2, CvArr* dst)
.. ocv:pyoldfunction:: cv.ScaleAdd(src1, scale, src2, dst)-> None
2729

2730
    :param src1: First source array.
2731

2732
    :param scale: Scale factor for the first array.
2733

2734
    :param src2: Second source array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
2735
    
2736
    :param dst: Destination array of the same size and type as  ``src1`` .
V
Vadim Pisarevsky 已提交
2737 2738
    
The function ``scaleAdd`` is one of the classical primitive linear algebra operations, known as ``DAXPY`` or ``SAXPY`` in `BLAS <http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms>`_. It calculates the sum of a scaled array and another array:
2739

V
Vadim Pisarevsky 已提交
2740
.. math::
2741

V
Vadim Pisarevsky 已提交
2742
    \texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) +  \texttt{src2} (I)
2743

V
Vadim Pisarevsky 已提交
2744
The function can also be emulated with a matrix expression, for example: ::
2745 2746 2747 2748

    Mat A(3, 3, CV_64F);
    ...
    A.row(0) = A.row(1)*2 + A.row(2);
2749

2750

2751 2752
.. seealso::

2753 2754 2755 2756 2757
    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`subtract`,
    :ocv:func:`Mat::dot`,
    :ocv:func:`Mat::convertTo`,
2758 2759
    :ref:`MatrixExpressions`

V
Vadim Pisarevsky 已提交
2760

2761

2762
setIdentity
V
Vadim Pisarevsky 已提交
2763
-----------
2764
Initializes a scaled identity matrix.
V
Vadim Pisarevsky 已提交
2765

2766
.. ocv:function:: void setIdentity(InputOutputArray dst, const Scalar& value=Scalar(1))
2767

2768 2769 2770 2771
.. ocv:pyfunction:: cv2.setIdentity(mtx[, s]) -> None

.. ocv:cfunction:: void cvSetIdentity(CvArr* mat, CvScalar value=cvRealScalar(1))
.. ocv:pyoldfunction:: cv.SetIdentity(mat, value=1)-> None
2772

2773
    :param dst: Matrix to initialize (not necessarily square).
2774

2775
    :param value: Value to assign to diagonal elements.
2776

V
Vadim Pisarevsky 已提交
2777
The function
2778
:ocv:func:`setIdentity` initializes a scaled identity matrix:
2779 2780 2781

.. math::

V
Vadim Pisarevsky 已提交
2782
    \texttt{dst} (i,j)= \fork{\texttt{value}}{ if $i=j$}{0}{otherwise}
2783

V
Vadim Pisarevsky 已提交
2784
The function can also be emulated using the matrix initializers and the matrix expressions: ::
2785 2786 2787

    Mat A = Mat::eye(4, 3, CV_32F)*5;
    // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]]
2788

2789

2790 2791
.. seealso::

2792 2793
    :ocv:func:`Mat::zeros`,
    :ocv:func:`Mat::ones`,
2794
    :ref:`MatrixExpressions`,
2795 2796
    :ocv:func:`Mat::setTo`,
    :ocv:func:`Mat::operator=`
2797

V
Vadim Pisarevsky 已提交
2798

2799

2800
solve
V
Vadim Pisarevsky 已提交
2801
-----
2802
Solves one or more linear systems or least-squares problems.
V
Vadim Pisarevsky 已提交
2803

2804
.. ocv:function:: bool solve(InputArray src1, InputArray src2, OutputArray dst, int flags=DECOMP_LU)
2805

2806 2807 2808 2809
.. ocv:pyfunction:: cv2.solve(src1, src2[, dst[, flags]]) -> retval, dst

.. ocv:cfunction:: int cvSolve(const CvArr* src1, const CvArr* src2, CvArr* dst, int method=CV_LU)
.. ocv:pyoldfunction:: cv.Solve(A, B, X, method=CV_LU)-> None
2810

2811
    :param src1: Input matrix on the left-hand side of the system.
2812

2813
    :param src2: Input matrix on the right-hand side of the system.
2814

2815
    :param dst: Output solution.
2816

2817
    :param flags: Solution (matrix inversion) method.
2818

2819
            * **DECOMP_LU** Gaussian elimination with optimal pivot element chosen.
2820

