arithm.cpp 92.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
45
//  Arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ...
46 47 48 49 50 51 52 53
//
// */

#include "precomp.hpp"

namespace cv
{

54 55 56 57 58
#if ARITHM_USE_IPP
struct IPPArithmInitializer
{
    IPPArithmInitializer(void)
    {
59
        ippStaticInit();
60 61
    }
};
62

63 64
IPPArithmInitializer ippArithmInitializer;
#endif
65

66
struct NOP {};
67

68 69
template<typename T, class Op, class Op8>
void vBinOp8(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz)
70
{
71 72
    Op8 op8;
    Op op;
73

74 75 76
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
                        src2 += step2/sizeof(src2[0]),
                        dst += step/sizeof(dst[0]) )
77 78
    {
        int x = 0;
79

80 81
    #if CV_SSE2
        if( USE_SSE2 )
82
        {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            for( ; x <= sz.width - 32; x += 32 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 16));
                r0 = op8(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op8(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 16)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 8; x += 8 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op8(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
98
        }
99
    #endif
100

101
        for( ; x <= sz.width - 4; x += 4 )
102
        {
103 104 105 106 107 108
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
109
        }
110

111 112
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
113
    }
114
}
115

116 117 118
template<typename T, class Op, class Op16>
void vBinOp16(const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size sz)
119
{
120 121
    Op16 op16;
    Op op;
122

123 124 125
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
126 127
    {
        int x = 0;
128

129 130
    #if CV_SSE2
        if( USE_SSE2 )
131
        {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            for( ; x <= sz.width - 16; x += 16 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
                r0 = op16(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op16(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 8)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 4; x += 4 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op16(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
147
        }
148 149
        else
    #endif
150

151
        for( ; x <= sz.width - 4; x += 4 )
152
        {
153 154 155 156 157 158
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
159
        }
160

161 162
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
163
    }
164
}
165

166

167 168 169
template<class Op, class Op32>
void vBinOp32s(const int* src1, size_t step1, const int* src2, size_t step2,
               int* dst, size_t step, Size sz)
170
{
171 172
    Op32 op32;
    Op op;
173

174 175 176
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
177 178
    {
        int x = 0;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_load_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_load_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_load_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_load_si128((const __m128i*)(src2 + x + 4)));
                    _mm_store_si128((__m128i*)(dst + x), r0);
                    _mm_store_si128((__m128i*)(dst + x + 16), r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 4)));
                    _mm_storeu_si128((__m128i*)(dst + x), r0);
                    _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
                }
        }
#endif
205

206 207 208 209 210 211 212 213 214
        for( ; x <= sz.width - 4; x += 4 )
        {
            int v0 = op(src1[x], src2[x]);
            int v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
215

216 217 218 219 220
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

221

222 223 224 225 226 227
template<class Op, class Op32>
void vBinOp32f(const float* src1, size_t step1, const float* src2, size_t step2,
               float* dst, size_t step, Size sz)
{
    Op32 op32;
    Op op;
228

229 230 231 232 233
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    #if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_load_ps(src1 + x);
                    __m128 r1 = _mm_load_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_load_ps(src2 + x));
                    r1 = op32(r1,_mm_load_ps(src2 + x + 4));
                    _mm_store_ps(dst + x, r0);
                    _mm_store_ps(dst + x + 4, r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_loadu_ps(src1 + x);
                    __m128 r1 = _mm_loadu_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_loadu_ps(src2 + x));
                    r1 = op32(r1,_mm_loadu_ps(src2 + x + 4));
                    _mm_storeu_ps(dst + x, r0);
                    _mm_storeu_ps(dst + x + 4, r1);
                }
        }
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            float v0 = op(src1[x], src2[x]);
            float v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
269

270 271 272 273 274 275 276 277 278 279 280
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

template<class Op, class Op64>
void vBinOp64f(const double* src1, size_t step1, const double* src2, size_t step2,
               double* dst, size_t step, Size sz)
{
    Op64 op64;
    Op op;
281

282 283 284 285 286
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
287

288 289 290
    #if CV_SSE2
        if( USE_SSE2 && (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
            for( ; x <= sz.width - 4; x += 4 )
291
            {
292 293 294 295 296 297
                __m128d r0 = _mm_load_pd(src1 + x);
                __m128d r1 = _mm_load_pd(src1 + x + 2);
                r0 = op64(r0,_mm_load_pd(src2 + x));
                r1 = op64(r1,_mm_load_pd(src2 + x + 2));
                _mm_store_pd(dst + x, r0);
                _mm_store_pd(dst + x + 2, r1);
298 299
            }
        else
300 301 302 303 304 305 306 307 308 309
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            double v0 = op(src1[x], src2[x]);
            double v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
310

311 312
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
313
    }
314
}
315

316
#if CV_SSE2
317

318 319 320 321 322 323 324 325 326
struct _VAdd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu8(a,b); }};
struct _VSub8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu8(a,b); }};
struct _VMin8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); }};
struct _VMax8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); }};
struct _VAbsDiff8u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi8(_mm_subs_epu8(a,b),_mm_subs_epu8(b,a)); }
};
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

struct _VAdd8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi8(a,b); }};
struct _VSub8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi8(a,b); }};
struct _VMin8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_subs_epi8(a, b);
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_subs_epi8(_mm_xor_si128(d, m), m);
    }
};

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
struct _VAdd16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(a,b); }};
struct _VSub16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,b); }};
struct _VMin16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); }
};
struct _VMax16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_adds_epu16(_mm_subs_epu16(a,b),b); }
};
struct _VAbsDiff16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi16(_mm_subs_epu16(a,b),_mm_subs_epu16(b,a)); }
};
373

374 375 376 377 378 379 380 381 382 383 384 385
struct _VAdd16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi16(a,b); }};
struct _VSub16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi16(a,b); }};
struct _VMin16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a,b); }};
struct _VMax16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a,b); }};
struct _VAbsDiff16s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i M = _mm_max_epi16(a,b), m = _mm_min_epi16(a,b);
        return _mm_subs_epi16(M, m);
    }
};
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

struct _VAdd32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_add_epi32(a,b); }};
struct _VSub32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_sub_epi32(a,b); }};
struct _VMin32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_sub_epi32(a, b);
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_sub_epi32(_mm_xor_si128(d, m), m);
    }
413
};
414

415 416 417 418 419 420 421 422 423 424 425 426 427
struct _VAdd32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_add_ps(a,b); }};
struct _VSub32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_sub_ps(a,b); }};
struct _VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }};
struct _VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }};
static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
struct _VAbsDiff32f
{
    __m128 operator()(const __m128& a, const __m128& b) const
    {
        return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask);
    }
};

428 429 430 431
struct _VAdd64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_add_pd(a,b); }};
struct _VSub64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_sub_pd(a,b); }};
struct _VMin64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_min_pd(a,b); }};
struct _VMax64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_max_pd(a,b); }};
432

433 434 435 436 437 438 439
static int CV_DECL_ALIGNED(16) v64f_absmask[] = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff };
struct _VAbsDiff64f
{
    __m128d operator()(const __m128d& a, const __m128d& b) const
    {
        return _mm_and_pd(_mm_sub_pd(a,b), *(const __m128d*)v64f_absmask);
    }
440 441
};

442
struct _VAnd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_and_si128(a,b); }};
443
struct _VOr8u  { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_or_si128(a,b); }};
444
struct _VXor8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_xor_si128(a,b); }};
445
struct _VNot8u { __m128i operator()(const __m128i& a, const __m128i&) const { return _mm_andnot_si128(_mm_setzero_si128(),a); }};
446

