arithm.cpp 113.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
45
//  Arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ...
46 47 48 49 50 51 52 53
//
// */

#include "precomp.hpp"

namespace cv
{

54 55 56 57 58
#if ARITHM_USE_IPP
struct IPPArithmInitializer
{
    IPPArithmInitializer(void)
    {
59
        ippStaticInit();
60 61
    }
};
62

63 64
IPPArithmInitializer ippArithmInitializer;
#endif
65

66
struct NOP {};
67

68 69 70 71 72 73 74 75 76 77 78 79 80
#if CV_SSE2

#define FUNCTOR_TEMPLATE(name)          \
    template<typename T> struct name {}

FUNCTOR_TEMPLATE(VLoadStore128);
FUNCTOR_TEMPLATE(VLoadStore64);
FUNCTOR_TEMPLATE(VLoadStore128Aligned);

#endif

template<typename T, class Op, class VOp>
void vBinOp(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz)
81
{
82
#if CV_SSE2
83
    VOp vop;
84
#endif
85
    Op op;
86

87 88 89
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
                        src2 += step2/sizeof(src2[0]),
                        dst += step/sizeof(dst[0]) )
90 91
    {
        int x = 0;
92

93
#if CV_SSE2
94
        if( USE_SSE2 )
95
        {
96
            for( ; x <= sz.width - 32/(int)sizeof(T); x += 32/sizeof(T) )
97
            {
98 99 100 101 102 103
                typename VLoadStore128<T>::reg_type r0 = VLoadStore128<T>::load(src1 + x               );
                typename VLoadStore128<T>::reg_type r1 = VLoadStore128<T>::load(src1 + x + 16/sizeof(T));
                r0 = vop(r0, VLoadStore128<T>::load(src2 + x               ));
                r1 = vop(r1, VLoadStore128<T>::load(src2 + x + 16/sizeof(T)));
                VLoadStore128<T>::store(dst + x               , r0);
                VLoadStore128<T>::store(dst + x + 16/sizeof(T), r1);
104
            }
105
        }
V
Victoria Zhislina 已提交
106
#endif
107
#if CV_SSE2
108
        if( USE_SSE2 )
109
        {
110
            for( ; x <= sz.width - 8/(int)sizeof(T); x += 8/sizeof(T) )
111
            {
112 113 114
                typename VLoadStore64<T>::reg_type r = VLoadStore64<T>::load(src1 + x);
                r = vop(r, VLoadStore64<T>::load(src2 + x));
                VLoadStore64<T>::store(dst + x, r);
115
            }
116
        }
117 118
#endif
#if CV_ENABLE_UNROLLED
119
        for( ; x <= sz.width - 4; x += 4 )
120
        {
121 122 123 124 125 126
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
127
        }
128
#endif
129

130 131
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
132
    }
133
}
134

135 136 137
template<typename T, class Op, class Op32>
void vBinOp32(const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size sz)
138
{
139
#if CV_SSE2
140
    Op32 op32;
141
#endif
142
    Op op;
143

144 145 146
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
147 148
    {
        int x = 0;
149

150 151 152 153
#if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
154
            {
155 156
                for( ; x <= sz.width - 8; x += 8 )
                {
157 158 159 160 161 162
                    typename VLoadStore128Aligned<T>::reg_type r0 = VLoadStore128Aligned<T>::load(src1 + x    );
                    typename VLoadStore128Aligned<T>::reg_type r1 = VLoadStore128Aligned<T>::load(src1 + x + 4);
                    r0 = op32(r0, VLoadStore128Aligned<T>::load(src2 + x    ));
                    r1 = op32(r1, VLoadStore128Aligned<T>::load(src2 + x + 4));
                    VLoadStore128Aligned<T>::store(dst + x    , r0);
                    VLoadStore128Aligned<T>::store(dst + x + 4, r1);
163
                }
164
            }
165 166
        }
#endif
167
#if CV_SSE2
168 169
        if( USE_SSE2 )
        {
170 171 172 173 174 175 176 177 178
            for( ; x <= sz.width - 8; x += 8 )
            {
                typename VLoadStore128<T>::reg_type r0 = VLoadStore128<T>::load(src1 + x    );
                typename VLoadStore128<T>::reg_type r1 = VLoadStore128<T>::load(src1 + x + 4);
                r0 = op32(r0, VLoadStore128<T>::load(src2 + x    ));
                r1 = op32(r1, VLoadStore128<T>::load(src2 + x + 4));
                VLoadStore128<T>::store(dst + x    , r0);
                VLoadStore128<T>::store(dst + x + 4, r1);
            }
179
        }
180
#endif
V
Victoria Zhislina 已提交
181
#if CV_ENABLE_UNROLLED
182 183
        for( ; x <= sz.width - 4; x += 4 )
        {
184 185
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
186 187 188 189 190
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
V
Victoria Zhislina 已提交
191
#endif
192

193 194 195 196 197
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

198 199

template<typename T, class Op, class Op64>
200 201
void vBinOp64(const T* src1, size_t step1, const T* src2, size_t step2,
               T* dst, size_t step, Size sz)
202
{
203
#if CV_SSE2
204
    Op64 op64;
205
#endif
206
    Op op;
207

208 209 210 211 212
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
213

214 215 216 217
#if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
218
            {
219 220 221 222 223 224 225 226 227
                for( ; x <= sz.width - 4; x += 4 )
                {
                    typename VLoadStore128Aligned<T>::reg_type r0 = VLoadStore128Aligned<T>::load(src1 + x    );
                    typename VLoadStore128Aligned<T>::reg_type r1 = VLoadStore128Aligned<T>::load(src1 + x + 2);
                    r0 = op64(r0, VLoadStore128Aligned<T>::load(src2 + x    ));
                    r1 = op64(r1, VLoadStore128Aligned<T>::load(src2 + x + 2));
                    VLoadStore128Aligned<T>::store(dst + x    , r0);
                    VLoadStore128Aligned<T>::store(dst + x + 2, r1);
                }
228
            }
229 230 231
        }
#endif

232 233
        for( ; x <= sz.width - 4; x += 4 )
        {
234 235
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
236 237 238 239 240
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
241

242 243
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
244
    }
245
}
246

247
#if CV_SSE2
248

249 250 251 252 253 254
#define FUNCTOR_LOADSTORE_CAST(name, template_arg, register_type, load_body, store_body)\
    template <>                                                                                  \
    struct name<template_arg>{                                                                   \
        typedef register_type reg_type;                                                          \
        static reg_type load(const template_arg * p) { return load_body ((const reg_type *)p);}; \
        static void store(template_arg * p, reg_type v) { store_body ((reg_type *)p, v);};       \
255
    }
256 257 258 259 260 261 262

#define FUNCTOR_LOADSTORE(name, template_arg, register_type, load_body, store_body)\
    template <>                                                                \
    struct name<template_arg>{                                                 \
        typedef register_type reg_type;                                        \
        static reg_type load(const template_arg * p) { return load_body (p);}; \
        static void store(template_arg * p, reg_type v) { store_body (p, v);}; \
263 264
    }

265 266 267 268 269 270 271 272 273 274 275
#define FUNCTOR_CLOSURE_2arg(name, template_arg, body)\
    template<>                                                                 \
    struct name<template_arg>                                                  \
    {                                                                          \
        VLoadStore128<template_arg>::reg_type operator()(                      \
                        const VLoadStore128<template_arg>::reg_type & a,       \
                        const VLoadStore128<template_arg>::reg_type & b) const \
        {                                                                      \
            body;                                                              \
        }                                                                      \
    }
276

277 278 279 280 281 282 283 284 285 286
#define FUNCTOR_CLOSURE_1arg(name, template_arg, body)\
    template<>                                                                 \
    struct name<template_arg>                                                  \
    {                                                                          \
        VLoadStore128<template_arg>::reg_type operator()(                      \
                        const VLoadStore128<template_arg>::reg_type & a,       \
                        const VLoadStore128<template_arg>::reg_type &  ) const \
        {                                                                      \
            body;                                                              \
        }                                                                      \
287
    }
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
FUNCTOR_LOADSTORE_CAST(VLoadStore128,  uchar, __m128i, _mm_loadu_si128, _mm_storeu_si128);
FUNCTOR_LOADSTORE_CAST(VLoadStore128,  schar, __m128i, _mm_loadu_si128, _mm_storeu_si128);
FUNCTOR_LOADSTORE_CAST(VLoadStore128, ushort, __m128i, _mm_loadu_si128, _mm_storeu_si128);
FUNCTOR_LOADSTORE_CAST(VLoadStore128,  short, __m128i, _mm_loadu_si128, _mm_storeu_si128);
FUNCTOR_LOADSTORE_CAST(VLoadStore128,    int, __m128i, _mm_loadu_si128, _mm_storeu_si128);
FUNCTOR_LOADSTORE(     VLoadStore128,  float, __m128 , _mm_loadu_ps   , _mm_storeu_ps   );
FUNCTOR_LOADSTORE(     VLoadStore128, double, __m128d, _mm_loadu_pd   , _mm_storeu_pd   );

FUNCTOR_LOADSTORE_CAST(VLoadStore64,  uchar, __m128i, _mm_loadl_epi64, _mm_storel_epi64);
FUNCTOR_LOADSTORE_CAST(VLoadStore64,  schar, __m128i, _mm_loadl_epi64, _mm_storel_epi64);
FUNCTOR_LOADSTORE_CAST(VLoadStore64, ushort, __m128i, _mm_loadl_epi64, _mm_storel_epi64);
FUNCTOR_LOADSTORE_CAST(VLoadStore64,  short, __m128i, _mm_loadl_epi64, _mm_storel_epi64);

FUNCTOR_LOADSTORE_CAST(VLoadStore128Aligned,    int, __m128i, _mm_load_si128, _mm_store_si128);
FUNCTOR_LOADSTORE(     VLoadStore128Aligned,  float, __m128 , _mm_load_ps   , _mm_store_ps   );
FUNCTOR_LOADSTORE(     VLoadStore128Aligned, double, __m128d, _mm_load_pd   , _mm_store_pd   );

FUNCTOR_TEMPLATE(VAdd);
FUNCTOR_CLOSURE_2arg(VAdd,  uchar, return _mm_adds_epu8 (a, b));
FUNCTOR_CLOSURE_2arg(VAdd,  schar, return _mm_adds_epi8 (a, b));
FUNCTOR_CLOSURE_2arg(VAdd, ushort, return _mm_adds_epu16(a, b));
FUNCTOR_CLOSURE_2arg(VAdd,  short, return _mm_adds_epi16(a, b));
FUNCTOR_CLOSURE_2arg(VAdd,    int, return _mm_add_epi32 (a, b));
FUNCTOR_CLOSURE_2arg(VAdd,  float, return _mm_add_ps    (a, b));
FUNCTOR_CLOSURE_2arg(VAdd, double, return _mm_add_pd    (a, b));

FUNCTOR_TEMPLATE(VSub);
FUNCTOR_CLOSURE_2arg(VSub,  uchar, return _mm_subs_epu8 (a, b));
FUNCTOR_CLOSURE_2arg(VSub,  schar, return _mm_subs_epi8 (a, b));
FUNCTOR_CLOSURE_2arg(VSub, ushort, return _mm_subs_epu16(a, b));
FUNCTOR_CLOSURE_2arg(VSub,  short, return _mm_subs_epi16(a, b));
FUNCTOR_CLOSURE_2arg(VSub,    int, return _mm_sub_epi32 (a, b));
FUNCTOR_CLOSURE_2arg(VSub,  float, return _mm_sub_ps    (a, b));
FUNCTOR_CLOSURE_2arg(VSub, double, return _mm_sub_pd    (a, b));