2821
            * **DECOMP_CHOLESKY** Cholesky  :math:`LL^T`  factorization. The matrix  ``src1``  must be symmetrical and positively defined.
2822

2823
            * **DECOMP_EIG** Eigenvalue decomposition. The matrix  ``src1``  must be symmetrical.
2824

2825
            * **DECOMP_SVD** Singular value decomposition (SVD) method. The system can be over-defined and/or the matrix  ``src1``  can be singular.
2826

2827
            * **DECOMP_QR** QR factorization. The system can be over-defined and/or the matrix  ``src1``  can be singular.
2828

2829
            * **DECOMP_NORMAL** While all the previous flags are mutually exclusive, this flag can be used together with any of the previous. It means that the normal equations  :math:`\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}`  are solved instead of the original system  :math:`\texttt{src1}\cdot\texttt{dst}=\texttt{src2}` .
V
Vadim Pisarevsky 已提交
2830 2831
            
The function ``solve`` solves a linear system or least-squares problem (the latter is possible with SVD or QR methods, or by specifying the flag ``DECOMP_NORMAL`` ):
2832

V
Vadim Pisarevsky 已提交
2833
.. math::
2834

V
Vadim Pisarevsky 已提交
2835
    \texttt{dst} =  \arg \min _X \| \texttt{src1} \cdot \texttt{X} -  \texttt{src2} \|
2836

V
Vadim Pisarevsky 已提交
2837
If ``DECOMP_LU`` or ``DECOMP_CHOLESKY`` method is used, the function returns 1 if ``src1`` (or
2838 2839
:math:`\texttt{src1}^T\texttt{src1}` ) is non-singular. Otherwise, it returns 0. In the latter case, ``dst`` is not valid. Other methods find a pseudo-solution in case of a singular left-hand side part.

2840
.. note:: If you want to find a unity-norm solution of an under-defined singular system :math:`\texttt{src1}\cdot\texttt{dst}=0` , the function ``solve`` will not do the work. Use :ocv:func:`SVD::solveZ` instead.
2841

2842 2843
.. seealso::

2844 2845 2846
    :ocv:func:`invert`,
    :ocv:class:`SVD`,
    :ocv:func:`eigen`
2847

V
Vadim Pisarevsky 已提交
2848

2849

2850
solveCubic
2851
--------------
2852 2853
Finds the real roots of a cubic equation.

2854
.. ocv:function:: void solveCubic(InputArray coeffs, OutputArray roots)
2855

2856 2857 2858 2859
.. ocv:pyfunction:: cv2.solveCubic(coeffs[, roots]) -> retval, roots

.. ocv:cfunction:: void cvSolveCubic(const CvArr* coeffs, CvArr* roots)
.. ocv:pyoldfunction:: cv.SolveCubic(coeffs, roots)-> None
2860

2861
    :param coeffs: Equation coefficients, an array of 3 or 4 elements.
2862

2863
    :param roots: Destination array of real roots that has 1 or 3 elements.
2864

V
Vadim Pisarevsky 已提交
2865
The function ``solveCubic`` finds the real roots of a cubic equation:
2866

2867
* if ``coeffs`` is a 4-element vector:
2868 2869 2870

.. math::

V
Vadim Pisarevsky 已提交
2871
    \texttt{coeffs} [0] x^3 +  \texttt{coeffs} [1] x^2 +  \texttt{coeffs} [2] x +  \texttt{coeffs} [3] = 0
2872

2873
* if ``coeffs`` is a 3-element vector:
2874 2875 2876

.. math::

V
Vadim Pisarevsky 已提交
2877
    x^3 +  \texttt{coeffs} [0] x^2 +  \texttt{coeffs} [1] x +  \texttt{coeffs} [2] = 0
2878

2879
The roots are stored in the ``roots`` array.
2880

2881

2882

2883
solvePoly
V
Vadim Pisarevsky 已提交
2884
---------
2885
Finds the real or complex roots of a polynomial equation.
V
Vadim Pisarevsky 已提交
2886

2887
.. ocv:function:: void solvePoly(InputArray coeffs, OutputArray roots, int maxIters=300)
2888