447
#endif
448

449 450
#if CV_SSE2
#define IF_SIMD(op) op
451
#else
452
#define IF_SIMD(op) NOP
453
#endif
454

455 456 457 458
template<> inline uchar OpAdd<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a + b); }
template<> inline uchar OpSub<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a - b); }
459

460
template<typename T> struct OpAbsDiff
461
{
462 463 464 465
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()(T a, T b) const { return (T)std::abs(a - b); }
466 467
};

468 469
template<> inline short OpAbsDiff<short>::operator ()(short a, short b) const
{ return saturate_cast<short>(std::abs(a - b)); }
470

471 472
template<> inline schar OpAbsDiff<schar>::operator ()(schar a, schar b) const
{ return saturate_cast<schar>(std::abs(a - b)); }
473

474
template<typename T, typename WT=T> struct OpAbsDiffS
475
{
476 477 478 479
    typedef T type1;
    typedef WT type2;
    typedef T rtype;
    T operator()(T a, WT b) const { return saturate_cast<T>(std::abs(a - b)); }
480 481
};

482
template<typename T> struct OpAnd
483
{
484 485 486 487
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a & b; }
488 489
};

490
template<typename T> struct OpOr
491
{
492 493 494 495
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a | b; }
496 497
};

498
template<typename T> struct OpXor
499
{
500 501 502 503
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a ^ b; }
504 505
};

506
template<typename T> struct OpNot
507
{
508 509 510 511
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T ) const { return ~a; }
512
};
513

514 515 516 517 518
static inline void fixSteps(Size sz, size_t elemSize, size_t& step1, size_t& step2, size_t& step)
{
    if( sz.height == 1 )
        step1 = step2 = step = sz.width*elemSize;
}
519

520 521 522 523 524
static void add8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
525
           ippiAdd_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
526 527
           (vBinOp8<uchar, OpAdd<uchar>, IF_SIMD(_VAdd8u)>(src1, step1, src2, step2, dst, step, sz)));
}
528

529 530 531
static void add8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
532
{
533 534
    vBinOp8<schar, OpAdd<schar>, IF_SIMD(_VAdd8s)>(src1, step1, src2, step2, dst, step, sz);
}
535

536 537 538
static void add16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
539
{
540
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
541
           ippiAdd_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
542 543
            (vBinOp16<ushort, OpAdd<ushort>, IF_SIMD(_VAdd16u)>(src1, step1, src2, step2, dst, step, sz)));
}
544

545 546 547
static void add16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
548
{
549
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
550
           ippiAdd_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
551 552
           (vBinOp16<short, OpAdd<short>, IF_SIMD(_VAdd16s)>(src1, step1, src2, step2, dst, step, sz)));
}
553

554 555 556
static void add32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
557
{
558 559
    vBinOp32s<OpAdd<int>, IF_SIMD(_VAdd32s)>(src1, step1, src2, step2, dst, step, sz);
}
560

561 562 563
static void add32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
564
{
565
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
566
           ippiAdd_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
567 568
           (vBinOp32f<OpAdd<float>, IF_SIMD(_VAdd32f)>(src1, step1, src2, step2, dst, step, sz)));
}
569

570 571 572
static void add64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
573
{
574 575
    vBinOp64f<OpAdd<double>, IF_SIMD(_VAdd64f)>(src1, step1, src2, step2, dst, step, sz);
}
576

577 578 579
static void sub8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
580
{
581
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
582
           ippiSub_8u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
583 584
           (vBinOp8<uchar, OpSub<uchar>, IF_SIMD(_VSub8u)>(src1, step1, src2, step2, dst, step, sz)));
}
585

586 587 588
static void sub8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
589
{
590 591
    vBinOp8<schar, OpSub<schar>, IF_SIMD(_VSub8s)>(src1, step1, src2, step2, dst, step, sz);
}
592

593 594 595
static void sub16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
596
{
597
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
598
           ippiSub_16u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
599 600
           (vBinOp16<ushort, OpSub<ushort>, IF_SIMD(_VSub16u)>(src1, step1, src2, step2, dst, step, sz)));
}
601

602 603 604
static void sub16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
605
{
606
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
607
           ippiSub_16s_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
608 609
           (vBinOp16<short, OpSub<short>, IF_SIMD(_VSub16s)>(src1, step1, src2, step2, dst, step, sz)));
}
610

611 612 613
static void sub32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
614
{
615 616
    vBinOp32s<OpSub<int>, IF_SIMD(_VSub32s)>(src1, step1, src2, step2, dst, step, sz);
}
617

618 619 620
static void sub32f( const float* src1, size_t step1,
                   const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* )
621
{
622
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
623
           ippiSub_32f_C1R(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz),
624 625
           (vBinOp32f<OpSub<float>, IF_SIMD(_VSub32f)>(src1, step1, src2, step2, dst, step, sz)));
}
626

627 628 629
static void sub64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
630
{
631
    vBinOp64f<OpSub<double>, IF_SIMD(_VSub64f)>(src1, step1, src2, step2, dst, step, sz);
632
}
633

634 635
template<> inline uchar OpMin<uchar>::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); }
template<> inline uchar OpMax<uchar>::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); }
636

637 638 639
static void max8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
640
{
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz)));
662
}
663

664 665 666
static void max8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
667
{
668 669
    vBinOp8<schar, OpMax<schar>, IF_SIMD(_VMax8s)>(src1, step1, src2, step2, dst, step, sz);
}
670

671 672 673
static void max16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
674
{
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz)));
696
}
697

698 699 700
static void max16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
701
{
702
    vBinOp16<short, OpMax<short>, IF_SIMD(_VMax16s)>(src1, step1, src2, step2, dst, step, sz);
703
}
704

705 706 707
static void max32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
708
{
709 710
    vBinOp32s<OpMax<int>, IF_SIMD(_VMax32s)>(src1, step1, src2, step2, dst, step, sz);
}
711

712 713 714
static void max32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
715
{
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz)));
736
}
737

738 739 740
static void max64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
741
{
742 743
    vBinOp64f<OpMax<double>, IF_SIMD(_VMax64f)>(src1, step1, src2, step2, dst, step, sz);
}
744

745 746 747
static void min8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
748
{
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz)));
770
}
771

772 773 774 775 776 777
static void min8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpMin<schar>, IF_SIMD(_VMin8s)>(src1, step1, src2, step2, dst, step, sz);
}
778

779 780 781 782
static void min16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
{
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz)));
804
}
805

806 807 808 809
static void min16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
{
810
    vBinOp16<short, OpMin<short>, IF_SIMD(_VMin16s)>(src1, step1, src2, step2, dst, step, sz);
811
}
812

813 814 815
static void min32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
816
{
817 818
    vBinOp32s<OpMin<int>, IF_SIMD(_VMin32s)>(src1, step1, src2, step2, dst, step, sz);
}
819

820 821 822
static void min32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
823
{
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz)));
844
}
845

846 847 848
static void min64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
849
{
850
    vBinOp64f<OpMin<double>, IF_SIMD(_VMin64f)>(src1, step1, src2, step2, dst, step, sz);
851
}
852

