arithm.cpp 93.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
45
//  Arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ...
46 47 48 49 50 51 52 53
//
// */

#include "precomp.hpp"

namespace cv
{

54 55 56 57 58
#if ARITHM_USE_IPP
struct IPPArithmInitializer
{
    IPPArithmInitializer(void)
    {
59
        ippStaticInit();
60 61
    }
};
62

63 64
IPPArithmInitializer ippArithmInitializer;
#endif
65

66
struct NOP {};
67

68 69
template<typename T, class Op, class Op8>
void vBinOp8(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz)
70
{
71
#if CV_SSE2
72
    Op8 op8;
73
#endif
74
    Op op;
75

76 77 78
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
                        src2 += step2/sizeof(src2[0]),
                        dst += step/sizeof(dst[0]) )
79 80
    {
        int x = 0;
81

82 83
    #if CV_SSE2
        if( USE_SSE2 )
84
        {
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            for( ; x <= sz.width - 32; x += 32 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 16));
                r0 = op8(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op8(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 16)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 8; x += 8 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op8(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
100
        }
101
    #endif
102

103
        for( ; x <= sz.width - 4; x += 4 )
104
        {
105 106 107 108 109 110
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
111
        }
112

113 114
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
115
    }
116
}
117

118 119 120
template<typename T, class Op, class Op16>
void vBinOp16(const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size sz)
121
{
122
#if CV_SSE2
123
    Op16 op16;
124
#endif
125
    Op op;
126

127 128 129
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
130 131
    {
        int x = 0;
132

133 134
    #if CV_SSE2
        if( USE_SSE2 )
135
        {
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
            for( ; x <= sz.width - 16; x += 16 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
                r0 = op16(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op16(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 8)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 4; x += 4 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op16(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
151
        }
152 153
        else
    #endif
154

155
        for( ; x <= sz.width - 4; x += 4 )
156
        {
157 158 159 160 161 162
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
163
        }
164

165 166
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
167
    }
168
}
169

170

171 172 173
template<class Op, class Op32>
void vBinOp32s(const int* src1, size_t step1, const int* src2, size_t step2,
               int* dst, size_t step, Size sz)
174
{
175
#if CV_SSE2
176
    Op32 op32;
177
#endif
178
    Op op;
179

180 181 182
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
183 184
    {
        int x = 0;
185

186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
#if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_load_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_load_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_load_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_load_si128((const __m128i*)(src2 + x + 4)));
                    _mm_store_si128((__m128i*)(dst + x), r0);
                    _mm_store_si128((__m128i*)(dst + x + 16), r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 4)));
                    _mm_storeu_si128((__m128i*)(dst + x), r0);
                    _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
                }
        }
#endif
211

212 213 214 215 216 217 218 219 220
        for( ; x <= sz.width - 4; x += 4 )
        {
            int v0 = op(src1[x], src2[x]);
            int v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
221

222 223 224 225 226
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

227

228 229 230 231
template<class Op, class Op32>
void vBinOp32f(const float* src1, size_t step1, const float* src2, size_t step2,
               float* dst, size_t step, Size sz)
{
232
#if CV_SSE2
233
    Op32 op32;
234
#endif
235
    Op op;
236

237 238 239 240 241
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
    #if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_load_ps(src1 + x);
                    __m128 r1 = _mm_load_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_load_ps(src2 + x));
                    r1 = op32(r1,_mm_load_ps(src2 + x + 4));
                    _mm_store_ps(dst + x, r0);
                    _mm_store_ps(dst + x + 4, r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_loadu_ps(src1 + x);
                    __m128 r1 = _mm_loadu_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_loadu_ps(src2 + x));
                    r1 = op32(r1,_mm_loadu_ps(src2 + x + 4));
                    _mm_storeu_ps(dst + x, r0);
                    _mm_storeu_ps(dst + x + 4, r1);
                }
        }
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            float v0 = op(src1[x], src2[x]);
            float v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
277

278 279 280 281 282 283 284 285 286
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

template<class Op, class Op64>
void vBinOp64f(const double* src1, size_t step1, const double* src2, size_t step2,
               double* dst, size_t step, Size sz)
{
287
#if CV_SSE2
288
    Op64 op64;
289
#endif
290
    Op op;
291