2889
.. ocv:pyfunction:: cv2.solvePoly(coeffs[, roots[, maxIters]]) -> retval, roots
2890

2891
    :param coeffs: Array of polynomial coefficients.
2892

2893
    :param roots: Destination (complex) array of roots.
2894

2895
    :param maxIters: Maximum number of iterations the algorithm does.
2896

V
Vadim Pisarevsky 已提交
2897
The function ``solvePoly`` finds real and complex roots of a polynomial equation:
2898 2899 2900

.. math::

2901
    \texttt{coeffs} [n] x^{n} +  \texttt{coeffs} [n-1] x^{n-1} + ... +  \texttt{coeffs} [1] x +  \texttt{coeffs} [0] = 0
2902

2903

2904

2905
sort
V
Vadim Pisarevsky 已提交
2906
----
2907
Sorts each row or each column of a matrix.
V
Vadim Pisarevsky 已提交
2908

2909
.. ocv:function:: void sort(InputArray src, OutputArray dst, int flags)
2910

2911
.. ocv:pyfunction:: cv2.sort(src, flags[, dst]) -> dst
2912

2913
    :param src: Source single-channel array.
2914

2915
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
2916
    
2917
    :param flags: Operation flags, a combination of the following values:
2918

2919
            * **CV_SORT_EVERY_ROW** Each matrix row is sorted independently.
2920

2921
            * **CV_SORT_EVERY_COLUMN** Each matrix column is sorted independently. This flag and the previous one are mutually exclusive.
2922

2923
            * **CV_SORT_ASCENDING** Each matrix row is sorted in the ascending order.
2924

2925
            * **CV_SORT_DESCENDING** Each matrix row is sorted in the descending order. This flag and the previous one are also mutually exclusive.
2926

2927
The function ``sort`` sorts each matrix row or each matrix column in ascending or descending order. So you should pass two operation flags to get desired behaviour. If you want to sort matrix rows or columns lexicographically, you can use STL ``std::sort`` generic function with the proper comparison predicate.
2928

2929 2930
.. seealso::

2931 2932
    :ocv:func:`sortIdx`,
    :ocv:func:`randShuffle`
2933

V
Vadim Pisarevsky 已提交
2934

2935

2936
sortIdx
V
Vadim Pisarevsky 已提交
2937
-------
2938
Sorts each row or each column of a matrix.
V
Vadim Pisarevsky 已提交
2939

2940
.. ocv:function:: void sortIdx(InputArray src, OutputArray dst, int flags)
2941

2942
.. ocv:pyfunction:: cv2.sortIdx(src, flags[, dst]) -> dst
2943

2944
    :param src: Source single-channel array.
2945

2946
    :param dst: Destination integer array of the same size as  ``src`` .
V
Vadim Pisarevsky 已提交
2947
    
2948
    :param flags: Operation flags that could be a combination of the following values:
2949

2950
            * **CV_SORT_EVERY_ROW** Each matrix row is sorted independently.
2951

2952
            * **CV_SORT_EVERY_COLUMN** Each matrix column is sorted independently. This flag and the previous one are mutually exclusive.
2953

2954
            * **CV_SORT_ASCENDING** Each matrix row is sorted in the ascending order.
2955

2956
            * **CV_SORT_DESCENDING** Each matrix row is sorted in the descending order. This flag and the previous one are also mutually exclusive.
2957

2958
The function ``sortIdx`` sorts each matrix row or each matrix column in the ascending or descending order. So you should pass two operation flags to get desired behaviour. Instead of reordering the elements themselves, it stores the indices of sorted elements in the destination array. For example: ::
2959 2960 2961 2962 2963 2964

    Mat A = Mat::eye(3,3,CV_32F), B;
    sortIdx(A, B, CV_SORT_EVERY_ROW + CV_SORT_ASCENDING);
    // B will probably contain
    // (because of equal elements in A some permutations are possible):
    // [[1, 2, 0], [0, 2, 1], [0, 1, 2]]
2965

2966

2967 2968
.. seealso::

2969 2970
    :ocv:func:`sort`,
    :ocv:func:`randShuffle`
2971

V
Vadim Pisarevsky 已提交
2972

2973

2974
split
V
Vadim Pisarevsky 已提交
2975
-----
2976
Divides a multi-channel array into several single-channel arrays.
2977