FUNCTOR_TEMPLATE(VMin);
FUNCTOR_CLOSURE_2arg(VMin, uchar, return _mm_min_epu8(a, b));
FUNCTOR_CLOSURE_2arg(VMin, schar,
        __m128i m = _mm_cmpgt_epi8(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    );
FUNCTOR_CLOSURE_2arg(VMin, ushort, return _mm_subs_epu16(a, _mm_subs_epu16(a, b)));
FUNCTOR_CLOSURE_2arg(VMin,  short, return _mm_min_epi16(a, b));
FUNCTOR_CLOSURE_2arg(VMin,    int,
333 334
        __m128i m = _mm_cmpgt_epi32(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
335 336 337 338 339 340 341 342 343 344 345 346 347
    );
FUNCTOR_CLOSURE_2arg(VMin,  float, return _mm_min_ps(a, b));
FUNCTOR_CLOSURE_2arg(VMin, double, return _mm_min_pd(a, b));

FUNCTOR_TEMPLATE(VMax);
FUNCTOR_CLOSURE_2arg(VMax, uchar, return _mm_max_epu8(a, b));
FUNCTOR_CLOSURE_2arg(VMax, schar,
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    );
FUNCTOR_CLOSURE_2arg(VMax, ushort, return _mm_adds_epu16(_mm_subs_epu16(a, b), b));
FUNCTOR_CLOSURE_2arg(VMax,  short, return _mm_max_epi16(a, b));
FUNCTOR_CLOSURE_2arg(VMax,    int,
348 349
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    );
FUNCTOR_CLOSURE_2arg(VMax,  float, return _mm_max_ps(a, b));
FUNCTOR_CLOSURE_2arg(VMax, double, return _mm_max_pd(a, b));


static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
static int CV_DECL_ALIGNED(16) v64f_absmask[] = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff };

FUNCTOR_TEMPLATE(VAbsDiff);
FUNCTOR_CLOSURE_2arg(VAbsDiff,  uchar,
        return _mm_add_epi8(_mm_subs_epu8(a, b), _mm_subs_epu8(b, a));
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff,  schar,
        __m128i d = _mm_subs_epi8(a, b);
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_subs_epi8(_mm_xor_si128(d, m), m);
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff, ushort,
        return _mm_add_epi16(_mm_subs_epu16(a, b), _mm_subs_epu16(b, a));
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff,  short,
        __m128i M = _mm_max_epi16(a, b);
        __m128i m = _mm_min_epi16(a, b);
        return _mm_subs_epi16(M, m);
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff,    int,
376 377 378
        __m128i d = _mm_sub_epi32(a, b);
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_sub_epi32(_mm_xor_si128(d, m), m);
379 380
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff,  float,
381
        return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask);
382 383
    );
FUNCTOR_CLOSURE_2arg(VAbsDiff, double,
384
        return _mm_and_pd(_mm_sub_pd(a,b), *(const __m128d*)v64f_absmask);
385 386 387 388 389 390 391 392 393 394
    );

FUNCTOR_TEMPLATE(VAnd);
FUNCTOR_CLOSURE_2arg(VAnd, uchar, return _mm_and_si128(a, b));
FUNCTOR_TEMPLATE(VOr);
FUNCTOR_CLOSURE_2arg(VOr , uchar, return _mm_or_si128 (a, b));
FUNCTOR_TEMPLATE(VXor);
FUNCTOR_CLOSURE_2arg(VXor, uchar, return _mm_xor_si128(a, b));
FUNCTOR_TEMPLATE(VNot);
FUNCTOR_CLOSURE_1arg(VNot, uchar, return _mm_xor_si128(_mm_set1_epi32(-1), a));
395
#endif
396

397 398
#if CV_SSE2
#define IF_SIMD(op) op
399
#else
400
#define IF_SIMD(op) NOP
401
#endif
402

403 404 405 406
template<> inline uchar OpAdd<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a + b); }
template<> inline uchar OpSub<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a - b); }
407

408
template<typename T> struct OpAbsDiff
409
{
410 411 412 413
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()(T a, T b) const { return (T)std::abs(a - b); }
414 415
};

416 417
template<> inline short OpAbsDiff<short>::operator ()(short a, short b) const
{ return saturate_cast<short>(std::abs(a - b)); }
418

419 420
template<> inline schar OpAbsDiff<schar>::operator ()(schar a, schar b) const
{ return saturate_cast<schar>(std::abs(a - b)); }
421

422
template<typename T, typename WT=T> struct OpAbsDiffS
423
{
424 425 426 427
    typedef T type1;
    typedef WT type2;
    typedef T rtype;
    T operator()(T a, WT b) const { return saturate_cast<T>(std::abs(a - b)); }
428 429
};

430
template<typename T> struct OpAnd
431
{
432 433 434 435
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a & b; }
436 437
};

438
template<typename T> struct OpOr
439
{
440 441 442 443
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a | b; }
444 445
};

446
template<typename T> struct OpXor
447
{
448 449 450 451
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a ^ b; }
452 453
};

454
template<typename T> struct OpNot
455
{
456 457 458 459
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T ) const { return ~a; }
460
};
461

462 463 464 465 466
static inline void fixSteps(Size sz, size_t elemSize, size_t& step1, size_t& step2, size_t& step)
{
    if( sz.height == 1 )
        step1 = step2 = step = sz.width*elemSize;
}
467

468 469 470 471 472
static void add8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
473
           ippiAdd_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
474
           (vBinOp<uchar, OpAdd<uchar>, IF_SIMD(VAdd<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
475
}
476

477 478 479
static void add8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
480
{
481
    vBinOp<schar, OpAdd<schar>, IF_SIMD(VAdd<schar>)>(src1, step1, src2, step2, dst, step, sz);
482
}
483

484 485 486
static void add16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
487
{
488
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
489
           ippiAdd_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
490
           (vBinOp<ushort, OpAdd<ushort>, IF_SIMD(VAdd<ushort>)>(src1, step1, src2, step2, dst, step, sz)));
491
}
492

493 494 495
static void add16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
496
{
497
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
498
           ippiAdd_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
499
           (vBinOp<short, OpAdd<short>, IF_SIMD(VAdd<short>)>(src1, step1, src2, step2, dst, step, sz)));
500
}
501

502 503 504
static void add32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
505
{
506
    vBinOp32<int, OpAdd<int>, IF_SIMD(VAdd<int>)>(src1, step1, src2, step2, dst, step, sz);
507
}
508

509 510 511
static void add32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
512
{
513
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
514
           ippiAdd_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
515
           (vBinOp32<float, OpAdd<float>, IF_SIMD(VAdd<float>)>(src1, step1, src2, step2, dst, step, sz)));
516
}
517

518 519 520
static void add64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
521
{
522
    vBinOp64<double, OpAdd<double>, IF_SIMD(VAdd<double>)>(src1, step1, src2, step2, dst, step, sz);
523
}
524

525 526 527
static void sub8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
528
{
529
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
530
           ippiSub_8u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
531
           (vBinOp<uchar, OpSub<uchar>, IF_SIMD(VSub<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
532
}
533

534 535 536
static void sub8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
537
{
538
    vBinOp<schar, OpSub<schar>, IF_SIMD(VSub<schar>)>(src1, step1, src2, step2, dst, step, sz);
539
}
540

541 542 543
static void sub16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
544
{
545
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
546
           ippiSub_16u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
547
           (vBinOp<ushort, OpSub<ushort>, IF_SIMD(VSub<ushort>)>(src1, step1, src2, step2, dst, step, sz)));
548
}
549

550 551 552
static void sub16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
553
{
554
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
555
           ippiSub_16s_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
556
           (vBinOp<short, OpSub<short>, IF_SIMD(VSub<short>)>(src1, step1, src2, step2, dst, step, sz)));
557
}
558

559 560 561
static void sub32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
562
{
563
    vBinOp32<int, OpSub<int>, IF_SIMD(VSub<int>)>(src1, step1, src2, step2, dst, step, sz);
564
}
565

566 567 568
static void sub32f( const float* src1, size_t step1,
                   const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* )
569
{
570
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
571
           ippiSub_32f_C1R(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz),
572
           (vBinOp32<float, OpSub<float>, IF_SIMD(VSub<float>)>(src1, step1, src2, step2, dst, step, sz)));
573
}
574

575 576 577
static void sub64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
578
{
579
    vBinOp64<double, OpSub<double>, IF_SIMD(VSub<double>)>(src1, step1, src2, step2, dst, step, sz);
580
}
581

582 583
template<> inline uchar OpMin<uchar>::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); }
template<> inline uchar OpMax<uchar>::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); }
584

585 586 587
static void max8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
588
{
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
604
  vBinOp<uchar, OpMax<uchar>, IF_SIMD(VMax<uchar>)>(src1, step1, src2, step2, dst, step, sz);
605 606 607 608 609
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz)));
610
}
611

612 613 614
static void max8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
615
{
616
    vBinOp<schar, OpMax<schar>, IF_SIMD(VMax<schar>)>(src1, step1, src2, step2, dst, step, sz);
617
}
618

619 620 621
static void max16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
622
{
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
638
  vBinOp<ushort, OpMax<ushort>, IF_SIMD(VMax<ushort>)>(src1, step1, src2, step2, dst, step, sz);
639 640 641 642 643
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz)));
644
}
645

646 647 648
static void max16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
649
{
650
    vBinOp<short, OpMax<short>, IF_SIMD(VMax<short>)>(src1, step1, src2, step2, dst, step, sz);
651
}
652

653 654 655
static void max32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
656
{
657
    vBinOp32<int, OpMax<int>, IF_SIMD(VMax<int>)>(src1, step1, src2, step2, dst, step, sz);
658
}
659

660 661 662
static void max32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
663
{
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
679
  vBinOp32<float, OpMax<float>, IF_SIMD(VMax<float>)>(src1, step1, src2, step2, dst, step, sz);
680 681 682 683
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz)));
684
}
685

686 687 688
static void max64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
689
{
690
    vBinOp64<double, OpMax<double>, IF_SIMD(VMax<double>)>(src1, step1, src2, step2, dst, step, sz);
691
}
692

693 694 695
static void min8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
696
{
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
712
  vBinOp<uchar, OpMin<uchar>, IF_SIMD(VMin<uchar>)>(src1, step1, src2, step2, dst, step, sz);
713 714 715 716 717
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz)));
718
}
719

720 721 722 723
static void min8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
{
724
    vBinOp<schar, OpMin<schar>, IF_SIMD(VMin<schar>)>(src1, step1, src2, step2, dst, step, sz);
725
}
726

727 728 729 730
static void min16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
{
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
746
  vBinOp<ushort, OpMin<ushort>, IF_SIMD(VMin<ushort>)>(src1, step1, src2, step2, dst, step, sz);
747 748 749 750 751
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz)));
752
}
753

754 755 756 757
static void min16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
{
758
    vBinOp<short, OpMin<short>, IF_SIMD(VMin<short>)>(src1, step1, src2, step2, dst, step, sz);
759
}
760

761 762 763
static void min32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
764
{
765
    vBinOp32<int, OpMin<int>, IF_SIMD(VMin<int>)>(src1, step1, src2, step2, dst, step, sz);
766
}
767

768 769 770
static void min32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
771
{
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
787
  vBinOp32<float, OpMin<float>, IF_SIMD(VMin<float>)>(src1, step1, src2, step2, dst, step, sz);
788 789 790 791
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz)));
792
}
793

794 795 796
static void min64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
797
{
798
    vBinOp64<double, OpMin<double>, IF_SIMD(VMin<double>)>(src1, step1, src2, step2, dst, step, sz);
799
}
800

801 802 803
static void absdiff8u( const uchar* src1, size_t step1,
                       const uchar* src2, size_t step2,
                       uchar* dst, size_t step, Size sz, void* )
804
{
805
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
806
           ippiAbsDiff_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
807
           (vBinOp<uchar, OpAbsDiff<uchar>, IF_SIMD(VAbsDiff<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
808
}
809

810 811 812 813
static void absdiff8s( const schar* src1, size_t step1,
                       const schar* src2, size_t step2,
                       schar* dst, size_t step, Size sz, void* )
{
814
    vBinOp<schar, OpAbsDiff<schar>, IF_SIMD(VAbsDiff<schar>)>(src1, step1, src2, step2, dst, step, sz);
815
}
816