853 854 855
static void absdiff8u( const uchar* src1, size_t step1,
                       const uchar* src2, size_t step2,
                       uchar* dst, size_t step, Size sz, void* )
856
{
857
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
858
           ippiAbsDiff_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
859 860
           (vBinOp8<uchar, OpAbsDiff<uchar>, IF_SIMD(_VAbsDiff8u)>(src1, step1, src2, step2, dst, step, sz)));
}
861

862 863 864 865 866 867
static void absdiff8s( const schar* src1, size_t step1,
                       const schar* src2, size_t step2,
                       schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpAbsDiff<schar>, IF_SIMD(_VAbsDiff8s)>(src1, step1, src2, step2, dst, step, sz);
}
868

869 870 871 872 873
static void absdiff16u( const ushort* src1, size_t step1,
                        const ushort* src2, size_t step2,
                        ushort* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
874
           ippiAbsDiff_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
875 876
           (vBinOp16<ushort, OpAbsDiff<ushort>, IF_SIMD(_VAbsDiff16u)>(src1, step1, src2, step2, dst, step, sz)));
}
877

878 879 880 881
static void absdiff16s( const short* src1, size_t step1,
                        const short* src2, size_t step2,
                        short* dst, size_t step, Size sz, void* )
{
882
    vBinOp16<short, OpAbsDiff<short>, IF_SIMD(_VAbsDiff16s)>(src1, step1, src2, step2, dst, step, sz);
883
}
884

885 886 887 888 889 890
static void absdiff32s( const int* src1, size_t step1,
                        const int* src2, size_t step2,
                        int* dst, size_t step, Size sz, void* )
{
    vBinOp32s<OpAbsDiff<int>, IF_SIMD(_VAbsDiff32s)>(src1, step1, src2, step2, dst, step, sz);
}
891

892 893 894 895 896
static void absdiff32f( const float* src1, size_t step1,
                        const float* src2, size_t step2,
                        float* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
897
           ippiAbsDiff_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
898 899
           (vBinOp32f<OpAbsDiff<float>, IF_SIMD(_VAbsDiff32f)>(src1, step1, src2, step2, dst, step, sz)));
}
900

901 902 903 904 905
static void absdiff64f( const double* src1, size_t step1,
                        const double* src2, size_t step2,
                        double* dst, size_t step, Size sz, void* )
{
    vBinOp64f<OpAbsDiff<double>, IF_SIMD(_VAbsDiff64f)>(src1, step1, src2, step2, dst, step, sz);
906 907
}

908

909 910 911 912 913
static void and8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
914
           ippiAnd_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
915 916 917 918 919 920 921 922
           (vBinOp8<uchar, OpAnd<uchar>, IF_SIMD(_VAnd8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void or8u( const uchar* src1, size_t step1,
                  const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
923
           ippiOr_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
924 925 926 927 928 929 930 931
           (vBinOp8<uchar, OpOr<uchar>, IF_SIMD(_VOr8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void xor8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
932
           ippiXor_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
933
           (vBinOp8<uchar, OpXor<uchar>, IF_SIMD(_VXor8u)>(src1, step1, src2, step2, dst, step, sz)));
934
}
935 936 937 938 939 940

static void not8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
941
           ippiNot_8u_C1R(src1, (int)step1, dst, (int)step, (IppiSize&)sz),
942 943
           (vBinOp8<uchar, OpNot<uchar>, IF_SIMD(_VNot8u)>(src1, step1, src2, step2, dst, step, sz)));
}
944

945 946 947
/****************************************************************************************\
*                                   logical operations                                   *
\****************************************************************************************/
948

949
void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize )
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
    int scn = (int)sc.total(), cn = CV_MAT_CN(buftype);
    size_t esz = CV_ELEM_SIZE(buftype);
    getConvertFunc(sc.depth(), buftype)(sc.data, 0, 0, 0, scbuf, 0, Size(std::min(cn, scn), 1), 0);
    // unroll the scalar
    if( scn < cn )
    {
        CV_Assert( scn == 1 );
        size_t esz1 = CV_ELEM_SIZE1(buftype);
        for( size_t i = esz1; i < esz; i++ )
            scbuf[i] = scbuf[i - esz1];
    }
    for( size_t i = esz; i < blocksize*esz; i++ )
        scbuf[i] = scbuf[i - esz];
}
965

966 967
void binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, const BinaryFunc* tab, bool bitwise)
968 969 970 971 972 973
{
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty(), haveScalar = false;
    BinaryFunc func;
    int c;
974

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    if( src1.dims <= 2 && src2.dims <= 2 && kind1 == kind2 &&
        src1.size() == src2.size() && src1.type() == src2.type() && !haveMask )
    {
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        if( bitwise )
        {
            func = *tab;
            c = (int)src1.elemSize();
        }
        else
        {
            func = tab[src1.depth()];
            c = src1.channels();
        }
990

991 992 993 994 995 996 997 998
        Size sz = getContinuousSize(src1, src2, dst);
        size_t len = sz.width*(size_t)c;
        if( len == (size_t)(int)len )
        {
            sz.width = (int)len;
            func(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, 0);
            return;
        }
999
    }
1000

1001
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                      "The operation is neither 'array op array' (where arrays have the same size and type), "
                      "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1013

1014 1015 1016 1017 1018
    size_t esz = src1.elemSize();
    size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
    int cn = src1.channels();
    BinaryFunc copymask = 0;
    Mat mask;
1019

1020 1021 1022 1023 1024 1025 1026
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(esz);
    }
1027

1028 1029
    AutoBuffer<uchar> _buf;
    uchar *scbuf = 0, *maskbuf = 0;
1030

1031 1032
    _dst.create(src1.dims, src1.size, src1.type());
    Mat dst = _dst.getMat();
1033

1034 1035 1036 1037 1038 1039 1040 1041 1042
    if( bitwise )
    {
        func = *tab;
        c = (int)esz;
    }
    else
    {
        func = tab[src1.depth()];
        c = cn;
1043
    }
1044

1045
    if( !haveScalar )
1046
    {
1047 1048
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1049

1050 1051
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1052

1053 1054 1055
        if( blocksize*c > INT_MAX )
            blocksize = INT_MAX/c;
        
1056 1057 1058 1059 1060 1061
        if( haveMask )
        {
            blocksize = std::min(blocksize, blocksize0);
            _buf.allocate(blocksize*esz);
            maskbuf = _buf;
        }
1062

1063
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1064
        {
1065
            for( size_t j = 0; j < total; j += blocksize )
1066
            {
1067
                int bsz = (int)std::min(total - j, blocksize);
1068 1069

                func( ptrs[0], 0, ptrs[1], 0, haveMask ? maskbuf : ptrs[2], 0, Size(bsz*c, 1), 0 );
1070
                if( haveMask )
1071
                {
1072 1073
                    copymask( maskbuf, 0, ptrs[3], 0, ptrs[2], 0, Size(bsz, 1), &esz );
                    ptrs[3] += bsz;
1074
                }
1075

1076 1077
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz; ptrs[2] += bsz;
1078 1079
            }
        }
1080 1081 1082 1083 1084
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1085

1086 1087
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1088

1089 1090 1091
        _buf.allocate(blocksize*(haveMask ? 2 : 1)*esz + 32);
        scbuf = _buf;
        maskbuf = alignPtr(scbuf + blocksize*esz, 16);
1092

1093
        convertAndUnrollScalar( src2, src1.type(), scbuf, blocksize);
1094

1095
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1096
        {
1097
            for( size_t j = 0; j < total; j += blocksize )
1098
            {
1099
                int bsz = (int)std::min(total - j, blocksize);
1100