2978
.. ocv:function:: void split(const Mat& mtx, Mat* mv)
2979

2980
.. ocv:function:: void split(const Mat& mtx, vector<Mat>& mv)
2981

2982 2983 2984 2985
.. ocv:pyfunction:: cv2.split(m, mv) -> None

.. ocv:cfunction:: void cvSplit(const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3)
.. ocv:pyoldfunction:: cv.Split(src, dst0, dst1, dst2, dst3)-> None
2986

2987
    :param mtx: Source multi-channel array.
2988

2989
    :param mv: Destination array or vector of arrays. In the first variant of the function the number of arrays must match  ``mtx.channels()`` . The arrays themselves are reallocated, if needed.
2990

2991
The functions ``split`` split a multi-channel array into separate single-channel arrays:
2992 2993 2994

.. math::

V
Vadim Pisarevsky 已提交
2995
    \texttt{mv} [c](I) =  \texttt{mtx} (I)_c
2996

2997
If you need to extract a single channel or do some other sophisticated channel permutation, use
2998
:ocv:func:`mixChannels` .
2999

3000 3001
.. seealso::

3002 3003 3004
    :ocv:func:`merge`,
    :ocv:func:`mixChannels`,
    :ocv:func:`cvtColor`
3005

V
Vadim Pisarevsky 已提交
3006

3007

3008
sqrt
V
Vadim Pisarevsky 已提交
3009
----
3010
Calculates a quare root of array elements.
V
Vadim Pisarevsky 已提交
3011

3012
.. ocv:function:: void sqrt(InputArray src, OutputArray dst)
3013

3014 3015 3016 3017
.. ocv:pyfunction:: cv2.sqrt(src[, dst]) -> dst

.. ocv:cfunction:: float cvSqrt(float value)
.. ocv:pyoldfunction:: cv.Sqrt(value)-> float
3018

3019
    :param src: Source floating-point array.
3020

3021
    :param dst: Destination array of the same size and type as  ``src`` .
V
Vadim Pisarevsky 已提交
3022
    
3023
The functions ``sqrt`` calculate a square root of each source array element. In case of multi-channel arrays, each channel is processed independently. The accuracy is approximately the same as of the built-in ``std::sqrt`` .
3024

3025 3026
.. seealso::

3027 3028
    :ocv:func:`pow`,
    :ocv:func:`magnitude`
3029

V
Vadim Pisarevsky 已提交
3030

3031

3032
subtract
V
Vadim Pisarevsky 已提交
3033
--------
3034
Calculates the per-element difference between two arrays or array and a scalar.
3035

3036
.. ocv:function:: void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
3037

3038 3039 3040 3041 3042 3043 3044 3045 3046
.. ocv:pyfunction:: cv2.subtract(src1, src2[, dst[, mask[, dtype]]]) -> dst

.. ocv:cfunction:: void cvSub(const CvArr* src1, const CvArr* src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvSubRS(const CvArr* src1, CvScalar src2, CvArr* dst, const CvArr* mask=NULL)
.. ocv:cfunction:: void cvSubS(const CvArr* src1, CvScalar src2, CvArr* dst, const CvArr* mask=NULL)

.. ocv:pyoldfunction:: cv.Sub(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.SubRS(src1, src2, dst, mask=None)-> None
.. ocv:pyoldfunction:: cv.SubS(src1, src2, dst, mask=None)-> None
3047

3048
    :param src1: First source array or a scalar.
3049

3050
    :param src2: Second source array or a scalar.
V
Vadim Pisarevsky 已提交
3051
    
3052
    :param dst: Destination array of the same size and the same number of channels as the input array.   
V
Vadim Pisarevsky 已提交
3053
    
3054
    :param mask: Optional operation mask. This is an 8-bit single channel array that specifies elements of the destination array to be changed.
3055
    
3056
    :param dtype: Optional depth of the output array. See the details below.
3057

3058
The function ``subtract`` computes:
3059

3060 3061
 *
    Difference between two arrays, when both input arrays have the same size and the same number of channels:
V
Vadim Pisarevsky 已提交
3062