817 818 819 820 821
static void absdiff16u( const ushort* src1, size_t step1,
                        const ushort* src2, size_t step2,
                        ushort* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
822
           ippiAbsDiff_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
823
           (vBinOp<ushort, OpAbsDiff<ushort>, IF_SIMD(VAbsDiff<ushort>)>(src1, step1, src2, step2, dst, step, sz)));
824
}
825

826 827 828 829
static void absdiff16s( const short* src1, size_t step1,
                        const short* src2, size_t step2,
                        short* dst, size_t step, Size sz, void* )
{
830
    vBinOp<short, OpAbsDiff<short>, IF_SIMD(VAbsDiff<short>)>(src1, step1, src2, step2, dst, step, sz);
831
}
832

833 834 835 836
static void absdiff32s( const int* src1, size_t step1,
                        const int* src2, size_t step2,
                        int* dst, size_t step, Size sz, void* )
{
837
    vBinOp32<int, OpAbsDiff<int>, IF_SIMD(VAbsDiff<int>)>(src1, step1, src2, step2, dst, step, sz);
838
}
839

840 841 842 843 844
static void absdiff32f( const float* src1, size_t step1,
                        const float* src2, size_t step2,
                        float* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
845
           ippiAbsDiff_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
846
           (vBinOp32<float, OpAbsDiff<float>, IF_SIMD(VAbsDiff<float>)>(src1, step1, src2, step2, dst, step, sz)));
847
}
848

849 850 851 852
static void absdiff64f( const double* src1, size_t step1,
                        const double* src2, size_t step2,
                        double* dst, size_t step, Size sz, void* )
{
853
    vBinOp64<double, OpAbsDiff<double>, IF_SIMD(VAbsDiff<double>)>(src1, step1, src2, step2, dst, step, sz);
854 855
}

856

857 858 859 860 861
static void and8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
862
           ippiAnd_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
863
           (vBinOp<uchar, OpAnd<uchar>, IF_SIMD(VAnd<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
864 865 866 867 868 869 870
}

static void or8u( const uchar* src1, size_t step1,
                  const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
871
           ippiOr_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
872
           (vBinOp<uchar, OpOr<uchar>, IF_SIMD(VOr<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
873 874 875 876 877 878 879
}

static void xor8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
880
           ippiXor_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
881
           (vBinOp<uchar, OpXor<uchar>, IF_SIMD(VXor<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
882
}
883 884 885 886 887

static void not8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
I
Ilya Lavrenov 已提交
888
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step); (void *)src2;
889
           ippiNot_8u_C1R(src1, (int)step1, dst, (int)step, (IppiSize&)sz),
890
           (vBinOp<uchar, OpNot<uchar>, IF_SIMD(VNot<uchar>)>(src1, step1, src2, step2, dst, step, sz)));
891
}
892

893 894 895
/****************************************************************************************\
*                                   logical operations                                   *
\****************************************************************************************/
896

897
void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize )
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
{
    int scn = (int)sc.total(), cn = CV_MAT_CN(buftype);
    size_t esz = CV_ELEM_SIZE(buftype);
    getConvertFunc(sc.depth(), buftype)(sc.data, 0, 0, 0, scbuf, 0, Size(std::min(cn, scn), 1), 0);
    // unroll the scalar
    if( scn < cn )
    {
        CV_Assert( scn == 1 );
        size_t esz1 = CV_ELEM_SIZE1(buftype);
        for( size_t i = esz1; i < esz; i++ )
            scbuf[i] = scbuf[i - esz1];
    }
    for( size_t i = esz; i < blocksize*esz; i++ )
        scbuf[i] = scbuf[i - esz];
}
913

914 915 916 917 918 919 920 921 922 923 924

enum { OCL_OP_ADD=0, OCL_OP_SUB=1, OCL_OP_RSUB=2, OCL_OP_ABSDIFF=3, OCL_OP_MUL=4,
       OCL_OP_MUL_SCALE=5, OCL_OP_DIV_SCALE=6, OCL_OP_RECIP_SCALE=7, OCL_OP_ADDW=8,
       OCL_OP_AND=9, OCL_OP_OR=10, OCL_OP_XOR=11, OCL_OP_NOT=12, OCL_OP_MIN=13, OCL_OP_MAX=14 };

static const char* oclop2str[] = { "OP_ADD", "OP_SUB", "OP_RSUB", "OP_ABSDIFF",
    "OP_MUL", "OP_MUL_SCALE", "OP_DIV_SCALE", "OP_RECIP_SCALE",
    "OP_ADDW", "OP_AND", "OP_OR", "OP_XOR", "OP_NOT", "OP_MIN", "OP_MAX", 0 };

static bool ocl_binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
                          InputArray _mask, bool bitwise, int oclop, bool haveScalar )
925
{
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
    bool haveMask = !_mask.empty();
    int srctype = _src1.type();
    int srcdepth = CV_MAT_DEPTH(srctype);
    int cn = CV_MAT_CN(srctype);

    if( oclop < 0 || ((haveMask || haveScalar) && cn > 4) )
        return false;

    UMat src1 = _src1.getUMat(), src2;
    UMat dst = _dst.getUMat(), mask = _mask.getUMat();

    char opts[1024];
    int kercn = haveMask || haveScalar ? cn : 1;
    sprintf(opts, "-D %s%s -D %s -D dstT=%s",
            (haveMask ? "MASK_" : ""), (haveScalar ? "UNARY_OP" : "BINARY_OP"), oclop2str[oclop],
            bitwise ? ocl::memopTypeToStr(CV_MAKETYPE(srcdepth, kercn)) :
            ocl::typeToStr(CV_MAKETYPE(srcdepth, kercn)));

    ocl::Kernel k("KF", ocl::core::arithm_oclsrc, opts);
    if( k.empty() )
        return false;

    int cscale = cn/kercn;
    ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cscale);
    ocl::KernelArg dstarg = haveMask ? ocl::KernelArg::ReadWrite(dst, cscale) :
                                       ocl::KernelArg::WriteOnly(dst, cscale);
    ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask, 1);

    if( haveScalar )
    {
        size_t esz = CV_ELEM_SIZE(srctype);
        double buf[4] = {0,0,0,0};

        if( oclop != OCL_OP_NOT )
        {
            Mat src2sc = _src2.getMat();
            convertAndUnrollScalar(src2sc, srctype, (uchar*)buf, 1);
        }

        ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, buf, esz);

        if( !haveMask )
            k.args(src1arg, dstarg, scalararg);
        else
            k.args(src1arg, maskarg, dstarg, scalararg);
    }
    else
    {
        src2 = _src2.getUMat();
        ocl::KernelArg src2arg = ocl::KernelArg::ReadOnlyNoSize(src2, cscale);

        if( !haveMask )
            k.args(src1arg, src2arg, dstarg);
        else
            k.args(src1arg, src2arg, maskarg, dstarg);
    }

    size_t globalsize[] = { src1.cols*(cn/kercn), src1.rows };
    return k.run(2, globalsize, 0, false);
}


static void binary_op( InputArray _src1, InputArray _src2, OutputArray _dst,
                       InputArray _mask, const BinaryFunc* tab,
                       bool bitwise, int oclop )
{
    const _InputArray *psrc1 = &_src1, *psrc2 = &_src2;
    int kind1 = psrc1->kind(), kind2 = psrc2->kind();
    int type1 = psrc1->type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1);
    int type2 = psrc2->type(), depth2 = CV_MAT_DEPTH(type2), cn2 = CV_MAT_CN(type2);
    int dims1 = psrc1->dims(), dims2 = psrc2->dims();
    Size sz1 = dims1 <= 2 ? psrc1->size() : Size();
    Size sz2 = dims2 <= 2 ? psrc2->size() : Size();
    bool use_opencl = (kind1 == _InputArray::UMAT || kind2 == _InputArray::UMAT) &&
                        ocl::useOpenCL() && dims1 <= 2 && dims2 <= 2;
1001 1002
    bool haveMask = !_mask.empty(), haveScalar = false;
    BinaryFunc func;
1003

1004
    if( dims1 <= 2 && dims2 <= 2 && kind1 == kind2 && sz1 == sz2 && type1 == type2 && !haveMask )
1005
    {
1006 1007 1008
        _dst.create(sz1, type1);
        if( use_opencl && ocl_binary_op(*psrc1, *psrc2, _dst, _mask, bitwise, oclop, false) )
            return;
1009 1010 1011
        if( bitwise )
        {
            func = *tab;
1012
            cn = (int)CV_ELEM_SIZE(type1);
1013 1014
        }
        else
1015
            func = tab[depth1];
1016

1017
        Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat();
1018
        Size sz = getContinuousSize(src1, src2, dst);
1019
        size_t len = sz.width*(size_t)cn;
1020 1021 1022 1023 1024 1025
        if( len == (size_t)(int)len )
        {
            sz.width = (int)len;
            func(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, 0);
            return;
        }
1026
    }
1027

1028 1029 1030 1031
    if( oclop == OCL_OP_NOT )
        haveScalar = true;
    else if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
        !psrc1->sameSize(*psrc2) || type1 != type2 )
1032
    {
1033 1034
        if( checkScalar(*psrc1, type2, kind1, kind2) )
        {
1035
            // src1 is a scalar; swap it with src2
1036 1037 1038 1039 1040 1041 1042
            swap(psrc1, psrc2);
            swap(type1, type2);
            swap(depth1, depth2);
            swap(cn, cn2);
            swap(sz1, sz2);
        }
        else if( !checkScalar(*psrc2, type1, kind2, kind1) )
1043 1044 1045 1046 1047
            CV_Error( CV_StsUnmatchedSizes,
                      "The operation is neither 'array op array' (where arrays have the same size and type), "
                      "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1048 1049 1050 1051
    else
    {
        CV_Assert( psrc1->sameSize(*psrc2) && type1 == type2 );
    }
1052

1053
    size_t esz = CV_ELEM_SIZE(type1);
1054 1055
    size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
    BinaryFunc copymask = 0;
1056
    bool reallocate = false;
1057

1058 1059
    if( haveMask )
    {
1060 1061
        int mtype = _mask.type();
        CV_Assert( (mtype == CV_8U || mtype == CV_8S) && _mask.sameSize(*psrc1));
1062
        copymask = getCopyMaskFunc(esz);
1063
        reallocate = !_dst.sameSize(*psrc1) || _dst.type() != type1;
1064
    }
1065

1066 1067
    AutoBuffer<uchar> _buf;
    uchar *scbuf = 0, *maskbuf = 0;
1068

1069
    _dst.createSameSize(*psrc1, type1);
1070
    // if this is mask operation and dst has been reallocated,
1071
    // we have to clear the destination
1072
    if( haveMask && reallocate )
1073 1074 1075 1076 1077 1078 1079
        _dst.setTo(0.);

    if( use_opencl && ocl_binary_op(*psrc1, *psrc2, _dst, _mask, bitwise, oclop, haveScalar ))
        return;

    Mat src1 = psrc1->getMat(), src2 = psrc2->getMat();
    Mat dst = _dst.getMat(), mask = _mask.getMat();
1080

1081 1082 1083
    if( bitwise )
    {
        func = *tab;
1084
        cn = (int)esz;
1085 1086 1087
    }
    else
    {
1088
        func = tab[depth1];
1089
    }
1090

1091
    if( !haveScalar )
1092
    {
1093 1094
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1095

1096 1097
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1098

1099 1100
        if( blocksize*cn > INT_MAX )
            blocksize = INT_MAX/cn;
1101

1102 1103 1104 1105 1106 1107
        if( haveMask )
        {
            blocksize = std::min(blocksize, blocksize0);
            _buf.allocate(blocksize*esz);
            maskbuf = _buf;
        }
1108

1109
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1110
        {
1111
            for( size_t j = 0; j < total; j += blocksize )
1112
            {
1113
                int bsz = (int)MIN(total - j, blocksize);
1114

1115
                func( ptrs[0], 0, ptrs[1], 0, haveMask ? maskbuf : ptrs[2], 0, Size(bsz*cn, 1), 0 );
1116
                if( haveMask )
1117
                {
1118 1119
                    copymask( maskbuf, 0, ptrs[3], 0, ptrs[2], 0, Size(bsz, 1), &esz );
                    ptrs[3] += bsz;
1120
                }
1121