1101 1102
                func( ptrs[0], 0, scbuf, 0, haveMask ? maskbuf : ptrs[1], 0, Size(bsz*c, 1), 0 );
                if( haveMask )
1103
                {
1104 1105
                    copymask( maskbuf, 0, ptrs[2], 0, ptrs[1], 0, Size(bsz, 1), &esz );
                    ptrs[2] += bsz;
1106
                }
1107

1108 1109
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz;
1110 1111 1112 1113
            }
        }
    }
}
1114

1115
static BinaryFunc maxTab[] =
V
Vadim Pisarevsky 已提交
1116
{
1117 1118
    (BinaryFunc)max8u, (BinaryFunc)max8s, (BinaryFunc)max16u, (BinaryFunc)max16s,
    (BinaryFunc)max32s, (BinaryFunc)max32f, (BinaryFunc)max64f, 0
1119
};
1120

1121 1122 1123 1124 1125
static BinaryFunc minTab[] =
{
    (BinaryFunc)min8u, (BinaryFunc)min8s, (BinaryFunc)min16u, (BinaryFunc)min16s,
    (BinaryFunc)min32s, (BinaryFunc)min32f, (BinaryFunc)min64f, 0
};
1126

V
Vadim Pisarevsky 已提交
1127
}
1128

1129
void cv::bitwise_and(InputArray a, InputArray b, OutputArray c, InputArray mask)
1130
{
1131 1132
    BinaryFunc f = and8u;
    binary_op(a, b, c, mask, &f, true);
1133 1134
}

1135
void cv::bitwise_or(InputArray a, InputArray b, OutputArray c, InputArray mask)
1136
{
1137 1138
    BinaryFunc f = or8u;
    binary_op(a, b, c, mask, &f, true);
1139 1140
}

1141
void cv::bitwise_xor(InputArray a, InputArray b, OutputArray c, InputArray mask)
1142
{
1143 1144
    BinaryFunc f = xor8u;
    binary_op(a, b, c, mask, &f, true);
1145 1146
}

1147
void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
1148
{
1149 1150
    BinaryFunc f = not8u;
    binary_op(a, a, c, mask, &f, true);
1151 1152
}

1153
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
1154
{
1155
    binary_op(src1, src2, dst, noArray(), maxTab, false );
1156 1157
}

1158
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
1159
{
1160
    binary_op(src1, src2, dst, noArray(), minTab, false );
1161 1162
}

1163
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
1164
{
1165
    OutputArray _dst(dst);
1166
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1167 1168
}

1169 1170 1171
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
{
    OutputArray _dst(dst);
1172
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1173
}
1174

1175 1176 1177
void cv::max(const Mat& src1, double src2, Mat& dst)
{
    OutputArray _dst(dst);
1178
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1179
}
1180

1181
void cv::min(const Mat& src1, double src2, Mat& dst)
1182
{
1183
    OutputArray _dst(dst);
1184
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1185
}
1186

1187 1188 1189
/****************************************************************************************\
*                                      add/subtract                                      *
\****************************************************************************************/
1190

1191 1192
namespace cv
{
1193

1194 1195
void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, int dtype, BinaryFunc* tab, bool muldiv=false, void* usrdata=0)
1196
{
1197 1198 1199
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty();
1200

1201 1202 1203 1204
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 &&
        src1.size() == src2.size() && src1.type() == src2.type() &&
        !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == src1.depth())) ||
                       (_dst.fixedType() && _dst.type() == _src1.type())) )
V
Vadim Pisarevsky 已提交
1205
    {
1206 1207 1208 1209
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        tab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, usrdata);
V
Vadim Pisarevsky 已提交
1210 1211
        return;
    }
1212

1213
    bool haveScalar = false, swapped12 = false;
1214

1215
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
1216
        src1.size != src2.size || src1.channels() != src2.channels() )
1217
    {
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        if( checkScalar(src1, src2.type(), kind1, kind2) )
        {
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            swapped12 = true;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same number of channels), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1230

1231 1232
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth(), wtype;
    BinaryFunc cvtsrc1 = 0, cvtsrc2 = 0, cvtdst = 0;
1233

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
    if( dtype < 0 )
    {
        if( _dst.fixedType() )
            dtype = _dst.type();
        else
        {
            if( !haveScalar && src1.type() != src2.type() )
                CV_Error(CV_StsBadArg,
                     "When the input arrays in add/subtract/multiply/divide functions have different types, "
                     "the output array type must be explicitly specified");
            dtype = src1.type();
        }
    }
    dtype = CV_MAT_DEPTH(dtype);
1248

1249 1250 1251 1252 1253 1254 1255
    if( depth1 == depth2 && dtype == depth1 )
        wtype = dtype;
    else if( !muldiv )
    {
        wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S :
                depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2);
        wtype = std::max(wtype, dtype);
1256

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
        // when the result of addition should be converted to an integer type,
        // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation,
        // instead of converting the other input to floating-point and then converting the operation result back to integers.
        if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) )
            wtype = CV_32S;
    }
    else
    {
        wtype = std::max(depth1, std::max(depth2, CV_32F));
        wtype = std::max(wtype, dtype);
    }
1268

1269 1270 1271
    cvtsrc1 = depth1 == wtype ? 0 : getConvertFunc(depth1, wtype);
    cvtsrc2 = depth2 == depth1 ? cvtsrc1 : depth2 == wtype ? 0 : getConvertFunc(depth2, wtype);
    cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype);
1272

1273 1274
    dtype = CV_MAKETYPE(dtype, cn);
    wtype = CV_MAKETYPE(wtype, cn);
1275

1276 1277 1278 1279 1280
    size_t esz1 = src1.elemSize(), esz2 = src2.elemSize();
    size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype);
    size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz;
    BinaryFunc copymask = 0;
    Mat mask;
1281

1282 1283 1284 1285 1286 1287 1288
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(dsz);
    }
1289

1290 1291 1292
    AutoBuffer<uchar> _buf;
    uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0;
    size_t bufesz = (cvtsrc1 ? wsz : 0) + (cvtsrc2 || haveScalar ? wsz : 0) + (cvtdst ? wsz : 0) + (haveMask ? dsz : 0);
1293

1294
    _dst.create(src1.dims, src1.size, dtype);
1295 1296
    Mat dst = _dst.getMat();
    BinaryFunc func = tab[CV_MAT_DEPTH(wtype)];
1297

1298 1299 1300 1301
    if( !haveScalar )
    {
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1302

1303 1304
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
        if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst )
            blocksize = std::min(blocksize, blocksize0);

        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        if( cvtsrc2 )
            buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1320

1321
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1322
        {
1323
            for( size_t j = 0; j < total; j += blocksize )
1324
            {
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
                int bsz = (int)std::min(total - j, blocksize);
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1];
                uchar* dptr = ptrs[2];
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
                if( ptrs[0] == ptrs[1] )
                    sptr2 = sptr1;
                else if( cvtsrc2 )
                {
                    cvtsrc2( sptr2, 0, 0, 0, buf2, 0, bszn, 0 );
                    sptr2 = buf2;
                }
1341

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz;
1362 1363
            }
        }
1364 1365 1366 1367 1368
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1369

1370 1371
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1372

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1383

1384
        convertAndUnrollScalar( src2, wtype, buf2, blocksize);
1385

1386
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1387
        {
1388 1389 1390 1391 1392 1393 1394
            for( size_t j = 0; j < total; j += blocksize )
            {
                int bsz = (int)std::min(total - j, blocksize);
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0];
                const uchar* sptr2 = buf2;
                uchar* dptr = ptrs[1];
1395