3063
    .. math::
V
Vadim Pisarevsky 已提交
3064

3065
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0
3066

3067 3068
 *
    Difference between an array and a scalar, when ``src2`` is constructed from ``Scalar`` or has the same number of elements as ``src1.channels()``:
V
Vadim Pisarevsky 已提交
3069

3070
    .. math::
V
Vadim Pisarevsky 已提交
3071

3072
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1}(I) -  \texttt{src2} ) \quad \texttt{if mask}(I) \ne0
3073

3074 3075
 *
    Difference between a scalar and an array, when ``src1`` is constructed from ``Scalar`` or has the same number of elements as ``src2.channels()``:
3076

V
Vadim Pisarevsky 已提交
3077
    .. math::
3078

3079
        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src1} -  \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0
3080 3081 3082 3083 3084 3085 3086
        
 *
    The reverse difference between a scalar and an array in the case of ``SubRS``:
    
    .. math::

        \texttt{dst}(I) =  \texttt{saturate} ( \texttt{src2} -  \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0
3087

3088
where ``I`` is a multi-dimensional index of array elements. In case of multi-channel arrays, each channel is processed independently.
3089

3090
The first function in the list above can be replaced with matrix expressions: ::
3091 3092

    dst = src1 - src2;
3093
    dst -= src1; // equivalent to subtract(dst, src1, dst);
3094

3095
The input arrays and the destination array can all have the same or different depths. For example, you can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of the output array is determined by ``dtype`` parameter. In the second and third cases above, as well as in the first case, when ``src1.depth() == src2.depth()``, ``dtype`` can be set to the default ``-1``. In this case the output array will have the same depth as the input array, be it ``src1``, ``src2`` or both.
3096

3097 3098
.. seealso::

3099 3100 3101
    :ocv:func:`add`,
    :ocv:func:`addWeighted`,
    :ocv:func:`scaleAdd`,
3102
    :ocv:func:`Mat::convertTo`,
3103 3104
    :ref:`MatrixExpressions`

3105 3106 3107 3108


SVD
---
3109
.. ocv:class:: SVD
3110

3111
Class for computing Singular Value Decomposition of a floating-point matrix. The Singular Value Decomposition is used to solve least-square problems, under-determined linear systems, invert matrices, compute condition numbers, and so on.
3112

3113
For a faster operation, you can pass ``flags=SVD::MODIFY_A|...`` to modify the decomposed matrix when it is not necessary to preserve it. If you want to compute a condition number of a matrix or an absolute value of its determinant, you do not need ``u`` and ``vt`` . You can pass ``flags=SVD::NO_UV|...`` . Another flag ``FULL_UV`` indicates that full-size ``u`` and ``vt`` must be computed, which is not necessary most of the time.
3114

3115 3116
.. seealso::

3117 3118 3119 3120
    :ocv:func:`invert`,
    :ocv:func:`solve`,
    :ocv:func:`eigen`,
    :ocv:func:`determinant`
3121

V
Vadim Pisarevsky 已提交
3122

3123

3124
SVD::SVD
V
Vadim Pisarevsky 已提交
3125
--------
3126
The constructors.
V
Vadim Pisarevsky 已提交
3127

3128
.. ocv:function:: SVD::SVD()
3129

3130
.. ocv:function:: SVD::SVD( InputArray A, int flags=0 )
3131

3132
    :param src: Decomposed matrix.
3133

3134
    :param flags: Operation flags.
3135

3136
        * **SVD::MODIFY_A** Use the algorithm to modify the decomposed matrix. It can save space and speed up processing.
3137

3138
        * **SVD::NO_UV** Indicate that only a vector of singular values  ``w``  is to be computed, while  ``u``  and  ``vt``  will be set to empty matrices.
3139

V
Vadim Pisarevsky 已提交
3140
        * **SVD::FULL_UV** When the matrix is not square, by default the algorithm produces  ``u``  and  ``vt``  matrices of sufficiently large size for the further  ``A``  reconstruction. If, however, ``FULL_UV``  flag is specified, ``u``  and  ``vt``  will be full-size square orthogonal matrices.
3141

3142
The first constructor initializes an empty ``SVD`` structure. The second constructor initializes an empty ``SVD`` structure and then calls
3143
:ocv:funcx:`SVD::operator()` .
3144