292 293 294 295 296
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
297

298 299 300
    #if CV_SSE2
        if( USE_SSE2 && (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
            for( ; x <= sz.width - 4; x += 4 )
301
            {
302 303 304 305 306 307
                __m128d r0 = _mm_load_pd(src1 + x);
                __m128d r1 = _mm_load_pd(src1 + x + 2);
                r0 = op64(r0,_mm_load_pd(src2 + x));
                r1 = op64(r1,_mm_load_pd(src2 + x + 2));
                _mm_store_pd(dst + x, r0);
                _mm_store_pd(dst + x + 2, r1);
308 309
            }
        else
310 311 312 313 314 315 316 317 318 319
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            double v0 = op(src1[x], src2[x]);
            double v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
320

321 322
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
323
    }
324
}
325

326
#if CV_SSE2
327

328 329 330 331 332 333 334 335 336
struct _VAdd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu8(a,b); }};
struct _VSub8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu8(a,b); }};
struct _VMin8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); }};
struct _VMax8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); }};
struct _VAbsDiff8u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi8(_mm_subs_epu8(a,b),_mm_subs_epu8(b,a)); }
};
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

struct _VAdd8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi8(a,b); }};
struct _VSub8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi8(a,b); }};
struct _VMin8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_subs_epi8(a, b);
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_subs_epi8(_mm_xor_si128(d, m), m);
    }
};

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
struct _VAdd16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(a,b); }};
struct _VSub16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,b); }};
struct _VMin16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); }
};
struct _VMax16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_adds_epu16(_mm_subs_epu16(a,b),b); }
};
struct _VAbsDiff16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi16(_mm_subs_epu16(a,b),_mm_subs_epu16(b,a)); }
};
383

384 385 386 387 388 389 390 391 392 393 394 395
struct _VAdd16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi16(a,b); }};
struct _VSub16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi16(a,b); }};
struct _VMin16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a,b); }};
struct _VMax16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a,b); }};
struct _VAbsDiff16s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i M = _mm_max_epi16(a,b), m = _mm_min_epi16(a,b);
        return _mm_subs_epi16(M, m);
    }
};
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

struct _VAdd32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_add_epi32(a,b); }};
struct _VSub32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_sub_epi32(a,b); }};
struct _VMin32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_sub_epi32(a, b);
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_sub_epi32(_mm_xor_si128(d, m), m);
    }
423
};
424

425 426 427 428 429 430 431 432 433 434 435 436 437
struct _VAdd32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_add_ps(a,b); }};
struct _VSub32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_sub_ps(a,b); }};
struct _VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }};
struct _VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }};
static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
struct _VAbsDiff32f
{
    __m128 operator()(const __m128& a, const __m128& b) const
    {
        return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask);
    }
};

438 439 440 441
struct _VAdd64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_add_pd(a,b); }};
struct _VSub64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_sub_pd(a,b); }};
struct _VMin64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_min_pd(a,b); }};
struct _VMax64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_max_pd(a,b); }};
442

443 444 445 446 447 448 449
static int CV_DECL_ALIGNED(16) v64f_absmask[] = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff };
struct _VAbsDiff64f
{
    __m128d operator()(const __m128d& a, const __m128d& b) const
    {
        return _mm_and_pd(_mm_sub_pd(a,b), *(const __m128d*)v64f_absmask);
    }
450 451
};

452
struct _VAnd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_and_si128(a,b); }};
453
struct _VOr8u  { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_or_si128(a,b); }};
454
struct _VXor8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_xor_si128(a,b); }};
455
struct _VNot8u { __m128i operator()(const __m128i& a, const __m128i&) const { return _mm_andnot_si128(_mm_setzero_si128(),a); }};
456

457
#endif
458

459 460
#if CV_SSE2
#define IF_SIMD(op) op
461
#else
462
#define IF_SIMD(op) NOP
463
#endif
464

465 466 467 468
template<> inline uchar OpAdd<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a + b); }
template<> inline uchar OpSub<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a - b); }
469

470
template<typename T> struct OpAbsDiff
471
{
472 473 474 475
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()(T a, T b) const { return (T)std::abs(a - b); }
476 477
};

478 479
template<> inline short OpAbsDiff<short>::operator ()(short a, short b) const
{ return saturate_cast<short>(std::abs(a - b)); }
480

481 482
template<> inline schar OpAbsDiff<schar>::operator ()(schar a, schar b) const
{ return saturate_cast<schar>(std::abs(a - b)); }
483

484
template<typename T, typename WT=T> struct OpAbsDiffS
485
{
486 487 488 489
    typedef T type1;
    typedef WT type2;
    typedef T rtype;
    T operator()(T a, WT b) const { return saturate_cast<T>(std::abs(a - b)); }
490 491
};