1396 1397 1398 1399 1400
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
1401

1402 1403
                if( swapped12 )
                    std::swap(sptr1, sptr2);
1404

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz;
            }
1426 1427 1428
        }
    }
}
1429

1430 1431
static BinaryFunc addTab[] =
{
1432 1433
    (BinaryFunc)add8u, (BinaryFunc)add8s, (BinaryFunc)add16u, (BinaryFunc)add16s,
    (BinaryFunc)add32s, (BinaryFunc)add32f, (BinaryFunc)add64f, 0
1434
};
1435

1436 1437
static BinaryFunc subTab[] =
{
1438 1439
    (BinaryFunc)sub8u, (BinaryFunc)sub8s, (BinaryFunc)sub16u, (BinaryFunc)sub16s,
    (BinaryFunc)sub32s, (BinaryFunc)sub32f, (BinaryFunc)sub64f, 0
1440 1441
};

1442
static BinaryFunc absdiffTab[] =
1443
{
1444 1445 1446
    (BinaryFunc)absdiff8u, (BinaryFunc)absdiff8s, (BinaryFunc)absdiff16u,
    (BinaryFunc)absdiff16s, (BinaryFunc)absdiff32s, (BinaryFunc)absdiff32f,
    (BinaryFunc)absdiff64f, 0
1447
};
1448 1449

}
1450

1451 1452
void cv::add( InputArray src1, InputArray src2, OutputArray dst,
          InputArray mask, int dtype )
1453
{
1454
    arithm_op(src1, src2, dst, mask, dtype, addTab );
1455 1456
}

1457 1458
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
               InputArray mask, int dtype )
1459
{
1460
    arithm_op(src1, src2, dst, mask, dtype, subTab );
1461 1462
}

1463
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
1464
{
1465
    arithm_op(src1, src2, dst, noArray(), -1, absdiffTab);
1466
}
1467 1468 1469 1470 1471

/****************************************************************************************\
*                                    multiply/divide                                     *
\****************************************************************************************/

1472 1473 1474
namespace cv
{

1475
template<typename T, typename WT> static void
1476 1477
mul_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, WT scale )
1478
{
1479 1480 1481
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1482

1483
    if( scale == (WT)1. )
1484
    {
1485
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1486 1487 1488 1489
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
1490 1491 1492 1493 1494 1495
                T t0;
                T t1;
                t0 = saturate_cast<T>(src1[i  ] * src2[i  ]);
                t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
                dst[i  ] = t0;
                dst[i+1] = t1;
1496 1497 1498

                t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
                t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
1499 1500
                dst[i+2] = t0;
                dst[i+3] = t1;
1501 1502 1503 1504 1505 1506 1507 1508
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(src1[i] * src2[i]);
        }
    }
    else
    {
1509
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
                T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
                T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
                dst[i] = t0; dst[i+1] = t1;

                t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
                t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
                dst[i+2] = t0; dst[i+3] = t1;
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
        }
    }
}

template<typename T> static void
1530 1531
div_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, double scale )
1532
{
1533 1534 1535
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1536

1537
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1549

1550 1551 1552 1553
                T z0 = saturate_cast<T>(src2[i+1] * ((double)src1[i] * b));
                T z1 = saturate_cast<T>(src2[i] * ((double)src1[i+1] * b));
                T z2 = saturate_cast<T>(src2[i+3] * ((double)src1[i+2] * a));
                T z3 = saturate_cast<T>(src2[i+2] * ((double)src1[i+3] * a));
1554

1555 1556 1557 1558 1559 1560 1561 1562 1563
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(src1[i+1]*scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(src1[i+2]*scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(src1[i+3]*scale/src2[i+3]) : 0;
1564

1565 1566 1567 1568
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1569

1570 1571 1572 1573 1574 1575
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
    }
}

template<typename T> static void
1576 1577
recip_( const T*, size_t, const T* src2, size_t step2,
        T* dst, size_t step, Size size, double scale )
1578
{
1579 1580
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1581

1582
    for( ; size.height--; src2 += step2, dst += step )
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1594

1595 1596 1597 1598
                T z0 = saturate_cast<T>(src2[i+1] * b);
                T z1 = saturate_cast<T>(src2[i] * b);
                T z2 = saturate_cast<T>(src2[i+3] * a);
                T z3 = saturate_cast<T>(src2[i+2] * a);
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(scale/src2[i+3]) : 0;
1609
                
1610 1611 1612 1613
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1614

1615 1616 1617 1618
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
    }
}
1619 1620


1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
static void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1650

1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
static void mul32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}
    
static void mul64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1662

1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
static void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    if( src1 )
        div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
    else
        recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                   ushort* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16s( const short* src1, size_t step1, const short* src2, size_t step2,
                   short* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1731

1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
static void recip32s( const int* src1, size_t step1, const int* src2, size_t step2,
                   int* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip32f( const float* src1, size_t step1, const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip64f( const double* src1, size_t step1, const double* src2, size_t step2,
                   double* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1749 1750


1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
static BinaryFunc mulTab[] =
{
    (BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
    (BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
    (BinaryFunc)mul64f, 0
};

static BinaryFunc divTab[] =
{
    (BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
    (BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
    (BinaryFunc)div64f, 0
};

static BinaryFunc recipTab[] =
{
    (BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
    (BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
    (BinaryFunc)recip64f, 0
};
1771

1772

1773
}
1774

1775
void cv::multiply(InputArray src1, InputArray src2,
1776
                  OutputArray dst, double scale, int dtype)
1777
{
1778
    arithm_op(src1, src2, dst, noArray(), dtype, mulTab, true, &scale);
1779
}
1780

1781
void cv::divide(InputArray src1, InputArray src2,
1782 1783
                OutputArray dst, double scale, int dtype)
{
1784
    arithm_op(src1, src2, dst, noArray(), dtype, divTab, true, &scale);
1785 1786
}

1787
void cv::divide(double scale, InputArray src2,
1788 1789
                OutputArray dst, int dtype)
{
1790
    arithm_op(src2, src2, dst, noArray(), dtype, recipTab, true, &scale);
1791 1792
}

1793 1794 1795 1796
/****************************************************************************************\
*                                      addWeighted                                       *
\****************************************************************************************/

1797 1798 1799
namespace cv
{

1800
template<typename T, typename WT> static void
1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size size, void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2];
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1811
    {
1812 1813
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
1814
        {
1815 1816 1817
            T t0 = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
            T t1 = saturate_cast<T>(src1[x+1]*alpha + src2[x+1]*beta + gamma);
            dst[x] = t0; dst[x+1] = t1;
1818

1819 1820 1821
            t0 = saturate_cast<T>(src1[x+2]*alpha + src2[x+2]*beta + gamma);
            t1 = saturate_cast<T>(src1[x+3]*alpha + src2[x+3]*beta + gamma);
            dst[x+2] = t0; dst[x+3] = t1;
1822 1823
        }

1824 1825
        for( ; x < size.width; x++ )
            dst[x] = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
1826 1827 1828 1829 1830
    }
}


static void
1831 1832 1833 1834 1835 1836 1837
addWeighted8u( const uchar* src1, size_t step1,
               const uchar* src2, size_t step2,
               uchar* dst, size_t step, Size size,
               void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    float alpha = (float)scalars[0], beta = (float)scalars[1], gamma = (float)scalars[2];
1838