3145

3146
SVD::operator ()
V
Vadim Pisarevsky 已提交
3147
----------------
3148
Performs SVD of a matrix.
V
Vadim Pisarevsky 已提交
3149

3150
.. ocv:function:: SVD& SVD::operator()( InputArray src, int flags=0 )
3151

3152
    :param src: Decomposed matrix.
3153

3154
    :param flags: Operation flags.
3155

3156
        * **SVD::MODIFY_A** Use the algorithm to modify the decomposed matrix. It can save space and speed up processing.
3157

3158
        * **SVD::NO_UV** Use only singular values. The algorithm does not compute  ``u``  and  ``vt``  matrices.
3159

3160
        * **SVD::FULL_UV** When the matrix is not square, by default the algorithm produces  ``u``  and  ``vt``  matrices of sufficiently large size for the further  ``A``  reconstruction. If, however, the ``FULL_UV``  flag is specified, ``u``  and  ``vt``  are full-size square orthogonal matrices.
3161

3162
The operator performs the singular value decomposition of the supplied matrix. The ``u``,``vt`` , and the vector of singular values ``w`` are stored in the structure. The same ``SVD`` structure can be reused many times with different matrices. Each time, if needed, the previous ``u``,``vt`` , and ``w`` are reclaimed and the new matrices are created, which is all handled by
3163
:ocv:func:`Mat::create` .
3164

3165

3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
SVD::compute
------------
Performs SVD of a matrix

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 )

.. ocv:function:: static void SVD::compute( InputArray src, OutputArray w, int flags=0 )

.. ocv:pyfunction:: cv2.SVDecomp(src[, w[, u[, vt[, flags]]]]) -> w, u, vt

.. ocv:cfunction:: void cvSVD( CvArr* src, CvArr* w, CvArr* u=NULL, CvArr* v=NULL, int flags=0)

.. ocv:pyoldfunction:: cv.SVD(src, w, u=None, v=None, flags=0)-> None

    :param src: Decomposed matrix
    
    :param w: Computed singular values
    
    :param u: Computed left singular vectors
    
    :param v: Computed right singular vectors
    
    :param vt: Transposed matrix of right singular values
    
    :param flags: Opertion flags - see :ocv:func:`SVD::SVD`.

3192
The methods/functions perform SVD of matrix. Unlike ``SVD::SVD`` constructor and ``SVD::operator()``, they store the results to the user-provided matrices. ::
3193 3194 3195 3196

    Mat A, w, u, vt;
    SVD::compute(A, w, u, vt);
    
3197

3198
SVD::solveZ
V
Vadim Pisarevsky 已提交
3199
-----------
3200
Solves an under-determined singular linear system.
V
Vadim Pisarevsky 已提交
3201

3202
.. ocv:function:: static void SVD::solveZ( InputArray src, OutputArray dst )
3203

3204
    :param src: Left-hand-side matrix.
3205

3206
    :param dst: Found solution.
3207

3208 3209
The method finds a unit-length solution ``x`` of a singular linear system 
``A*x = 0``. Depending on the rank of ``A``, there can be no solutions, a single solution or an infinite number of solutions. In general, the algorithm solves the following problem:
3210 3211 3212

.. math::

3213
    dst =  \arg \min _{x:  \| x \| =1}  \| src  \cdot x  \|
3214

3215

3216
SVD::backSubst
V
Vadim Pisarevsky 已提交
3217
--------------
3218 3219 3220 3221 3222 3223 3224
Performs a singular value back substitution.

.. ocv:function:: void SVD::backSubst( InputArray rhs, OutputArray dst ) const

.. ocv:function:: static void SVD::backSubst( InputArray w, InputArray u, InputArray vt, InputArray rhs, OutputArray dst )

.. ocv:pyfunction:: cv2.SVBackSubst(w, u, vt, rhs[, dst]) -> dst
V
Vadim Pisarevsky 已提交
3225

3226
.. ocv:cfunction:: void cvSVBkSb( const CvArr* w, const CvArr* u, const CvArr* v, const CvArr* rhs, CvArr* dst, int flags)
3227

3228
.. ocv:pyoldfunction:: cv.SVBkSb(w, u, v, rhs, dst, flags)-> None
3229

3230
    :param w: Singular values
V
Vadim Pisarevsky 已提交
3231
    
3232 3233 3234 3235 3236 3237 3238 3239 3240
    :param u: Left singular vectors
    
    :param v: Right singular vectors
    
    :param vt: Transposed matrix of right singular vectors.