492
template<typename T> struct OpAnd
493
{
494 495 496 497
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a & b; }
498 499
};

500
template<typename T> struct OpOr
501
{
502 503 504 505
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a | b; }
506 507
};

508
template<typename T> struct OpXor
509
{
510 511 512 513
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a ^ b; }
514 515
};

516
template<typename T> struct OpNot
517
{
518 519 520 521
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T ) const { return ~a; }
522
};
523

524 525 526 527 528
static inline void fixSteps(Size sz, size_t elemSize, size_t& step1, size_t& step2, size_t& step)
{
    if( sz.height == 1 )
        step1 = step2 = step = sz.width*elemSize;
}
529

530 531 532 533 534
static void add8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
535
           ippiAdd_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
536 537
           (vBinOp8<uchar, OpAdd<uchar>, IF_SIMD(_VAdd8u)>(src1, step1, src2, step2, dst, step, sz)));
}
538

539 540 541
static void add8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
542
{
543 544
    vBinOp8<schar, OpAdd<schar>, IF_SIMD(_VAdd8s)>(src1, step1, src2, step2, dst, step, sz);
}
545

546 547 548
static void add16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
549
{
550
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
551
           ippiAdd_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
552 553
            (vBinOp16<ushort, OpAdd<ushort>, IF_SIMD(_VAdd16u)>(src1, step1, src2, step2, dst, step, sz)));
}
554

555 556 557
static void add16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
558
{
559
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
560
           ippiAdd_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
561 562
           (vBinOp16<short, OpAdd<short>, IF_SIMD(_VAdd16s)>(src1, step1, src2, step2, dst, step, sz)));
}
563

564 565 566
static void add32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
567
{
568 569
    vBinOp32s<OpAdd<int>, IF_SIMD(_VAdd32s)>(src1, step1, src2, step2, dst, step, sz);
}
570

571 572 573
static void add32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
574
{
575
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
576
           ippiAdd_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
577 578
           (vBinOp32f<OpAdd<float>, IF_SIMD(_VAdd32f)>(src1, step1, src2, step2, dst, step, sz)));
}
579

580 581 582
static void add64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
583
{
584 585
    vBinOp64f<OpAdd<double>, IF_SIMD(_VAdd64f)>(src1, step1, src2, step2, dst, step, sz);
}
586

587 588 589
static void sub8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
590
{
591
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
592
           ippiSub_8u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
593 594
           (vBinOp8<uchar, OpSub<uchar>, IF_SIMD(_VSub8u)>(src1, step1, src2, step2, dst, step, sz)));
}
595

596 597 598
static void sub8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
599
{
600 601
    vBinOp8<schar, OpSub<schar>, IF_SIMD(_VSub8s)>(src1, step1, src2, step2, dst, step, sz);
}
602

603 604 605
static void sub16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
606
{
607
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
608
           ippiSub_16u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
609 610
           (vBinOp16<ushort, OpSub<ushort>, IF_SIMD(_VSub16u)>(src1, step1, src2, step2, dst, step, sz)));
}
611

612 613 614
static void sub16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
615
{
616
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
617
           ippiSub_16s_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
618 619
           (vBinOp16<short, OpSub<short>, IF_SIMD(_VSub16s)>(src1, step1, src2, step2, dst, step, sz)));
}
620

621 622 623
static void sub32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
624
{
625 626
    vBinOp32s<OpSub<int>, IF_SIMD(_VSub32s)>(src1, step1, src2, step2, dst, step, sz);
}
627

628 629 630
static void sub32f( const float* src1, size_t step1,
                   const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* )
631
{
632
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
633
           ippiSub_32f_C1R(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz),
634 635
           (vBinOp32f<OpSub<float>, IF_SIMD(_VSub32f)>(src1, step1, src2, step2, dst, step, sz)));
}
636

637 638 639
static void sub64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
640
{
641
    vBinOp64f<OpSub<double>, IF_SIMD(_VSub64f)>(src1, step1, src2, step2, dst, step, sz);
642
}
643

644 645
template<> inline uchar OpMin<uchar>::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); }
template<> inline uchar OpMax<uchar>::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); }
646

647 648 649
static void max8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
650
{
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz)));
672
}
673

674 675 676
static void max8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
677
{
678 679
    vBinOp8<schar, OpMax<schar>, IF_SIMD(_VMax8s)>(src1, step1, src2, step2, dst, step, sz);
}
680