1839
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1840
    {
1841
        int x = 0;
1842

1843 1844
#if CV_SSE2
        if( USE_SSE2 )
1845
        {
1846 1847
            __m128 a4 = _mm_set1_ps(alpha), b4 = _mm_set1_ps(beta), g4 = _mm_set1_ps(gamma);
            __m128i z = _mm_setzero_si128();
1848

1849
            for( ; x <= size.width - 8; x += 8 )
1850
            {
1851 1852
                __m128i u = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src1 + x)), z);
                __m128i v = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src2 + x)), z);
1853

1854 1855 1856 1857
                __m128 u0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(u, z));
                __m128 u1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(u, z));
                __m128 v0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v, z));
                __m128 v1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v, z));
1858

1859 1860 1861
                u0 = _mm_add_ps(_mm_mul_ps(u0, a4), _mm_mul_ps(v0, b4));
                u1 = _mm_add_ps(_mm_mul_ps(u1, a4), _mm_mul_ps(v1, b4));
                u0 = _mm_add_ps(u0, g4); u1 = _mm_add_ps(u1, g4);
1862

1863 1864
                u = _mm_packs_epi32(_mm_cvtps_epi32(u0), _mm_cvtps_epi32(u1));
                u = _mm_packus_epi16(u, u);
1865

1866
                _mm_storel_epi64((__m128i*)(dst + x), u);
1867 1868
            }
        }
1869 1870
#endif
        for( ; x <= size.width - 4; x += 4 )
1871
        {
1872 1873 1874
            float t0, t1;
            t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            t1 = CV_8TO32F(src1[x+1])*alpha + CV_8TO32F(src2[x+1])*beta + gamma;
1875

1876 1877
            dst[x] = saturate_cast<uchar>(t0);
            dst[x+1] = saturate_cast<uchar>(t1);
1878

1879 1880
            t0 = CV_8TO32F(src1[x+2])*alpha + CV_8TO32F(src2[x+2])*beta + gamma;
            t1 = CV_8TO32F(src1[x+3])*alpha + CV_8TO32F(src2[x+3])*beta + gamma;
1881

1882 1883 1884
            dst[x+2] = saturate_cast<uchar>(t0);
            dst[x+3] = saturate_cast<uchar>(t1);
        }
1885

1886 1887 1888 1889
        for( ; x < size.width; x++ )
        {
            float t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            dst[x] = saturate_cast<uchar>(t0);
1890 1891 1892 1893
        }
    }
}

1894 1895
static void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                           schar* dst, size_t step, Size sz, void* scalars )
1896
{
1897
    addWeighted_<schar, float>(src1, step1, src2, step2, dst, step, sz, scalars);
1898 1899
}

1900 1901
static void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                            ushort* dst, size_t step, Size sz, void* scalars )
1902
{
1903 1904
    addWeighted_<ushort, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1905

1906 1907
static void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2,
                            short* dst, size_t step, Size sz, void* scalars )
1908
{
1909 1910
    addWeighted_<short, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1911

1912 1913
static void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2,
                            int* dst, size_t step, Size sz, void* scalars )
1914
{
1915
    addWeighted_<int, double>(src1, step1, src2, step2, dst, step, sz, scalars);
1916 1917
}

1918 1919
static void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2,
                            float* dst, size_t step, Size sz, void* scalars )
1920
{
1921 1922
    addWeighted_<float, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1923

1924 1925 1926 1927 1928
static void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2,
                            double* dst, size_t step, Size sz, void* scalars )
{
    addWeighted_<double, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
V
Vadim Pisarevsky 已提交
1929

1930 1931 1932 1933 1934 1935
static BinaryFunc addWeightedTab[] =
{
    (BinaryFunc)addWeighted8u, (BinaryFunc)addWeighted8s, (BinaryFunc)addWeighted16u,
    (BinaryFunc)addWeighted16s, (BinaryFunc)addWeighted32s, (BinaryFunc)addWeighted32f,
    (BinaryFunc)addWeighted64f, 0
};
1936

1937
}
1938

1939
void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
1940 1941 1942
                      double beta, double gamma, OutputArray dst, int dtype )
{
    double scalars[] = {alpha, beta, gamma};
1943
    arithm_op(src1, src2, dst, noArray(), dtype, addWeightedTab, true, scalars);
1944 1945
}

1946

1947
/****************************************************************************************\
1948
*                                          compare                                       *
1949 1950
\****************************************************************************************/

1951
namespace cv
1952 1953
{

1954 1955 1956
template<typename T> static void
cmp_(const T* src1, size_t step1, const T* src2, size_t step2,
     uchar* dst, size_t step, Size size, int code)
1957
{
1958 1959 1960
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
1961
    {
1962 1963 1964
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
1965
    }
1966

1967
    if( code == CMP_GT || code == CMP_LE )
1968
    {
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] > src2[x]) ^ m;
                t1 = -(src1[x+1] > src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] > src2[x+2]) ^ m;
                t1 = -(src1[x+3] > src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
1983

1984 1985 1986
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
        }
1987
    }
1988
    else if( code == CMP_EQ || code == CMP_NE )
1989
    {
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        int m = code == CMP_EQ ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] == src2[x]) ^ m;
                t1 = -(src1[x+1] == src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] == src2[x+2]) ^ m;
                t1 = -(src1[x+3] == src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
2004

2005 2006 2007
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
2008
    }
2009
}
2010 2011


2012 2013
static void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2014
{
2015
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2016 2017
}

2018 2019
static void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2020
{
2021
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2022 2023
}

2024 2025
static void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2026
{
2027
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2028 2029
}

2030 2031
static void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2032
{
2033
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2034 2035
}

2036 2037 2038 2039 2040
static void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2,
                   uchar* dst, size_t step, Size size, void* _cmpop)
{
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2041

2042 2043
static void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2044
{
2045 2046
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2047

2048 2049
static void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2050
{
2051
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2052 2053
}

2054 2055 2056 2057 2058
static BinaryFunc cmpTab[] =
{
    (BinaryFunc)cmp8u, (BinaryFunc)cmp8s, (BinaryFunc)cmp16u,
    (BinaryFunc)cmp16s, (BinaryFunc)cmp32s, (BinaryFunc)cmp32f,
    (BinaryFunc)cmp64f, 0
2059 2060
};

2061

2062
static double getMinVal(int depth)
2063
{
2064 2065 2066
    static const double tab[] = {0, -128, 0, -32768, INT_MIN, -FLT_MAX, -DBL_MAX, 0};
    return tab[depth];
}
2067

2068
static double getMaxVal(int depth)
2069
{
2070 2071 2072
    static const double tab[] = {255, 127, 65535, 32767, INT_MAX, FLT_MAX, DBL_MAX, 0};
    return tab[depth];
}
2073 2074 2075

}

2076
void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
2077 2078 2079
{
    CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ ||
               op == CMP_NE || op == CMP_GE || op == CMP_GT );
2080

2081 2082
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
2083

2084
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() )
2085
    {
2086
        CV_Assert(src1.channels() == 1);
2087 2088 2089 2090 2091 2092
        _dst.create(src1.size(), CV_8UC1);
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        cmpTab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
        return;
    }
2093

2094
    bool haveScalar = false;
2095

2096
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
2097 2098 2099
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
2100
        {
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            op = op == CMP_LT ? CMP_GT : op == CMP_LE ? CMP_GE :
                op == CMP_GE ? CMP_LE : op == CMP_GT ? CMP_LT : op;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same type), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
2112