    :param rhs: Right-hand side of a linear system ``(u*w*v')*dst = rhs`` to be solved, where ``A`` has been previously decomposed.
    
    :param dst: Found solution of the system.
3241

3242
The method computes a back substitution for the specified right-hand side:
3243 3244 3245

.. math::

V
Vadim Pisarevsky 已提交
3246
    \texttt{x} =  \texttt{vt} ^T  \cdot diag( \texttt{w} )^{-1}  \cdot \texttt{u} ^T  \cdot \texttt{rhs} \sim \texttt{A} ^{-1}  \cdot \texttt{rhs}
3247

3248 3249
Using this technique you can either get a very accurate solution of the convenient linear system, or the best (in the least-squares terms) pseudo-solution of an overdetermined linear system. 

3250
.. note:: Explicit SVD with the further back substitution only makes sense if you need to solve many linear systems with the same left-hand side (for example, ``src`` ). If all you need is to solve a single system (possibly with multiple ``rhs`` immediately available), simply call :ocv:func:`solve` add pass ``DECOMP_SVD`` there. It does absolutely the same thing.
3251

3252 3253


3254
sum
V
Vadim Pisarevsky 已提交
3255
---
3256 3257 3258
Calculates the sum of array elements.

.. ocv:function:: Scalar sum(InputArray arr)
3259

3260
.. ocv:pyfunction:: cv2.sumElems(arr) -> retval
3261

3262 3263
.. ocv:cfunction:: CvScalar cvSum(const CvArr* arr)
.. ocv:pyoldfunction:: cv.Sum(arr)-> CvScalar
3264

3265
    :param arr: Source array that must have from 1 to 4 channels.
3266

V
Vadim Pisarevsky 已提交
3267
The functions ``sum`` calculate and return the sum of array elements, independently for each channel.
3268

3269 3270
.. seealso::

3271 3272 3273 3274 3275 3276
    :ocv:func:`countNonZero`,
    :ocv:func:`mean`,
    :ocv:func:`meanStdDev`,
    :ocv:func:`norm`,
    :ocv:func:`minMaxLoc`,
    :ocv:func:`reduce`
3277

V
Vadim Pisarevsky 已提交
3278

3279

3280
theRNG
V
Vadim Pisarevsky 已提交
3281
------
3282
Returns the default random number generator.
V
Vadim Pisarevsky 已提交
3283

3284
.. ocv:function:: RNG& theRNG()
3285

3286
The function ``theRNG`` returns the default random number generator. For each thread, there is a separate random number generator, so you can use the function safely in multi-thread environments. If you just need to get a single random number using this generator or initialize an array, you can use
3287 3288
:ocv:func:`randu` or
:ocv:func:`randn` instead. But if you are going to generate many random numbers inside a loop, it is much faster to use this function to retrieve the generator and then use ``RNG::operator _Tp()`` .
3289

3290 3291
.. seealso::

3292 3293 3294
    :ocv:class:`RNG`,
    :ocv:func:`randu`,
    :ocv:func:`randn`
3295

V
Vadim Pisarevsky 已提交
3296

3297

3298
trace
V
Vadim Pisarevsky 已提交
3299
-----
3300 3301 3302
Returns the trace of a matrix.