1122 1123
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz; ptrs[2] += bsz;
1124 1125
            }
        }
1126 1127 1128 1129 1130
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1131

1132 1133
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1134

1135 1136 1137
        _buf.allocate(blocksize*(haveMask ? 2 : 1)*esz + 32);
        scbuf = _buf;
        maskbuf = alignPtr(scbuf + blocksize*esz, 16);
1138

1139
        convertAndUnrollScalar( src2, src1.type(), scbuf, blocksize);
1140

1141
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1142
        {
1143
            for( size_t j = 0; j < total; j += blocksize )
1144
            {
1145
                int bsz = (int)MIN(total - j, blocksize);
1146

1147
                func( ptrs[0], 0, scbuf, 0, haveMask ? maskbuf : ptrs[1], 0, Size(bsz*cn, 1), 0 );
1148
                if( haveMask )
1149
                {
1150 1151
                    copymask( maskbuf, 0, ptrs[2], 0, ptrs[1], 0, Size(bsz, 1), &esz );
                    ptrs[2] += bsz;
1152
                }
1153

1154 1155
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz;
1156 1157 1158 1159
            }
        }
    }
}
1160

1161
static BinaryFunc* getMaxTab()
V
Vadim Pisarevsky 已提交
1162
{
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
    static BinaryFunc maxTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(max8u), (BinaryFunc)GET_OPTIMIZED(max8s),
        (BinaryFunc)GET_OPTIMIZED(max16u), (BinaryFunc)GET_OPTIMIZED(max16s),
        (BinaryFunc)GET_OPTIMIZED(max32s),
        (BinaryFunc)GET_OPTIMIZED(max32f), (BinaryFunc)max64f,
        0
    };

    return maxTab;
}
1174

1175
static BinaryFunc* getMinTab()
1176
{
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
    static BinaryFunc minTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(min8u), (BinaryFunc)GET_OPTIMIZED(min8s),
        (BinaryFunc)GET_OPTIMIZED(min16u), (BinaryFunc)GET_OPTIMIZED(min16s),
        (BinaryFunc)GET_OPTIMIZED(min32s),
        (BinaryFunc)GET_OPTIMIZED(min32f), (BinaryFunc)min64f,
        0
    };

    return minTab;
}
1188

V
Vadim Pisarevsky 已提交
1189
}
1190

1191
void cv::bitwise_and(InputArray a, InputArray b, OutputArray c, InputArray mask)
1192
{
A
Andrey Kamaev 已提交
1193
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(and8u);
1194
    binary_op(a, b, c, mask, &f, true, OCL_OP_AND);
1195 1196
}

1197
void cv::bitwise_or(InputArray a, InputArray b, OutputArray c, InputArray mask)
1198
{
A
Andrey Kamaev 已提交
1199
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(or8u);
1200
    binary_op(a, b, c, mask, &f, true, OCL_OP_OR);
1201 1202
}

1203
void cv::bitwise_xor(InputArray a, InputArray b, OutputArray c, InputArray mask)
1204
{
A
Andrey Kamaev 已提交
1205
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(xor8u);
1206
    binary_op(a, b, c, mask, &f, true, OCL_OP_XOR);
1207 1208
}

1209
void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
1210
{
A
Andrey Kamaev 已提交
1211
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(not8u);
1212
    binary_op(a, a, c, mask, &f, true, OCL_OP_NOT);
1213 1214
}

1215
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
1216
{
1217
    binary_op(src1, src2, dst, noArray(), getMaxTab(), false, OCL_OP_MAX );
1218 1219
}

1220
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
1221
{
1222
    binary_op(src1, src2, dst, noArray(), getMinTab(), false, OCL_OP_MIN );
1223 1224
}

1225
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
1226
{
1227
    OutputArray _dst(dst);
1228
    binary_op(src1, src2, _dst, noArray(), getMaxTab(), false, OCL_OP_MAX );
1229 1230
}

1231 1232 1233
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
{
    OutputArray _dst(dst);
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246
    binary_op(src1, src2, _dst, noArray(), getMinTab(), false, OCL_OP_MIN );
}

void cv::max(const UMat& src1, const UMat& src2, UMat& dst)
{
    OutputArray _dst(dst);
    binary_op(src1, src2, _dst, noArray(), getMaxTab(), false, OCL_OP_MAX );
}

void cv::min(const UMat& src1, const UMat& src2, UMat& dst)
{
    OutputArray _dst(dst);
    binary_op(src1, src2, _dst, noArray(), getMinTab(), false, OCL_OP_MIN );
1247
}
1248 1249


1250 1251 1252
/****************************************************************************************\
*                                      add/subtract                                      *
\****************************************************************************************/
1253

1254 1255
namespace cv
{
1256

1257 1258
static int actualScalarDepth(const double* data, int len)
{
1259 1260
    int i = 0, minval = INT_MAX, maxval = INT_MIN;
    for(; i < len; ++i)
1261
    {
1262 1263 1264 1265 1266
        int ival = cvRound(data[i]);
        if( ival != data[i] )
            break;
        minval = MIN(minval, ival);
        maxval = MAX(maxval, ival);
1267
    }
1268
    return i < len ? CV_64F :
A
Andrey Kamaev 已提交
1269 1270 1271 1272
        minval >= 0 && maxval <= (int)UCHAR_MAX ? CV_8U :
        minval >= (int)SCHAR_MIN && maxval <= (int)SCHAR_MAX ? CV_8S :
        minval >= 0 && maxval <= (int)USHRT_MAX ? CV_16U :
        minval >= (int)SHRT_MIN && maxval <= (int)SHRT_MAX ? CV_16S :
1273
        CV_32S;
1274 1275
}

1276 1277 1278 1279 1280

static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
                          InputArray _mask, int wtype,
                          void* usrdata, int oclop,
                          bool haveScalar )
1281
{
1282
    int type1 = _src1.type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1);
1283
    bool haveMask = !_mask.empty();
1284

1285 1286 1287 1288 1289 1290
    if( (haveMask || haveScalar) && cn > 4 )
        return false;

    int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), wdepth = CV_MAT_DEPTH(wtype);
    wtype = CV_MAKETYPE(wdepth, cn);
    int type2 = haveScalar ? _src2.type() : wtype, depth2 = CV_MAT_DEPTH(type2);
1291

1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
    UMat src1 = _src1.getUMat(), src2;
    UMat dst = _dst.getUMat(), mask = _mask.getUMat();

    char opts[1024];
    int kercn = haveMask || haveScalar ? cn : 1;

    if( (depth1 == depth2 || haveScalar) && ddepth == depth1 && wdepth == depth1 )
    {
        const char* oclopstr = oclop2str[oclop];
        if( wdepth <= CV_16S )
        {
            oclopstr = oclop == OCL_OP_ADD ? "OCL_OP_ADD_SAT" :
                       oclop == OCL_OP_SUB ? "OCL_OP_SUB_SAT" :
                       oclop == OCL_OP_RSUB ? "OCL_OP_RSUB_SAT" : oclopstr;
        }
        sprintf(opts, "-D %s%s -D %s -D dstT=%s",
                (haveMask ? "MASK_" : ""), (haveScalar ? "UNARY_OP" : "BINARY_OP"),
                oclop2str[oclop], ocl::typeToStr(CV_MAKETYPE(ddepth, kercn)));
    }
    else
    {
        char cvtstr[3][32];
        sprintf(opts, "-D %s%s -D %s -D srcT1=%s -D srcT2=%s "
                "-D dstT=%s -D workT=%s -D convertToWT1=%s "
                "-D convertToWT2=%s -D convertToDT=%s",
                (haveMask ? "MASK_" : ""), (haveScalar ? "UNARY_OP" : "BINARY_OP"),
                oclop2str[oclop], ocl::typeToStr(CV_MAKETYPE(depth1, kercn)),
                ocl::typeToStr(CV_MAKETYPE(depth2, kercn)),
                ocl::typeToStr(CV_MAKETYPE(ddepth, kercn)),
                ocl::typeToStr(CV_MAKETYPE(wdepth, kercn)),
                ocl::convertTypeStr(depth1, wdepth, kercn, cvtstr[0]),
                ocl::convertTypeStr(depth2, wdepth, kercn, cvtstr[1]),
                ocl::convertTypeStr(wdepth, ddepth, kercn, cvtstr[2]));
    }

    const uchar* usrdata_p = (const uchar*)usrdata;
    const double* usrdata_d = (const double*)usrdata;
    float usrdata_f[3];
    int i, n = oclop == OCL_OP_MUL_SCALE || oclop == OCL_OP_DIV_SCALE ||
        oclop == OCL_OP_RECIP_SCALE ? 1 : oclop == OCL_OP_ADDW ? 3 : 0;
    if( n > 0 && wdepth == CV_32F )
    {
        for( i = 0; i < n; i++ )
            usrdata_f[i] = (float)usrdata_d[i];
        usrdata_p = (const uchar*)usrdata_f;
    }
    size_t usrdata_esz = CV_ELEM_SIZE(wdepth);

    ocl::Kernel k("KF", ocl::core::arithm_oclsrc, opts);
    if( k.empty() )
        return false;

    int cscale = cn/kercn;

    ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cscale);
    ocl::KernelArg dstarg = haveMask ? ocl::KernelArg::ReadWrite(dst, cscale) :
                                       ocl::KernelArg::WriteOnly(dst, cscale);
    ocl::KernelArg maskarg = ocl::KernelArg::ReadOnlyNoSize(mask, 1);

    if( haveScalar )
    {
        size_t esz = CV_ELEM_SIZE(wtype);
        double buf[4]={0,0,0,0};
        Mat src2sc = _src2.getMat();

        if( !src2sc.empty() )
        {
            convertAndUnrollScalar(src2sc, wtype, (uchar*)buf, 1);
        }
        ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, buf, esz);

        if( !haveMask )
            k.args(src1arg, dstarg, scalararg);
        else
            k.args(src1arg, maskarg, dstarg, scalararg);
    }
    else
    {
        src2 = _src2.getUMat();
        ocl::KernelArg src2arg = ocl::KernelArg::ReadOnlyNoSize(src2, cscale);

        if( !haveMask )
        {
            if(n == 0)
                k.args(src1arg, src2arg, dstarg);
            else if(n == 1)
                k.args(src1arg, src2arg, dstarg,
                       ocl::KernelArg(0, 0, 0, usrdata_p, usrdata_esz));
            else if(n == 3)
                k.args(src1arg, src2arg, dstarg,
                       ocl::KernelArg(0, 0, 0, usrdata_p, usrdata_esz),
                       ocl::KernelArg(0, 0, 0, usrdata_p + usrdata_esz, usrdata_esz),
                       ocl::KernelArg(0, 0, 0, usrdata_p + usrdata_esz*2, usrdata_esz));
            else
                CV_Error(Error::StsNotImplemented, "unsupported number of extra parameters");
        }
        else
        {
            k.args(src1arg, src2arg, maskarg, dstarg);
        }
    }

    size_t globalsize[] = { src1.cols*(cn/kercn), src1.rows };
    return k.run(2, globalsize, 0, false);
}


static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
                      InputArray _mask, int dtype, BinaryFunc* tab, bool muldiv=false,
                      void* usrdata=0, int oclop=-1 )
{
    const _InputArray *psrc1 = &_src1, *psrc2 = &_src2;
    int kind1 = psrc1->kind(), kind2 = psrc2->kind();
    bool haveMask = !_mask.empty();
    bool reallocate = false;
    int type1 = psrc1->type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1);
    int type2 = psrc2->type(), depth2 = CV_MAT_DEPTH(type2), cn2 = CV_MAT_CN(type2);
    int wtype, dims1 = psrc1->dims(), dims2 = psrc2->dims();
    Size sz1 = dims1 <= 2 ? psrc1->size() : Size();
    Size sz2 = dims2 <= 2 ? psrc2->size() : Size();
    bool use_opencl = (kind1 == _InputArray::UMAT || kind2 == _InputArray::UMAT) &&
                        ocl::useOpenCL() && dims1 <= 2 && dims2 <= 2;
    bool src1Scalar = checkScalar(*psrc1, type2, kind1, kind2);
    bool src2Scalar = checkScalar(*psrc2, type1, kind2, kind1);

    if( (kind1 == kind2 || cn == 1) && sz1 == sz2 && dims1 <= 2 && dims2 <= 2 && type1 == type2 &&
        !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == depth1)) ||
                       (_dst.fixedType() && _dst.type() == type1)) &&
B
Bo Li 已提交
1420
        ((src1Scalar && src2Scalar) || (!src1Scalar && !src2Scalar)) )
V
Vadim Pisarevsky 已提交
1421
    {
1422 1423 1424 1425 1426 1427 1428
        _dst.createSameSize(*psrc1, type1);
        if( use_opencl &&
            ocl_arithm_op(*psrc1, *psrc2, _dst, _mask,
                          (!usrdata ? type1 : std::max(depth1, CV_32F)),
                          usrdata, oclop, false))
            return;
        Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat();
1429
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
1430
        tab[depth1](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, usrdata);
V
Vadim Pisarevsky 已提交
1431 1432
        return;
    }
1433