2113 2114 2115
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth();
    if( cn != 1 )
        CV_Error( CV_StsUnsupportedFormat, "compare() can only process single-channel arrays" );
2116

2117 2118
    size_t esz = src1.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2119

2120 2121 2122
    _dst.create(src1.dims, src1.size, CV_8U);
    Mat dst = _dst.getMat();
    BinaryFunc func = cmpTab[depth1];
2123

2124
    if( !haveScalar )
2125
    {
2126 2127
        const Mat* arrays[] = { &src1, &src2, &dst, 0 };
        uchar* ptrs[3];
2128

2129 2130
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size;
2131

2132 2133
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            func( ptrs[0], 0, ptrs[1], 0, ptrs[2], 0, Size((int)total, 1), &op );
2134
    }
2135
    else
2136
    {
2137 2138
        const Mat* arrays[] = { &src1, &dst, 0 };
        uchar* ptrs[2];
2139

2140 2141
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
2142

2143 2144 2145 2146 2147 2148
        AutoBuffer<uchar> _buf(blocksize*esz);
        uchar *buf = _buf;

        if( depth1 > CV_32S )
            convertAndUnrollScalar( src2, depth1, buf, blocksize );
        else
2149
        {
2150 2151 2152 2153 2154 2155 2156
            double fval=0;
            getConvertFunc(depth2, CV_64F)(src2.data, 0, 0, 0, (uchar*)&fval, 0, Size(1,1), 0);
            if( fval < getMinVal(depth1) )
            {
                dst = Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0);
                return;
            }
2157

2158 2159 2160 2161 2162
            if( fval > getMaxVal(depth1) )
            {
                dst = Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0);
                return;
            }
2163

2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
            int ival = cvRound(fval);
            if( fval != ival )
            {
                if( op == CMP_LT || op == CMP_GE )
                    ival = cvCeil(fval);
                else if( op == CMP_LE || op == CMP_GT )
                    ival = cvFloor(fval);
                else
                {
                    dst = Scalar::all(op == CMP_NE ? 255 : 0);
                    return;
                }
            }
            convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, buf, blocksize);
        }
2179

2180
        for( size_t i = 0; i < it.nplanes; i++, ++it )
2181
        {
2182 2183 2184 2185 2186 2187 2188 2189
            for( size_t j = 0; j < total; j += blocksize )
            {
                int bsz = (int)std::min(total - j, blocksize);
                func( ptrs[0], 0, buf, 0, ptrs[1], 0, Size(bsz, 1), &op);
                ptrs[0] += bsz*esz;
                ptrs[1] += bsz;
            }
        }
2190
    }
2191
}
2192

2193 2194 2195
/****************************************************************************************\
*                                        inRange                                         *
\****************************************************************************************/
2196

2197 2198
namespace cv
{
2199

2200 2201 2202 2203 2204 2205 2206 2207
template<typename T> static void
inRange_(const T* src1, size_t step1, const T* src2, size_t step2,
         const T* src3, size_t step3, uchar* dst, size_t step,
         Size size)
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step3 /= sizeof(src3[0]);
2208

2209
    for( ; size.height--; src1 += step1, src2 += step2, src3 += step3, dst += step )
V
Vadim Pisarevsky 已提交
2210
    {
2211 2212
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
V
Vadim Pisarevsky 已提交
2213
        {
2214 2215 2216 2217 2218 2219 2220
            int t0, t1;
            t0 = src2[x] <= src1[x] && src1[x] <= src3[x];
            t1 = src2[x+1] <= src1[x+1] && src1[x+1] <= src3[x+1];
            dst[x] = (uchar)-t0; dst[x+1] = (uchar)-t1;
            t0 = src2[x+2] <= src1[x+2] && src1[x+2] <= src3[x+2];
            t1 = src2[x+3] <= src1[x+3] && src1[x+3] <= src3[x+3];
            dst[x+2] = (uchar)-t0; dst[x+3] = (uchar)-t1;
V
Vadim Pisarevsky 已提交
2221
        }
2222

2223 2224
        for( ; x < size.width; x++ )
            dst[x] = (uchar)-(src2[x] <= src1[x] && src1[x] <= src3[x]);
V
Vadim Pisarevsky 已提交
2225
    }
2226 2227
}

2228

2229 2230
static void inRange8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                      const uchar* src3, size_t step3, uchar* dst, size_t step, Size size)
2231
{
2232 2233
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2234

2235 2236
static void inRange8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                      const schar* src3, size_t step3, uchar* dst, size_t step, Size size)
2237
{
2238 2239
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2240

2241 2242
static void inRange16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                       const ushort* src3, size_t step3, uchar* dst, size_t step, Size size)
2243
{
2244 2245
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2246

2247 2248 2249 2250
static void inRange16s(const short* src1, size_t step1, const short* src2, size_t step2,
                       const short* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2251 2252
}

2253 2254
static void inRange32s(const int* src1, size_t step1, const int* src2, size_t step2,
                       const int* src3, size_t step3, uchar* dst, size_t step, Size size)
2255
{
2256 2257
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2258

2259 2260 2261 2262
static void inRange32f(const float* src1, size_t step1, const float* src2, size_t step2,
                       const float* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2263 2264
}

2265 2266
static void inRange64f(const double* src1, size_t step1, const double* src2, size_t step2,
                       const double* src3, size_t step3, uchar* dst, size_t step, Size size)
2267
{
2268
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2269
}
2270

2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286
static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn)
{
    int k = cn % 4 ? cn % 4 : 4;
    size_t i, j;
    if( k == 1 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j];
    else if( k == 2 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1];
    else if( k == 3 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2];
    else
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2] & src[j+3];
2287

2288 2289 2290 2291
    for( ; k < cn; k += 4 )
    {
        for( i = 0, j = k; i < len; i++, j += cn )
            dst[i] &= src[j] & src[j+1] & src[j+2] & src[j+3];
V
Vadim Pisarevsky 已提交
2292
    }
2293
}
2294

2295 2296
typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                             const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz );
2297

2298
static InRangeFunc inRangeTab[] =
2299
{
2300 2301 2302 2303
    (InRangeFunc)inRange8u, (InRangeFunc)inRange8s, (InRangeFunc)inRange16u,
    (InRangeFunc)inRange16s, (InRangeFunc)inRange32s, (InRangeFunc)inRange32f,
    (InRangeFunc)inRange64f, 0
};
2304

2305 2306
}

2307 2308
void cv::inRange(InputArray _src, InputArray _lowerb,
                 InputArray _upperb, OutputArray _dst)
2309 2310 2311
{
    int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind();
    Mat src = _src.getMat(), lb = _lowerb.getMat(), ub = _upperb.getMat();
2312

2313
    bool lbScalar = false, ubScalar = false;
2314

2315
    if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) ||
2316 2317 2318 2319 2320 2321 2322
        src.size != lb.size || src.type() != lb.type() )
    {
        if( !checkScalar(lb, src.type(), lkind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The lower bounary is neither an array of the same size and same type as src, nor a scalar");
        lbScalar = true;
    }
2323

2324
    if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) ||
2325 2326 2327 2328 2329 2330 2331
        src.size != ub.size || src.type() != ub.type() )
    {
        if( !checkScalar(ub, src.type(), ukind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The upper bounary is neither an array of the same size and same type as src, nor a scalar");
        ubScalar = true;
    }
2332