681 682 683
static void max16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
684
{
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz)));
706
}
707

708 709 710
static void max16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
711
{
712
    vBinOp16<short, OpMax<short>, IF_SIMD(_VMax16s)>(src1, step1, src2, step2, dst, step, sz);
713
}
714

715 716 717
static void max32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
718
{
719 720
    vBinOp32s<OpMax<int>, IF_SIMD(_VMax32s)>(src1, step1, src2, step2, dst, step, sz);
}
721

722 723 724
static void max32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
725
{
726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz)));
746
}
747

748 749 750
static void max64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
751
{
752 753
    vBinOp64f<OpMax<double>, IF_SIMD(_VMax64f)>(src1, step1, src2, step2, dst, step, sz);
}
754

755 756 757
static void min8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
758
{
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz)));
780
}
781

782 783 784 785 786 787
static void min8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpMin<schar>, IF_SIMD(_VMin8s)>(src1, step1, src2, step2, dst, step, sz);
}
788

789 790 791 792
static void min16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
{
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz)));
814
}
815

816 817 818 819
static void min16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
{
820
    vBinOp16<short, OpMin<short>, IF_SIMD(_VMin16s)>(src1, step1, src2, step2, dst, step, sz);
821
}
822

823 824 825
static void min32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
826
{
827 828
    vBinOp32s<OpMin<int>, IF_SIMD(_VMin32s)>(src1, step1, src2, step2, dst, step, sz);
}
829

830 831 832
static void min32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
833
{
834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz)));
854
}
855

856 857 858
static void min64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
859
{
860
    vBinOp64f<OpMin<double>, IF_SIMD(_VMin64f)>(src1, step1, src2, step2, dst, step, sz);
861
}
862

863 864 865
static void absdiff8u( const uchar* src1, size_t step1,
                       const uchar* src2, size_t step2,
                       uchar* dst, size_t step, Size sz, void* )
866
{
867
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
868
           ippiAbsDiff_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
869 870
           (vBinOp8<uchar, OpAbsDiff<uchar>, IF_SIMD(_VAbsDiff8u)>(src1, step1, src2, step2, dst, step, sz)));
}
871

872 873 874 875 876 877
static void absdiff8s( const schar* src1, size_t step1,
                       const schar* src2, size_t step2,
                       schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpAbsDiff<schar>, IF_SIMD(_VAbsDiff8s)>(src1, step1, src2, step2, dst, step, sz);
}
878

879 880 881 882 883
static void absdiff16u( const ushort* src1, size_t step1,
                        const ushort* src2, size_t step2,
                        ushort* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
884
           ippiAbsDiff_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
885 886
           (vBinOp16<ushort, OpAbsDiff<ushort>, IF_SIMD(_VAbsDiff16u)>(src1, step1, src2, step2, dst, step, sz)));
}
887

888 889 890 891
static void absdiff16s( const short* src1, size_t step1,
                        const short* src2, size_t step2,
                        short* dst, size_t step, Size sz, void* )
{
892
    vBinOp16<short, OpAbsDiff<short>, IF_SIMD(_VAbsDiff16s)>(src1, step1, src2, step2, dst, step, sz);
893
}
894

895 896 897 898 899 900
static void absdiff32s( const int* src1, size_t step1,
                        const int* src2, size_t step2,
                        int* dst, size_t step, Size sz, void* )
{
    vBinOp32s<OpAbsDiff<int>, IF_SIMD(_VAbsDiff32s)>(src1, step1, src2, step2, dst, step, sz);
}
901

902 903 904 905 906
static void absdiff32f( const float* src1, size_t step1,
                        const float* src2, size_t step2,
                        float* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
907
           ippiAbsDiff_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
908 909
           (vBinOp32f<OpAbsDiff<float>, IF_SIMD(_VAbsDiff32f)>(src1, step1, src2, step2, dst, step, sz)));
}
910

911 912 913 914 915
static void absdiff64f( const double* src1, size_t step1,
                        const double* src2, size_t step2,
                        double* dst, size_t step, Size sz, void* )
{
    vBinOp64f<OpAbsDiff<double>, IF_SIMD(_VAbsDiff64f)>(src1, step1, src2, step2, dst, step, sz);
916 917
}