1434
    bool haveScalar = false, swapped12 = false;
1435 1436

    if( dims1 != dims2 || sz1 != sz2 || cn != cn2 ||
1437
        ((kind1 == _InputArray::MATX || kind2 == _InputArray::MATX) &&
1438
         (sz1 == Size(1,4) || sz2 == Size(1,4))) )
1439
    {
1440
        if( checkScalar(*psrc1, type2, kind1, kind2) )
1441 1442
        {
            // src1 is a scalar; swap it with src2
1443 1444 1445 1446 1447 1448
            swap(psrc1, psrc2);
            swap(sz1, sz2);
            swap(type1, type2);
            swap(depth1, depth2);
            swap(cn, cn2);
            swap(dims1, dims2);
1449
            swapped12 = true;
1450 1451
            if( oclop == OCL_OP_SUB )
                oclop = OCL_OP_RSUB;
1452
        }
1453
        else if( !checkScalar(*psrc2, type1, kind2, kind1) )
1454
            CV_Error( CV_StsUnmatchedSizes,
1455 1456
                     "The operation is neither 'array op array' "
                     "(where arrays have the same size and the same number of channels), "
1457 1458
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
1459
        CV_Assert(type2 == CV_64F && (sz2.height == 1 || sz2.height == 4));
A
Andrey Kamaev 已提交
1460

1461 1462
        if (!muldiv)
        {
1463 1464 1465
            Mat sc = psrc2->getMat();
            depth2 = actualScalarDepth(sc.ptr<double>(), cn);
            if( depth2 == CV_64F && (depth1 < CV_32S || depth1 == CV_32F) )
1466 1467
                depth2 = CV_32F;
        }
A
Andrey Kamaev 已提交
1468
        else
1469
            depth2 = CV_64F;
1470
    }
1471

1472 1473 1474 1475 1476 1477
    if( dtype < 0 )
    {
        if( _dst.fixedType() )
            dtype = _dst.type();
        else
        {
1478
            if( !haveScalar && type1 != type2 )
1479 1480 1481
                CV_Error(CV_StsBadArg,
                     "When the input arrays in add/subtract/multiply/divide functions have different types, "
                     "the output array type must be explicitly specified");
1482
            dtype = type1;
1483 1484 1485
        }
    }
    dtype = CV_MAT_DEPTH(dtype);
1486

1487 1488 1489 1490 1491 1492 1493
    if( depth1 == depth2 && dtype == depth1 )
        wtype = dtype;
    else if( !muldiv )
    {
        wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S :
                depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2);
        wtype = std::max(wtype, dtype);
1494

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
        // when the result of addition should be converted to an integer type,
        // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation,
        // instead of converting the other input to floating-point and then converting the operation result back to integers.
        if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) )
            wtype = CV_32S;
    }
    else
    {
        wtype = std::max(depth1, std::max(depth2, CV_32F));
        wtype = std::max(wtype, dtype);
    }
1506

1507 1508
    dtype = CV_MAKETYPE(dtype, cn);
    wtype = CV_MAKETYPE(wtype, cn);
1509

1510 1511
    if( haveMask )
    {
1512 1513 1514
        int mtype = _mask.type();
        CV_Assert( (mtype == CV_8UC1 || mtype == CV_8SC1) && _mask.sameSize(*psrc1) );
        reallocate = !_dst.sameSize(*psrc1) || _dst.type() != dtype;
1515
    }
1516

1517 1518 1519
    _dst.createSameSize(*psrc1, dtype);
    if( reallocate )
        _dst.setTo(0.);
1520

1521 1522 1523 1524
    if( use_opencl &&
        ocl_arithm_op(*psrc1, *psrc2, _dst, _mask, wtype,
                      usrdata, oclop, haveScalar))
        return;
1525

1526 1527 1528 1529 1530 1531 1532 1533 1534
    BinaryFunc cvtsrc1 = type1 == wtype ? 0 : getConvertFunc(type1, wtype);
    BinaryFunc cvtsrc2 = type2 == type1 ? cvtsrc1 : type2 == wtype ? 0 : getConvertFunc(type2, wtype);
    BinaryFunc cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype);

    size_t esz1 = CV_ELEM_SIZE(type1), esz2 = CV_ELEM_SIZE(type2);
    size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype);
    size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz;
    BinaryFunc copymask = getCopyMaskFunc(dsz);
    Mat src1 = psrc1->getMat(), src2 = psrc2->getMat(), dst = _dst.getMat(), mask = _mask.getMat();
1535

1536 1537 1538 1539 1540 1541
    AutoBuffer<uchar> _buf;
    uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0;
    size_t bufesz = (cvtsrc1 ? wsz : 0) +
                    (cvtsrc2 || haveScalar ? wsz : 0) +
                    (cvtdst ? wsz : 0) +
                    (haveMask ? dsz : 0);
1542
    BinaryFunc func = tab[CV_MAT_DEPTH(wtype)];
1543

1544 1545 1546 1547
    if( !haveScalar )
    {
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1548

1549 1550
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1551

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
        if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst )
            blocksize = std::min(blocksize, blocksize0);

        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        if( cvtsrc2 )
            buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1566

1567
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1568
        {
1569
            for( size_t j = 0; j < total; j += blocksize )
1570
            {
1571
                int bsz = (int)MIN(total - j, blocksize);
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1];
                uchar* dptr = ptrs[2];
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
                if( ptrs[0] == ptrs[1] )
                    sptr2 = sptr1;
                else if( cvtsrc2 )
                {
                    cvtsrc2( sptr2, 0, 0, 0, buf2, 0, bszn, 0 );
                    sptr2 = buf2;
                }
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz;
1608 1609
            }
        }
1610 1611 1612 1613 1614
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1615

1616 1617
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1629

1630
        convertAndUnrollScalar( src2, wtype, buf2, blocksize);
1631

1632
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1633
        {
1634 1635
            for( size_t j = 0; j < total; j += blocksize )
            {
1636
                int bsz = (int)MIN(total - j, blocksize);
1637 1638 1639 1640
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0];
                const uchar* sptr2 = buf2;
                uchar* dptr = ptrs[1];
1641

1642 1643 1644 1645 1646
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
1647

1648 1649
                if( swapped12 )
                    std::swap(sptr1, sptr2);
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz;
            }
1672 1673 1674
        }
    }
}
1675

1676
static BinaryFunc* getAddTab()
1677
{
1678 1679 1680 1681 1682 1683 1684 1685
    static BinaryFunc addTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(add8u), (BinaryFunc)GET_OPTIMIZED(add8s),
        (BinaryFunc)GET_OPTIMIZED(add16u), (BinaryFunc)GET_OPTIMIZED(add16s),
        (BinaryFunc)GET_OPTIMIZED(add32s),
        (BinaryFunc)GET_OPTIMIZED(add32f), (BinaryFunc)add64f,
        0
    };
1686

1687 1688 1689 1690
    return addTab;
}

static BinaryFunc* getSubTab()
1691
{
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702
    static BinaryFunc subTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(sub8u), (BinaryFunc)GET_OPTIMIZED(sub8s),
        (BinaryFunc)GET_OPTIMIZED(sub16u), (BinaryFunc)GET_OPTIMIZED(sub16s),
        (BinaryFunc)GET_OPTIMIZED(sub32s),
        (BinaryFunc)GET_OPTIMIZED(sub32f), (BinaryFunc)sub64f,
        0
    };

    return subTab;
}
1703

1704
static BinaryFunc* getAbsDiffTab()
1705
{
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
    static BinaryFunc absDiffTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s),
        (BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s),
        (BinaryFunc)GET_OPTIMIZED(absdiff32s),
        (BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f,
        0
    };

    return absDiffTab;
}
1717 1718

}
1719

1720 1721
void cv::add( InputArray src1, InputArray src2, OutputArray dst,
          InputArray mask, int dtype )
1722
{
1723
    arithm_op(src1, src2, dst, mask, dtype, getAddTab(), false, 0, OCL_OP_ADD );
1724 1725
}

1726 1727
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
               InputArray mask, int dtype )
1728
{
A
Andrey Kamaev 已提交
1729
#ifdef HAVE_TEGRA_OPTIMIZATION
1730
    if (mask.empty() && src1.depth() == CV_8U && src2.depth() == CV_8U)
1731
    {
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
        if (dtype == -1 && dst.fixedType())
            dtype = dst.depth();

        if (!dst.fixedType() || dtype == dst.depth())
        {
            if (dtype == CV_16S)
            {
                Mat _dst = dst.getMat();
                if(tegra::subtract_8u8u16s(src1.getMat(), src2.getMat(), _dst))
                    return;
            }
            else if (dtype == CV_32F)
            {
                Mat _dst = dst.getMat();
                if(tegra::subtract_8u8u32f(src1.getMat(), src2.getMat(), _dst))
                    return;
            }
            else if (dtype == CV_8S)
            {
                Mat _dst = dst.getMat();
                if(tegra::subtract_8u8u8s(src1.getMat(), src2.getMat(), _dst))
                    return;
            }
        }
1756
    }
A
Andrey Kamaev 已提交
1757
#endif
1758
    arithm_op(src1, src2, dst, mask, dtype, getSubTab(), false, 0, OCL_OP_SUB );
1759 1760
}

1761
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
1762
{
1763
    arithm_op(src1, src2, dst, noArray(), -1, getAbsDiffTab(), false, 0, OCL_OP_ABSDIFF);
1764
}
1765 1766 1767 1768 1769

/****************************************************************************************\
*                                    multiply/divide                                     *
\****************************************************************************************/

1770 1771 1772
namespace cv
{

1773
template<typename T, typename WT> static void
1774 1775
mul_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, WT scale )
1776
{
1777 1778 1779
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1780

1781
    if( scale == (WT)1. )
1782
    {
1783
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1784
        {
V
Victoria Zhislina 已提交
1785
            int i=0;
1786
            #if CV_ENABLE_UNROLLED
V
Victoria Zhislina 已提交
1787
            for(; i <= size.width - 4; i += 4 )
1788
            {
1789 1790 1791 1792 1793 1794
                T t0;
                T t1;
                t0 = saturate_cast<T>(src1[i  ] * src2[i  ]);
                t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
                dst[i  ] = t0;
                dst[i+1] = t1;
1795 1796 1797

                t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
                t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
1798 1799
                dst[i+2] = t0;
                dst[i+3] = t1;
1800
            }
V
Victoria Zhislina 已提交
1801
            #endif
1802 1803 1804 1805 1806 1807
            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(src1[i] * src2[i]);
        }
    }
    else
    {
1808
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1809
        {
V
Victoria Zhislina 已提交
1810
            int i = 0;
1811
            #if CV_ENABLE_UNROLLED
V
Victoria Zhislina 已提交
1812
            for(; i <= size.width - 4; i += 4 )
1813 1814 1815 1816 1817 1818 1819 1820 1821
            {
                T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
                T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
                dst[i] = t0; dst[i+1] = t1;

                t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
                t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
                dst[i+2] = t0; dst[i+3] = t1;
            }
V
Victoria Zhislina 已提交
1822
            #endif
1823 1824 1825 1826 1827 1828 1829
            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
        }
    }
}

template<typename T> static void
1830 1831
div_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, double scale )
1832
{
1833 1834 1835
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1836