2333
    CV_Assert( ((int)lbScalar ^ (int)ubScalar) == 0 );
2334

2335
    int cn = src.channels(), depth = src.depth();
2336

2337 2338
    size_t esz = src.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2339

2340 2341 2342
    _dst.create(src.dims, src.size, CV_8U);
    Mat dst = _dst.getMat();
    InRangeFunc func = inRangeTab[depth];
2343

2344 2345 2346
    const Mat* arrays_sc[] = { &src, &dst, 0 };
    const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 };
    uchar* ptrs[4];
2347

2348 2349
    NAryMatIterator it(lbScalar && ubScalar ? arrays_sc : arrays_nosc, ptrs);
    size_t total = it.size, blocksize = std::min(total, blocksize0);
2350

2351 2352 2353
    AutoBuffer<uchar> _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128);
    uchar *buf = _buf, *mbuf = buf, *lbuf = 0, *ubuf = 0;
    buf = alignPtr(buf + blocksize*cn, 16);
2354

2355 2356 2357 2358
    if( lbScalar && ubScalar )
    {
        lbuf = buf;
        ubuf = buf = alignPtr(buf + blocksize*esz, 16);
2359

2360 2361
        CV_Assert( lb.type() == ub.type() );
        int scdepth = lb.depth();
2362

2363 2364 2365 2366
        if( scdepth != depth && depth < CV_32S )
        {
            int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16);
            int* iubuf = ilbuf + cn;
2367

2368 2369 2370
            BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S);
            sccvtfunc(lb.data, 0, 0, 0, (uchar*)ilbuf, 0, Size(cn, 1), 0);
            sccvtfunc(ub.data, 0, 0, 0, (uchar*)iubuf, 0, Size(cn, 1), 0);
2371
            int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth));
2372

2373 2374 2375 2376 2377 2378 2379 2380
            for( int k = 0; k < cn; k++ )
            {
                if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval )
                    ilbuf[k] = minval+1, iubuf[k] = minval;
            }
            lb = Mat(cn, 1, CV_32S, ilbuf);
            ub = Mat(cn, 1, CV_32S, iubuf);
        }
2381

2382 2383 2384
        convertAndUnrollScalar( lb, src.type(), lbuf, blocksize );
        convertAndUnrollScalar( ub, src.type(), ubuf, blocksize );
    }
2385

2386
    for( size_t i = 0; i < it.nplanes; i++, ++it )
V
Vadim Pisarevsky 已提交
2387
    {
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409
        for( size_t j = 0; j < total; j += blocksize )
        {
            int bsz = (int)std::min(total - j, blocksize);
            size_t delta = bsz*esz;
            uchar *lptr = lbuf, *uptr = ubuf;
            if( !lbScalar )
            {
                lptr = ptrs[2];
                ptrs[2] += delta;
            }
            if( !ubScalar )
            {
                int idx = !lbScalar ? 3 : 2;
                uptr = ptrs[idx];
                ptrs[idx] += delta;
            }
            func( ptrs[0], 0, lptr, 0, uptr, 0, cn == 1 ? ptrs[1] : mbuf, 0, Size(bsz*cn, 1));
            if( cn > 1 )
                inRangeReduce(mbuf, ptrs[1], bsz, cn);
            ptrs[0] += delta;
            ptrs[1] += bsz;
        }
V
Vadim Pisarevsky 已提交
2410
    }
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
}

/****************************************************************************************\
*                                Earlier API: cvAdd etc.                                 *
\****************************************************************************************/

CV_IMPL void
cvNot( const CvArr* srcarr, CvArr* dstarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
2421
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2422 2423 2424 2425 2426 2427 2428 2429 2430
    cv::bitwise_not( src, dst );
}


CV_IMPL void
cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2431
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2432 2433 2434 2435 2436
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_and( src1, src2, dst, mask );
}

2437

2438 2439 2440 2441 2442
CV_IMPL void
cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2443
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_or( src1, src2, dst, mask );
}


CV_IMPL void
cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2455
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_xor( src1, src2, dst, mask );
}


CV_IMPL void
cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2466
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2467 2468
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2469
    cv::bitwise_and( src, (const cv::Scalar&)s, dst, mask );
2470 2471 2472 2473 2474 2475 2476
}


CV_IMPL void
cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2477
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2478 2479
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2480
    cv::bitwise_or( src, (const cv::Scalar&)s, dst, mask );
2481 2482 2483 2484 2485 2486 2487
}


CV_IMPL void
cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2488
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2489 2490
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2491
    cv::bitwise_xor( src, (const cv::Scalar&)s, dst, mask );
2492 2493
}

2494

2495 2496 2497 2498
CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2499
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2500 2501
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2502
    cv::add( src1, src2, dst, mask, dst.type() );
2503 2504
}

2505

2506 2507 2508 2509
CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2510
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2511 2512
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2513
    cv::subtract( src1, src2, dst, mask, dst.type() );
2514 2515
}

2516

2517 2518 2519 2520
CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2521
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2522 2523
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2524
    cv::add( src1, (const cv::Scalar&)value, dst, mask, dst.type() );
2525 2526
}

2527

2528 2529 2530 2531
CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2532
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2533 2534
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2535
    cv::subtract( (const cv::Scalar&)value, src1, dst, mask, dst.type() );
2536 2537
}

2538

2539 2540 2541 2542 2543
CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2544 2545
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::multiply( src1, src2, dst, scale, dst.type() );
2546 2547
}

2548

2549 2550 2551 2552 2553
CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2554
    CV_Assert( src2.size == dst.size && src2.channels() == dst.channels() );
2555 2556

    if( srcarr1 )
2557
        cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale, dst.type() );
2558
    else
2559
        cv::divide( scale, src2, dst, dst.type() );
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569
}


CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
               const CvArr* srcarr2, double beta,
               double gamma, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2570 2571
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() );
2572 2573 2574 2575 2576 2577 2578
}


CV_IMPL  void
cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2579
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2580 2581 2582 2583 2584 2585 2586 2587 2588

    cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2589
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2590

2591
    cv::absdiff( src1, (const cv::Scalar&)scalar, dst );
2592 2593
}

2594

2595 2596 2597 2598 2599
CV_IMPL void
cvInRange( const void* srcarr1, const void* srcarr2,
           const void* srcarr3, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2600
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2601 2602 2603 2604

    cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst );
}

2605

2606 2607 2608 2609
CV_IMPL void
cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2610
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2611

2612
    cv::inRange( src1, (const cv::Scalar&)lowerb, (const cv::Scalar&)upperb, dst );
2613 2614 2615 2616 2617 2618 2619
}


CV_IMPL void
cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2620
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2621 2622 2623 2624 2625 2626 2627 2628 2629

    cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op );
}


CV_IMPL void
cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2630
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2631 2632 2633 2634 2635 2636 2637 2638 2639

    cv::compare( src1, value, dst, cmp_op );
}


CV_IMPL void
cvMin( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2640
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2641 2642 2643 2644 2645 2646 2647 2648 2649

    cv::min( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvMax( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2650
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2651 2652 2653 2654

    cv::max( src1, cv::cvarrToMat(srcarr2), dst );
}

2655

2656 2657 2658 2659
CV_IMPL void
cvMinS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2660
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2661 2662 2663 2664 2665 2666 2667 2668 2669

    cv::min( src1, value, dst );
}


CV_IMPL void
cvMaxS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2670
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2671 2672 2673 2674 2675

    cv::max( src1, value, dst );
}

/* End of file. */