918

919 920 921 922 923
static void and8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
924
           ippiAnd_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
925 926 927 928 929 930 931 932
           (vBinOp8<uchar, OpAnd<uchar>, IF_SIMD(_VAnd8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void or8u( const uchar* src1, size_t step1,
                  const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
933
           ippiOr_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
934 935 936 937 938 939 940 941
           (vBinOp8<uchar, OpOr<uchar>, IF_SIMD(_VOr8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void xor8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
942
           ippiXor_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
943
           (vBinOp8<uchar, OpXor<uchar>, IF_SIMD(_VXor8u)>(src1, step1, src2, step2, dst, step, sz)));
944
}
945 946 947 948 949 950

static void not8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
951
           ippiNot_8u_C1R(src1, (int)step1, dst, (int)step, (IppiSize&)sz),
952 953
           (vBinOp8<uchar, OpNot<uchar>, IF_SIMD(_VNot8u)>(src1, step1, src2, step2, dst, step, sz)));
}
954

955 956 957
/****************************************************************************************\
*                                   logical operations                                   *
\****************************************************************************************/
958

959
void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize )
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974
{
    int scn = (int)sc.total(), cn = CV_MAT_CN(buftype);
    size_t esz = CV_ELEM_SIZE(buftype);
    getConvertFunc(sc.depth(), buftype)(sc.data, 0, 0, 0, scbuf, 0, Size(std::min(cn, scn), 1), 0);
    // unroll the scalar
    if( scn < cn )
    {
        CV_Assert( scn == 1 );
        size_t esz1 = CV_ELEM_SIZE1(buftype);
        for( size_t i = esz1; i < esz; i++ )
            scbuf[i] = scbuf[i - esz1];
    }
    for( size_t i = esz; i < blocksize*esz; i++ )
        scbuf[i] = scbuf[i - esz];
}
975

976 977
void binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, const BinaryFunc* tab, bool bitwise)
978 979 980 981 982 983
{
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty(), haveScalar = false;
    BinaryFunc func;
    int c;
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
    if( src1.dims <= 2 && src2.dims <= 2 && kind1 == kind2 &&
        src1.size() == src2.size() && src1.type() == src2.type() && !haveMask )
    {
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        if( bitwise )
        {
            func = *tab;
            c = (int)src1.elemSize();
        }
        else
        {
            func = tab[src1.depth()];
            c = src1.channels();
        }
1000

1001 1002 1003 1004 1005 1006 1007 1008
        Size sz = getContinuousSize(src1, src2, dst);
        size_t len = sz.width*(size_t)c;
        if( len == (size_t)(int)len )
        {
            sz.width = (int)len;
            func(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, 0);
            return;
        }
1009
    }
1010

1011
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                      "The operation is neither 'array op array' (where arrays have the same size and type), "
                      "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1023

1024 1025 1026 1027 1028
    size_t esz = src1.elemSize();
    size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
    int cn = src1.channels();
    BinaryFunc copymask = 0;
    Mat mask;
1029

1030 1031 1032 1033 1034 1035 1036
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(esz);
    }
1037

1038 1039
    AutoBuffer<uchar> _buf;
    uchar *scbuf = 0, *maskbuf = 0;
1040

1041 1042
    _dst.create(src1.dims, src1.size, src1.type());
    Mat dst = _dst.getMat();
1043

1044 1045 1046 1047 1048 1049 1050 1051 1052
    if( bitwise )
    {
        func = *tab;
        c = (int)esz;
    }
    else
    {
        func = tab[src1.depth()];
        c = cn;
1053
    }
1054

1055
    if( !haveScalar )
1056
    {
1057 1058
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1059

1060 1061
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1062

1063 1064 1065
        if( blocksize*c > INT_MAX )
            blocksize = INT_MAX/c;
        
1066 1067 1068 1069 1070 1071
        if( haveMask )
        {
            blocksize = std::min(blocksize, blocksize0);
            _buf.allocate(blocksize*esz);
            maskbuf = _buf;
        }
1072

1073
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1074
        {
1075
            for( size_t j = 0; j < total; j += blocksize )
1076
            {
1077
                int bsz = (int)MIN(total - j, blocksize);
1078 1079

                func( ptrs[0], 0, ptrs[1], 0, haveMask ? maskbuf : ptrs[2], 0, Size(bsz*c, 1), 0 );
1080
                if( haveMask )
1081
                {
1082 1083
                    copymask( maskbuf, 0, ptrs[3], 0, ptrs[2], 0, Size(bsz, 1), &esz );
                    ptrs[3] += bsz;
1084
                }
1085