.. ocv:function:: Scalar trace(InputArray mat)
V
Vadim Pisarevsky 已提交
3303

3304
.. ocv:pyfunction:: cv2.trace(mat) -> retval
3305

3306 3307
.. ocv:cfunction:: CvScalar cvTrace(const CvArr* mat)
.. ocv:pyoldfunction:: cv.Trace(mat)-> CvScalar
3308

3309
    :param mtx: Source matrix.
3310

V
Vadim Pisarevsky 已提交
3311
The function ``trace`` returns the sum of the diagonal elements of the matrix ``mtx`` .
3312 3313 3314

.. math::

V
Vadim Pisarevsky 已提交
3315
    \mathrm{tr} ( \texttt{mtx} ) =  \sum _i  \texttt{mtx} (i,i)
3316

3317

3318

3319
transform
V
Vadim Pisarevsky 已提交
3320
---------
3321
Performs the matrix transformation of every array element.
V
Vadim Pisarevsky 已提交
3322

3323
.. ocv:function:: void transform(InputArray src, OutputArray dst, InputArray mtx )
3324

3325 3326 3327 3328
.. ocv:pyfunction:: cv2.transform(src, mtx [, dst]) -> dst

.. ocv:cfunction:: void cvTransform(const CvArr* src, CvArr* dst, const CvMat* mtx, const CvMat* shiftvec=NULL)
.. ocv:pyoldfunction:: cv.Transform(src, dst, mtx, shiftvec=None)-> None
3329

3330
    :param src: Source array that must have as many channels (1 to 4) as  ``mtx.cols``  or  ``mtx.cols-1``.
V
Vadim Pisarevsky 已提交
3331
    
3332
    :param dst: Destination array of the same size and depth as  ``src`` . It has as many channels as  ``mtx.rows``  .   
V
Vadim Pisarevsky 已提交
3333
    
3334 3335 3336
    :param mtx: Transformation ``2x2`` or ``2x3`` floating-point matrix.
    
    :param shiftvec: Optional translation vector (when ``mtx`` is ``2x2``)
3337

3338
The function ``transform`` performs the matrix transformation of every element of the array ``src`` and stores the results in ``dst`` :
3339 3340 3341

.. math::

V
Vadim Pisarevsky 已提交
3342
    \texttt{dst} (I) =  \texttt{mtx} \cdot \texttt{src} (I)
3343

V
Vadim Pisarevsky 已提交
3344
(when ``mtx.cols=src.channels()`` ), or
3345

V
Vadim Pisarevsky 已提交
3346
.. math::
3347

V
Vadim Pisarevsky 已提交
3348
    \texttt{dst} (I) =  \texttt{mtx} \cdot [ \texttt{src} (I); 1]
3349

V
Vadim Pisarevsky 已提交
3350
(when ``mtx.cols=src.channels()+1`` )
3351

3352
Every element of the ``N`` -channel array ``src`` is interpreted as ``N`` -element vector that is transformed using
3353
the ``M x N`` or ``M x (N+1)`` matrix ``mtx``
3354
to ``M``-element vector - the corresponding element of the destination array ``dst`` .
3355

V
Vadim Pisarevsky 已提交
3356
The function may be used for geometrical transformation of
3357 3358 3359 3360 3361
``N`` -dimensional
points, arbitrary linear color space transformation (such as various kinds of RGB to YUV transforms), shuffling the image channels, and so forth.

.. seealso::

3362 3363 3364 3365 3366
    :ocv:func:`perspectiveTransform`,
    :ocv:func:`getAffineTransform`,
    :ocv:func:`estimateRigidTransform`,
    :ocv:func:`warpAffine`,
    :ocv:func:`warpPerspective`
3367

V
Vadim Pisarevsky 已提交
3368

3369

3370
transpose
V
Vadim Pisarevsky 已提交
3371
---------
3372
Transposes a matrix.
V
Vadim Pisarevsky 已提交
3373

3374
.. ocv:function:: void transpose(InputArray src, OutputArray dst)
3375

3376 3377 3378 3379
.. ocv:pyfunction:: cv2.transpose(src[, dst]) -> dst

.. ocv:cfunction:: void cvTranspose(const CvArr* src, CvArr* dst)
.. ocv:pyoldfunction:: cv.Transpose(src, dst)-> None
3380

3381
    :param src: Source array.
3382

3383
    :param dst: Destination array of the same type as  ``src`` .
V
Vadim Pisarevsky 已提交
3384
    
3385
The function :ocv:func:`transpose` transposes the matrix ``src`` :
3386 3387 3388

.. math::

V
Vadim Pisarevsky 已提交
3389
    \texttt{dst} (i,j) =  \texttt{src} (j,i)
3390

3391
.. note:: No complex conjugation is done in case of a complex matrix. It it should be done separately if needed.