1837
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1838 1839
    {
        int i = 0;
1840
        #if CV_ENABLE_UNROLLED
1841 1842 1843 1844 1845 1846 1847 1848 1849
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1850

1851 1852 1853 1854
                T z0 = saturate_cast<T>(src2[i+1] * ((double)src1[i] * b));
                T z1 = saturate_cast<T>(src2[i] * ((double)src1[i+1] * b));
                T z2 = saturate_cast<T>(src2[i+3] * ((double)src1[i+2] * a));
                T z3 = saturate_cast<T>(src2[i+2] * ((double)src1[i+3] * a));
1855

1856 1857 1858 1859 1860 1861 1862 1863 1864
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(src1[i+1]*scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(src1[i+2]*scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(src1[i+3]*scale/src2[i+3]) : 0;
1865

1866 1867 1868 1869
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
V
Victoria Zhislina 已提交
1870
        #endif
1871 1872 1873 1874 1875 1876
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
    }
}

template<typename T> static void
1877 1878
recip_( const T*, size_t, const T* src2, size_t step2,
        T* dst, size_t step, Size size, double scale )
1879
{
1880 1881
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1882

1883
    for( ; size.height--; src2 += step2, dst += step )
1884 1885
    {
        int i = 0;
1886
        #if CV_ENABLE_UNROLLED
1887 1888 1889 1890 1891 1892 1893 1894 1895
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1896

1897 1898 1899 1900
                T z0 = saturate_cast<T>(src2[i+1] * b);
                T z1 = saturate_cast<T>(src2[i] * b);
                T z2 = saturate_cast<T>(src2[i+3] * a);
                T z3 = saturate_cast<T>(src2[i+2] * a);
1901

1902 1903 1904 1905 1906 1907 1908 1909 1910
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(scale/src2[i+3]) : 0;
1911

1912 1913 1914 1915
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
V
Victoria Zhislina 已提交
1916
        #endif
1917 1918 1919 1920
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
    }
}
1921 1922


1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
static void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1952

1953 1954 1955 1956 1957
static void mul32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}
1958

1959 1960 1961 1962 1963
static void mul64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1964

1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
static void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    if( src1 )
        div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
    else
        recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                   ushort* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16s( const short* src1, size_t step1, const short* src2, size_t step2,
                   short* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
2033

2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void recip32s( const int* src1, size_t step1, const int* src2, size_t step2,
                   int* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip32f( const float* src1, size_t step1, const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip64f( const double* src1, size_t step1, const double* src2, size_t step2,
                   double* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
2051 2052


2053
static BinaryFunc* getMulTab()
2054
{
2055 2056 2057 2058 2059 2060 2061 2062 2063
    static BinaryFunc mulTab[] =
    {
        (BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
        (BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
        (BinaryFunc)mul64f, 0
    };

    return mulTab;
}
2064

2065
static BinaryFunc* getDivTab()
2066
{
2067 2068 2069 2070 2071 2072
    static BinaryFunc divTab[] =
    {
        (BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
        (BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
        (BinaryFunc)div64f, 0
    };
2073

2074 2075 2076 2077
    return divTab;
}

static BinaryFunc* getRecipTab()
2078
{
2079 2080 2081 2082 2083 2084
    static BinaryFunc recipTab[] =
    {
        (BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
        (BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
        (BinaryFunc)recip64f, 0
    };
2085

2086 2087
    return recipTab;
}
2088

2089
}
2090

2091
void cv::multiply(InputArray src1, InputArray src2,
2092
                  OutputArray dst, double scale, int dtype)
2093
{
2094 2095
    arithm_op(src1, src2, dst, noArray(), dtype, getMulTab(),
              true, &scale, scale == 1. ? OCL_OP_MUL : OCL_OP_MUL_SCALE);
2096
}
2097

2098
void cv::divide(InputArray src1, InputArray src2,
2099 2100
                OutputArray dst, double scale, int dtype)
{
2101
    arithm_op(src1, src2, dst, noArray(), dtype, getDivTab(), true, &scale, OCL_OP_DIV_SCALE);
2102 2103
}

2104
void cv::divide(double scale, InputArray src2,
2105 2106
                OutputArray dst, int dtype)
{
2107
    arithm_op(src2, src2, dst, noArray(), dtype, getRecipTab(), true, &scale, OCL_OP_RECIP_SCALE);
2108 2109
}

2110 2111 2112 2113
/****************************************************************************************\
*                                      addWeighted                                       *
\****************************************************************************************/

2114 2115 2116
namespace cv
{

2117
template<typename T, typename WT> static void
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size size, void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2];
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
2128
    {
2129
        int x = 0;
2130
        #if CV_ENABLE_UNROLLED
2131
        for( ; x <= size.width - 4; x += 4 )
2132
        {
2133 2134 2135
            T t0 = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
            T t1 = saturate_cast<T>(src1[x+1]*alpha + src2[x+1]*beta + gamma);
            dst[x] = t0; dst[x+1] = t1;
2136

2137 2138 2139
            t0 = saturate_cast<T>(src1[x+2]*alpha + src2[x+2]*beta + gamma);
            t1 = saturate_cast<T>(src1[x+3]*alpha + src2[x+3]*beta + gamma);
            dst[x+2] = t0; dst[x+3] = t1;
2140
        }
V
Victoria Zhislina 已提交
2141
        #endif
2142 2143
        for( ; x < size.width; x++ )
            dst[x] = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
2144 2145 2146 2147 2148
    }
}


static void
2149 2150 2151 2152 2153 2154 2155
addWeighted8u( const uchar* src1, size_t step1,
               const uchar* src2, size_t step2,
               uchar* dst, size_t step, Size size,
               void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    float alpha = (float)scalars[0], beta = (float)scalars[1], gamma = (float)scalars[2];
2156

2157
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
2158
    {
2159
        int x = 0;
2160

2161 2162
#if CV_SSE2
        if( USE_SSE2 )
2163
        {
2164 2165
            __m128 a4 = _mm_set1_ps(alpha), b4 = _mm_set1_ps(beta), g4 = _mm_set1_ps(gamma);
            __m128i z = _mm_setzero_si128();
2166

2167
            for( ; x <= size.width - 8; x += 8 )
2168
            {
2169 2170
                __m128i u = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src1 + x)), z);
                __m128i v = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src2 + x)), z);
2171

2172 2173 2174 2175
                __m128 u0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(u, z));
                __m128 u1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(u, z));
                __m128 v0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v, z));
                __m128 v1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v, z));
2176

2177 2178 2179
                u0 = _mm_add_ps(_mm_mul_ps(u0, a4), _mm_mul_ps(v0, b4));
                u1 = _mm_add_ps(_mm_mul_ps(u1, a4), _mm_mul_ps(v1, b4));
                u0 = _mm_add_ps(u0, g4); u1 = _mm_add_ps(u1, g4);
2180

2181 2182
                u = _mm_packs_epi32(_mm_cvtps_epi32(u0), _mm_cvtps_epi32(u1));
                u = _mm_packus_epi16(u, u);
2183

2184
                _mm_storel_epi64((__m128i*)(dst + x), u);
2185 2186
            }
        }
2187
#endif
2188
        #if CV_ENABLE_UNROLLED
2189
        for( ; x <= size.width - 4; x += 4 )
2190
        {
2191 2192 2193
            float t0, t1;
            t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            t1 = CV_8TO32F(src1[x+1])*alpha + CV_8TO32F(src2[x+1])*beta + gamma;
2194

2195 2196
            dst[x] = saturate_cast<uchar>(t0);
            dst[x+1] = saturate_cast<uchar>(t1);
2197

2198 2199
            t0 = CV_8TO32F(src1[x+2])*alpha + CV_8TO32F(src2[x+2])*beta + gamma;
            t1 = CV_8TO32F(src1[x+3])*alpha + CV_8TO32F(src2[x+3])*beta + gamma;
2200

2201 2202 2203
            dst[x+2] = saturate_cast<uchar>(t0);
            dst[x+3] = saturate_cast<uchar>(t1);
        }
V
Victoria Zhislina 已提交
2204
        #endif
2205

2206 2207 2208 2209
        for( ; x < size.width; x++ )
        {
            float t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            dst[x] = saturate_cast<uchar>(t0);
2210 2211 2212 2213
        }
    }
}

2214 2215
static void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                           schar* dst, size_t step, Size sz, void* scalars )
2216
{
2217
    addWeighted_<schar, float>(src1, step1, src2, step2, dst, step, sz, scalars);
2218 2219
}

2220 2221
static void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                            ushort* dst, size_t step, Size sz, void* scalars )
2222
{
2223 2224
    addWeighted_<ushort, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
2225

2226 2227
static void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2,
                            short* dst, size_t step, Size sz, void* scalars )
2228
{
2229 2230
    addWeighted_<short, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
2231

2232 2233
static void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2,
                            int* dst, size_t step, Size sz, void* scalars )
2234
{
2235
    addWeighted_<int, double>(src1, step1, src2, step2, dst, step, sz, scalars);
2236 2237
}

2238 2239
static void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2,
                            float* dst, size_t step, Size sz, void* scalars )
2240
{
2241 2242
    addWeighted_<float, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
2243

2244 2245 2246 2247 2248
static void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2,
                            double* dst, size_t step, Size sz, void* scalars )
{
    addWeighted_<double, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
V
Vadim Pisarevsky 已提交
2249

2250
static BinaryFunc* getAddWeightedTab()
2251
{
2252 2253 2254 2255 2256 2257 2258 2259 2260
    static BinaryFunc addWeightedTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(addWeighted8u), (BinaryFunc)GET_OPTIMIZED(addWeighted8s), (BinaryFunc)GET_OPTIMIZED(addWeighted16u),
        (BinaryFunc)GET_OPTIMIZED(addWeighted16s), (BinaryFunc)GET_OPTIMIZED(addWeighted32s), (BinaryFunc)addWeighted32f,
        (BinaryFunc)addWeighted64f, 0
    };

    return addWeightedTab;
}
2261

2262
}
2263

2264
void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
2265 2266 2267
                      double beta, double gamma, OutputArray dst, int dtype )
{
    double scalars[] = {alpha, beta, gamma};
2268
    arithm_op(src1, src2, dst, noArray(), dtype, getAddWeightedTab(), true, scalars, OCL_OP_ADDW);
2269 2270
}

2271

2272
/****************************************************************************************\
2273
*                                          compare                                       *
2274 2275
\****************************************************************************************/

2276
namespace cv
2277 2278
{

2279 2280 2281
template<typename T> static void
cmp_(const T* src1, size_t step1, const T* src2, size_t step2,
     uchar* dst, size_t step, Size size, int code)
2282
{
2283 2284 2285
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
2286
    {
2287 2288 2289
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
2290
    }
2291

2292
    if( code == CMP_GT || code == CMP_LE )
2293
    {
2294 2295 2296 2297
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
2298
            #if CV_ENABLE_UNROLLED
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] > src2[x]) ^ m;
                t1 = -(src1[x+1] > src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] > src2[x+2]) ^ m;
                t1 = -(src1[x+3] > src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
V
Victoria Zhislina 已提交
2309
            #endif
2310 2311
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
2312
               }
2313
    }
2314
    else if( code == CMP_EQ || code == CMP_NE )
2315
    {
2316 2317 2318 2319
        int m = code == CMP_EQ ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
2320
            #if CV_ENABLE_UNROLLED
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] == src2[x]) ^ m;
                t1 = -(src1[x+1] == src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] == src2[x+2]) ^ m;
                t1 = -(src1[x+3] == src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
V
Victoria Zhislina 已提交
2331
            #endif
2332 2333 2334
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
2335
    }
2336
}
2337

K
kdrobnyh 已提交
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
#if ARITHM_USE_IPP
inline static IppCmpOp convert_cmp(int _cmpop)
{
    return _cmpop == CMP_EQ ? ippCmpEq :
        _cmpop == CMP_GT ? ippCmpGreater :
        _cmpop == CMP_GE ? ippCmpGreaterEq :
        _cmpop == CMP_LT ? ippCmpLess :
        _cmpop == CMP_LE ? ippCmpLessEq :
        (IppCmpOp)-1;
}
#endif
2349

2350 2351
static void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2352
{
K
kdrobnyh 已提交
2353 2354 2355 2356 2357 2358 2359 2360 2361
#if ARITHM_USE_IPP
    IppCmpOp op = convert_cmp(*(int *)_cmpop);
    if( op  >= 0 )
    {
        fixSteps(size, sizeof(dst[0]), step1, step2, step);
        if( ippiCompare_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)size, op) >= 0 )
            return;
    }
#endif
2362
  //vz optimized  cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2363
    int code = *(int*)_cmpop;
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
    {
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
    }

    if( code == CMP_GT || code == CMP_LE )
    {
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x =0;
2379 2380
            #if CV_SSE2
            if( USE_SSE2 ){
2381 2382
                __m128i m128 = code == CMP_GT ? _mm_setzero_si128() : _mm_set1_epi8 (-1);
                __m128i c128 = _mm_set1_epi8 (-128);
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
                for( ; x <= size.width - 16; x += 16 )
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    // no simd for 8u comparison, that's why we need the trick
                    r00 = _mm_sub_epi8(r00,c128);
                    r10 = _mm_sub_epi8(r10,c128);

                    r00 =_mm_xor_si128(_mm_cmpgt_epi8(r00, r10), m128);
                    _mm_storeu_si128((__m128i*)(dst + x),r00);

                }
            }
2396 2397
           #endif

2398
            for( ; x < size.width; x++ ){
2399
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
2400
            }
2401 2402 2403 2404 2405
        }
    }
    else if( code == CMP_EQ || code == CMP_NE )
    {
        int m = code == CMP_EQ ? 0 : 255;
2406
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
2407 2408
        {
            int x = 0;
2409 2410
            #if CV_SSE2
            if( USE_SSE2 ){
2411
                __m128i m128 =  code == CMP_EQ ? _mm_setzero_si128() : _mm_set1_epi8 (-1);
2412 2413 2414 2415 2416 2417 2418 2419
                for( ; x <= size.width - 16; x += 16 )
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    r00 = _mm_xor_si128 ( _mm_cmpeq_epi8 (r00, r10), m128);
                    _mm_storeu_si128((__m128i*)(dst + x), r00);
                }
            }
2420 2421 2422 2423 2424
           #endif
           for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
    }
2425 2426
}

2427 2428
static void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2429
{
2430
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2431 2432
}

2433 2434
static void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2435
{
K
kdrobnyh 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444
#if ARITHM_USE_IPP
    IppCmpOp op = convert_cmp(*(int *)_cmpop);
    if( op  >= 0 )
    {
        fixSteps(size, sizeof(dst[0]), step1, step2, step);
        if( ippiCompare_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)size, op) >= 0 )
            return;
    }
#endif
2445
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2446 2447
}

2448 2449
static void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2450
{
K
kdrobnyh 已提交
2451 2452 2453 2454 2455 2456 2457 2458 2459
#if ARITHM_USE_IPP
    IppCmpOp op = convert_cmp(*(int *)_cmpop);
    if( op  > 0 )
    {
        fixSteps(size, sizeof(dst[0]), step1, step2, step);
        if( ippiCompare_16s_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)size, op) >= 0 )
            return;
    }
#endif
2460 2461
   //vz optimized cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);

2462
    int code = *(int*)_cmpop;
2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
    {
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
    }

    if( code == CMP_GT || code == CMP_LE )
    {
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x =0;
2478 2479
            #if CV_SSE2
            if( USE_SSE2){//
2480
                __m128i m128 =  code == CMP_GT ? _mm_setzero_si128() : _mm_set1_epi16 (-1);
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
                for( ; x <= size.width - 16; x += 16 )
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    r00 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r00, r10), m128);
                    __m128i r01 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
                    __m128i r11 = _mm_loadu_si128((const __m128i*)(src2 + x + 8));
                    r01 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r01, r11), m128);
                    r11 = _mm_packs_epi16(r00, r01);
                    _mm_storeu_si128((__m128i*)(dst + x), r11);
                }
                if( x <= size.width-8)
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    r00 = _mm_xor_si128 ( _mm_cmpgt_epi16 (r00, r10), m128);
                    r10 = _mm_packs_epi16(r00, r00);
                    _mm_storel_epi64((__m128i*)(dst + x), r10);

                    x += 8;
                }
            }
2503 2504
           #endif

2505
            for( ; x < size.width; x++ ){
2506
                 dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
2507
            }
2508 2509 2510 2511 2512
        }
    }
    else if( code == CMP_EQ || code == CMP_NE )
    {
        int m = code == CMP_EQ ? 0 : 255;
2513
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
2514 2515
        {
            int x = 0;
2516 2517
            #if CV_SSE2
            if( USE_SSE2 ){
2518
                __m128i m128 =  code == CMP_EQ ? _mm_setzero_si128() : _mm_set1_epi16 (-1);
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
                for( ; x <= size.width - 16; x += 16 )
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    r00 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r00, r10), m128);
                    __m128i r01 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
                    __m128i r11 = _mm_loadu_si128((const __m128i*)(src2 + x + 8));
                    r01 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r01, r11), m128);
                    r11 = _mm_packs_epi16(r00, r01);
                    _mm_storeu_si128((__m128i*)(dst + x), r11);
                }
                if( x <= size.width - 8)
                {
                    __m128i r00 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r10 = _mm_loadu_si128((const __m128i*)(src2 + x));
                    r00 = _mm_xor_si128 ( _mm_cmpeq_epi16 (r00, r10), m128);
                    r10 = _mm_packs_epi16(r00, r00);
                    _mm_storel_epi64((__m128i*)(dst + x), r10);

                    x += 8;
                }
            }
2541 2542 2543 2544 2545
           #endif
           for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
    }
2546 2547
}

2548 2549 2550 2551 2552
static void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2,
                   uchar* dst, size_t step, Size size, void* _cmpop)
{
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2553

2554 2555
static void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2556
{
K
kdrobnyh 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565
#if ARITHM_USE_IPP
    IppCmpOp op = convert_cmp(*(int *)_cmpop);
    if( op  >= 0 )
    {
        fixSteps(size, sizeof(dst[0]), step1, step2, step);
        if( ippiCompare_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)size, op) >= 0 )
            return;
    }
#endif
2566 2567
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2568

2569 2570
static void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2571
{
2572
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2573 2574
}

2575
static BinaryFunc getCmpFunc(int depth)
2576
{
2577 2578 2579 2580 2581 2582 2583 2584
    static BinaryFunc cmpTab[] =
    {
        (BinaryFunc)GET_OPTIMIZED(cmp8u), (BinaryFunc)GET_OPTIMIZED(cmp8s),
        (BinaryFunc)GET_OPTIMIZED(cmp16u), (BinaryFunc)GET_OPTIMIZED(cmp16s),
        (BinaryFunc)GET_OPTIMIZED(cmp32s),
        (BinaryFunc)GET_OPTIMIZED(cmp32f), (BinaryFunc)cmp64f,
        0
    };
2585

2586 2587
    return cmpTab[depth];
}
2588

2589
static double getMinVal(int depth)
2590
{
2591 2592 2593
    static const double tab[] = {0, -128, 0, -32768, INT_MIN, -FLT_MAX, -DBL_MAX, 0};
    return tab[depth];
}
2594

2595
static double getMaxVal(int depth)
2596
{
2597 2598 2599
    static const double tab[] = {255, 127, 65535, 32767, INT_MAX, FLT_MAX, DBL_MAX, 0};
    return tab[depth];
}
2600 2601 2602

}

2603
void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
2604 2605 2606
{
    CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ ||
               op == CMP_NE || op == CMP_GE || op == CMP_GT );
2607

2608 2609
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
2610

2611
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() )
2612
    {
2613 2614
        int cn = src1.channels();
        _dst.create(src1.size(), CV_8UC(cn));
2615 2616
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
2617
        getCmpFunc(src1.depth())(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
2618 2619
        return;
    }
2620

2621
    bool haveScalar = false;
2622

2623
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
2624 2625 2626
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
2627
        {
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            op = op == CMP_LT ? CMP_GT : op == CMP_LE ? CMP_GE :
                op == CMP_GE ? CMP_LE : op == CMP_GT ? CMP_LT : op;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same type), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
2639

2640

2641
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth();
2642

2643 2644 2645
    _dst.create(src1.dims, src1.size, CV_8UC(cn));
    src1 = src1.reshape(1); src2 = src2.reshape(1);
    Mat dst = _dst.getMat().reshape(1);
2646

2647 2648
    size_t esz = src1.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2649
    BinaryFunc func = getCmpFunc(depth1);
2650

2651
    if( !haveScalar )
2652
    {
2653 2654
        const Mat* arrays[] = { &src1, &src2, &dst, 0 };
        uchar* ptrs[3];
2655

2656 2657
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size;
2658

2659 2660
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            func( ptrs[0], 0, ptrs[1], 0, ptrs[2], 0, Size((int)total, 1), &op );
2661
    }
2662
    else
2663
    {
2664 2665
        const Mat* arrays[] = { &src1, &dst, 0 };
        uchar* ptrs[2];
2666

2667 2668
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
2669

2670 2671 2672 2673 2674 2675
        AutoBuffer<uchar> _buf(blocksize*esz);
        uchar *buf = _buf;

        if( depth1 > CV_32S )
            convertAndUnrollScalar( src2, depth1, buf, blocksize );
        else
2676
        {
2677 2678 2679 2680 2681 2682 2683
            double fval=0;
            getConvertFunc(depth2, CV_64F)(src2.data, 0, 0, 0, (uchar*)&fval, 0, Size(1,1), 0);
            if( fval < getMinVal(depth1) )
            {
                dst = Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0);
                return;
            }
2684

2685 2686 2687 2688 2689
            if( fval > getMaxVal(depth1) )
            {
                dst = Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0);
                return;
            }
2690

2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
            int ival = cvRound(fval);
            if( fval != ival )
            {
                if( op == CMP_LT || op == CMP_GE )
                    ival = cvCeil(fval);
                else if( op == CMP_LE || op == CMP_GT )
                    ival = cvFloor(fval);
                else
                {
                    dst = Scalar::all(op == CMP_NE ? 255 : 0);
                    return;
                }
            }
            convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, buf, blocksize);
        }
2706

2707
        for( size_t i = 0; i < it.nplanes; i++, ++it )
2708
        {
2709 2710
            for( size_t j = 0; j < total; j += blocksize )
            {
2711
                int bsz = (int)MIN(total - j, blocksize);
2712 2713 2714 2715 2716
                func( ptrs[0], 0, buf, 0, ptrs[1], 0, Size(bsz, 1), &op);
                ptrs[0] += bsz*esz;
                ptrs[1] += bsz;
            }
        }
2717
    }
2718
}
2719

2720 2721 2722
/****************************************************************************************\
*                                        inRange                                         *
\****************************************************************************************/
2723

2724 2725
namespace cv
{
2726

2727 2728 2729 2730 2731 2732 2733 2734
template<typename T> static void
inRange_(const T* src1, size_t step1, const T* src2, size_t step2,
         const T* src3, size_t step3, uchar* dst, size_t step,
         Size size)
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step3 /= sizeof(src3[0]);
2735

2736
    for( ; size.height--; src1 += step1, src2 += step2, src3 += step3, dst += step )
V
Vadim Pisarevsky 已提交
2737
    {
2738
        int x = 0;
2739
        #if CV_ENABLE_UNROLLED
2740
        for( ; x <= size.width - 4; x += 4 )
V
Vadim Pisarevsky 已提交
2741
        {
2742 2743 2744 2745 2746 2747 2748
            int t0, t1;
            t0 = src2[x] <= src1[x] && src1[x] <= src3[x];
            t1 = src2[x+1] <= src1[x+1] && src1[x+1] <= src3[x+1];
            dst[x] = (uchar)-t0; dst[x+1] = (uchar)-t1;
            t0 = src2[x+2] <= src1[x+2] && src1[x+2] <= src3[x+2];
            t1 = src2[x+3] <= src1[x+3] && src1[x+3] <= src3[x+3];
            dst[x+2] = (uchar)-t0; dst[x+3] = (uchar)-t1;
V
Vadim Pisarevsky 已提交
2749
        }
V
Victoria Zhislina 已提交
2750
        #endif
2751 2752
        for( ; x < size.width; x++ )
            dst[x] = (uchar)-(src2[x] <= src1[x] && src1[x] <= src3[x]);
V
Vadim Pisarevsky 已提交
2753
    }
2754 2755
}

2756

2757 2758
static void inRange8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                      const uchar* src3, size_t step3, uchar* dst, size_t step, Size size)
2759
{
2760 2761
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2762

2763 2764
static void inRange8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                      const schar* src3, size_t step3, uchar* dst, size_t step, Size size)
2765
{
2766 2767
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2768

2769 2770
static void inRange16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                       const ushort* src3, size_t step3, uchar* dst, size_t step, Size size)
2771
{
2772 2773
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2774

2775 2776 2777 2778
static void inRange16s(const short* src1, size_t step1, const short* src2, size_t step2,
                       const short* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2779 2780
}

2781 2782
static void inRange32s(const int* src1, size_t step1, const int* src2, size_t step2,
                       const int* src3, size_t step3, uchar* dst, size_t step, Size size)
2783
{
2784 2785
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2786

2787 2788 2789 2790
static void inRange32f(const float* src1, size_t step1, const float* src2, size_t step2,
                       const float* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2791 2792
}

2793 2794
static void inRange64f(const double* src1, size_t step1, const double* src2, size_t step2,
                       const double* src3, size_t step3, uchar* dst, size_t step, Size size)
2795
{
2796
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2797
}
2798

2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn)
{
    int k = cn % 4 ? cn % 4 : 4;
    size_t i, j;
    if( k == 1 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j];
    else if( k == 2 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1];
    else if( k == 3 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2];
    else
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2] & src[j+3];
2815

2816 2817 2818 2819
    for( ; k < cn; k += 4 )
    {
        for( i = 0, j = k; i < len; i++, j += cn )
            dst[i] &= src[j] & src[j+1] & src[j+2] & src[j+3];
V
Vadim Pisarevsky 已提交
2820
    }
2821
}
2822

2823 2824
typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                             const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz );
2825

2826
static InRangeFunc getInRangeFunc(int depth)
2827
{
2828 2829 2830 2831 2832 2833 2834 2835 2836
    static InRangeFunc inRangeTab[] =
    {
        (InRangeFunc)GET_OPTIMIZED(inRange8u), (InRangeFunc)GET_OPTIMIZED(inRange8s), (InRangeFunc)GET_OPTIMIZED(inRange16u),
        (InRangeFunc)GET_OPTIMIZED(inRange16s), (InRangeFunc)GET_OPTIMIZED(inRange32s), (InRangeFunc)GET_OPTIMIZED(inRange32f),
        (InRangeFunc)inRange64f, 0
    };

    return inRangeTab[depth];
}
2837

2838 2839
}

2840 2841
void cv::inRange(InputArray _src, InputArray _lowerb,
                 InputArray _upperb, OutputArray _dst)
2842 2843 2844
{
    int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind();
    Mat src = _src.getMat(), lb = _lowerb.getMat(), ub = _upperb.getMat();
2845

2846
    bool lbScalar = false, ubScalar = false;
2847

2848
    if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) ||
2849 2850 2851 2852 2853 2854 2855
        src.size != lb.size || src.type() != lb.type() )
    {
        if( !checkScalar(lb, src.type(), lkind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The lower bounary is neither an array of the same size and same type as src, nor a scalar");
        lbScalar = true;
    }
2856

2857
    if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) ||
2858 2859 2860 2861 2862 2863 2864
        src.size != ub.size || src.type() != ub.type() )
    {
        if( !checkScalar(ub, src.type(), ukind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The upper bounary is neither an array of the same size and same type as src, nor a scalar");
        ubScalar = true;
    }
2865

2866
    CV_Assert( ((int)lbScalar ^ (int)ubScalar) == 0 );
2867

2868
    int cn = src.channels(), depth = src.depth();
2869

2870 2871
    size_t esz = src.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2872

2873 2874
    _dst.create(src.dims, src.size, CV_8U);
    Mat dst = _dst.getMat();
2875
    InRangeFunc func = getInRangeFunc(depth);
2876

2877 2878 2879
    const Mat* arrays_sc[] = { &src, &dst, 0 };
    const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 };
    uchar* ptrs[4];
2880

2881 2882
    NAryMatIterator it(lbScalar && ubScalar ? arrays_sc : arrays_nosc, ptrs);
    size_t total = it.size, blocksize = std::min(total, blocksize0);
2883

2884 2885 2886
    AutoBuffer<uchar> _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128);
    uchar *buf = _buf, *mbuf = buf, *lbuf = 0, *ubuf = 0;
    buf = alignPtr(buf + blocksize*cn, 16);
2887

2888 2889 2890 2891
    if( lbScalar && ubScalar )
    {
        lbuf = buf;
        ubuf = buf = alignPtr(buf + blocksize*esz, 16);
2892

2893 2894
        CV_Assert( lb.type() == ub.type() );
        int scdepth = lb.depth();
2895

2896 2897 2898 2899
        if( scdepth != depth && depth < CV_32S )
        {
            int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16);
            int* iubuf = ilbuf + cn;
2900

2901 2902 2903
            BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S);
            sccvtfunc(lb.data, 0, 0, 0, (uchar*)ilbuf, 0, Size(cn, 1), 0);
            sccvtfunc(ub.data, 0, 0, 0, (uchar*)iubuf, 0, Size(cn, 1), 0);
2904
            int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth));
2905

2906 2907 2908 2909 2910 2911 2912 2913
            for( int k = 0; k < cn; k++ )
            {
                if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval )
                    ilbuf[k] = minval+1, iubuf[k] = minval;
            }
            lb = Mat(cn, 1, CV_32S, ilbuf);
            ub = Mat(cn, 1, CV_32S, iubuf);
        }
2914

2915 2916 2917
        convertAndUnrollScalar( lb, src.type(), lbuf, blocksize );
        convertAndUnrollScalar( ub, src.type(), ubuf, blocksize );
    }
2918

2919
    for( size_t i = 0; i < it.nplanes; i++, ++it )
V
Vadim Pisarevsky 已提交
2920
    {
2921 2922
        for( size_t j = 0; j < total; j += blocksize )
        {
2923
            int bsz = (int)MIN(total - j, blocksize);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
            size_t delta = bsz*esz;
            uchar *lptr = lbuf, *uptr = ubuf;
            if( !lbScalar )
            {
                lptr = ptrs[2];
                ptrs[2] += delta;
            }
            if( !ubScalar )
            {
                int idx = !lbScalar ? 3 : 2;
                uptr = ptrs[idx];
                ptrs[idx] += delta;
            }
            func( ptrs[0], 0, lptr, 0, uptr, 0, cn == 1 ? ptrs[1] : mbuf, 0, Size(bsz*cn, 1));
2938
            if( cn > 1 )
2939 2940 2941 2942
                inRangeReduce(mbuf, ptrs[1], bsz, cn);
            ptrs[0] += delta;
            ptrs[1] += bsz;
        }
V
Vadim Pisarevsky 已提交
2943
    }
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
}

/****************************************************************************************\
*                                Earlier API: cvAdd etc.                                 *
\****************************************************************************************/

CV_IMPL void
cvNot( const CvArr* srcarr, CvArr* dstarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
2954
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2955 2956 2957 2958 2959 2960 2961 2962 2963
    cv::bitwise_not( src, dst );
}


CV_IMPL void
cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2964
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2965 2966 2967 2968 2969
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_and( src1, src2, dst, mask );
}

2970

2971 2972 2973 2974 2975
CV_IMPL void
cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2976
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_or( src1, src2, dst, mask );
}


CV_IMPL void
cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2988
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_xor( src1, src2, dst, mask );
}


CV_IMPL void
cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2999
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
3000 3001
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3002
    cv::bitwise_and( src, (const cv::Scalar&)s, dst, mask );
3003 3004 3005 3006 3007 3008 3009
}


CV_IMPL void
cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
3010
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
3011 3012
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3013
    cv::bitwise_or( src, (const cv::Scalar&)s, dst, mask );
3014 3015 3016 3017 3018 3019 3020
}


CV_IMPL void
cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
3021
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
3022 3023
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3024
    cv::bitwise_xor( src, (const cv::Scalar&)s, dst, mask );
3025 3026
}

3027

3028 3029 3030 3031
CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
3032
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
3033 3034
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3035
    cv::add( src1, src2, dst, mask, dst.type() );
3036 3037
}

3038

3039 3040 3041 3042
CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
3043
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
3044 3045
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3046
    cv::subtract( src1, src2, dst, mask, dst.type() );
3047 3048
}

3049

3050 3051 3052 3053
CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
3054
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
3055 3056
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3057
    cv::add( src1, (const cv::Scalar&)value, dst, mask, dst.type() );
3058 3059
}

3060

3061 3062 3063 3064
CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
3065
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
3066 3067
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
3068
    cv::subtract( (const cv::Scalar&)value, src1, dst, mask, dst.type() );
3069 3070
}

3071

3072 3073 3074 3075 3076
CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
3077 3078
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::multiply( src1, src2, dst, scale, dst.type() );
3079 3080
}

3081

3082 3083 3084 3085 3086
CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
3087
    CV_Assert( src2.size == dst.size && src2.channels() == dst.channels() );
3088 3089

    if( srcarr1 )
3090
        cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale, dst.type() );
3091
    else
3092
        cv::divide( scale, src2, dst, dst.type() );
3093 3094 3095 3096 3097 3098 3099 3100 3101 3102
}


CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
               const CvArr* srcarr2, double beta,
               double gamma, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
3103 3104
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() );
3105 3106 3107 3108 3109 3110 3111
}


CV_IMPL  void
cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3112
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3113 3114 3115 3116 3117 3118 3119 3120 3121

    cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3122
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3123

3124
    cv::absdiff( src1, (const cv::Scalar&)scalar, dst );
3125 3126
}

3127

3128 3129 3130 3131 3132
CV_IMPL void
cvInRange( const void* srcarr1, const void* srcarr2,
           const void* srcarr3, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3133
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
3134 3135 3136 3137

    cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst );
}

3138

3139 3140 3141 3142
CV_IMPL void
cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3143
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
3144

3145
    cv::inRange( src1, (const cv::Scalar&)lowerb, (const cv::Scalar&)upperb, dst );
3146 3147 3148 3149 3150 3151 3152
}


CV_IMPL void
cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3153
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
3154 3155 3156 3157 3158 3159 3160 3161 3162

    cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op );
}


CV_IMPL void
cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3163
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
3164 3165 3166 3167 3168 3169 3170 3171 3172

    cv::compare( src1, value, dst, cmp_op );
}


CV_IMPL void
cvMin( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3173
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3174 3175 3176 3177 3178 3179 3180 3181 3182

    cv::min( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvMax( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3183
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3184 3185 3186 3187

    cv::max( src1, cv::cvarrToMat(srcarr2), dst );
}

3188

3189 3190 3191 3192
CV_IMPL void
cvMinS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3193
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3194 3195 3196 3197 3198 3199 3200 3201 3202

    cv::min( src1, value, dst );
}


CV_IMPL void
cvMaxS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
3203
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
3204 3205 3206 3207 3208

    cv::max( src1, value, dst );
}

/* End of file. */