1086 1087
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz; ptrs[2] += bsz;
1088 1089
            }
        }
1090 1091 1092 1093 1094
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1095

1096 1097
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1098

1099 1100 1101
        _buf.allocate(blocksize*(haveMask ? 2 : 1)*esz + 32);
        scbuf = _buf;
        maskbuf = alignPtr(scbuf + blocksize*esz, 16);
1102

1103
        convertAndUnrollScalar( src2, src1.type(), scbuf, blocksize);
1104

1105
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1106
        {
1107
            for( size_t j = 0; j < total; j += blocksize )
1108
            {
1109
                int bsz = (int)MIN(total - j, blocksize);
1110

1111 1112
                func( ptrs[0], 0, scbuf, 0, haveMask ? maskbuf : ptrs[1], 0, Size(bsz*c, 1), 0 );
                if( haveMask )
1113
                {
1114 1115
                    copymask( maskbuf, 0, ptrs[2], 0, ptrs[1], 0, Size(bsz, 1), &esz );
                    ptrs[2] += bsz;
1116
                }
1117

1118 1119
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz;
1120 1121 1122 1123
            }
        }
    }
}
1124

1125
static BinaryFunc maxTab[] =
V
Vadim Pisarevsky 已提交
1126
{
A
Andrey Kamaev 已提交
1127 1128 1129 1130 1131
    (BinaryFunc)GET_OPTIMIZED(max8u), (BinaryFunc)GET_OPTIMIZED(max8s),
    (BinaryFunc)GET_OPTIMIZED(max16u), (BinaryFunc)GET_OPTIMIZED(max16s),
    (BinaryFunc)GET_OPTIMIZED(max32s),
    (BinaryFunc)GET_OPTIMIZED(max32f), (BinaryFunc)max64f,
    0
1132
};
1133

1134 1135
static BinaryFunc minTab[] =
{
A
Andrey Kamaev 已提交
1136 1137 1138 1139 1140
    (BinaryFunc)GET_OPTIMIZED(min8u), (BinaryFunc)GET_OPTIMIZED(min8s),
    (BinaryFunc)GET_OPTIMIZED(min16u), (BinaryFunc)GET_OPTIMIZED(min16s),
    (BinaryFunc)GET_OPTIMIZED(min32s),
    (BinaryFunc)GET_OPTIMIZED(min32f), (BinaryFunc)min64f,
    0
1141
};
1142

V
Vadim Pisarevsky 已提交
1143
}
1144

1145
void cv::bitwise_and(InputArray a, InputArray b, OutputArray c, InputArray mask)
1146
{
A
Andrey Kamaev 已提交
1147
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(and8u);
1148
    binary_op(a, b, c, mask, &f, true);
1149 1150
}

1151
void cv::bitwise_or(InputArray a, InputArray b, OutputArray c, InputArray mask)
1152
{
A
Andrey Kamaev 已提交
1153
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(or8u);
1154
    binary_op(a, b, c, mask, &f, true);
1155 1156
}

1157
void cv::bitwise_xor(InputArray a, InputArray b, OutputArray c, InputArray mask)
1158
{
A
Andrey Kamaev 已提交
1159
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(xor8u);
1160
    binary_op(a, b, c, mask, &f, true);
1161 1162
}

1163
void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
1164
{
A
Andrey Kamaev 已提交
1165
    BinaryFunc f = (BinaryFunc)GET_OPTIMIZED(not8u);
1166
    binary_op(a, a, c, mask, &f, true);
1167 1168
}

1169
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
1170
{
1171
    binary_op(src1, src2, dst, noArray(), maxTab, false );
1172 1173
}

1174
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
1175
{
1176
    binary_op(src1, src2, dst, noArray(), minTab, false );
1177 1178
}

1179
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
1180
{
1181
    OutputArray _dst(dst);
1182
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1183 1184
}

1185 1186 1187
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
{
    OutputArray _dst(dst);
1188
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1189
}
1190

1191 1192 1193
void cv::max(const Mat& src1, double src2, Mat& dst)
{
    OutputArray _dst(dst);
1194
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1195
}
1196

1197
void cv::min(const Mat& src1, double src2, Mat& dst)
1198
{
1199
    OutputArray _dst(dst);
1200
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1201
}
1202

1203 1204 1205
/****************************************************************************************\
*                                      add/subtract                                      *
\****************************************************************************************/
1206

1207 1208
namespace cv
{
1209

1210 1211
void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, int dtype, BinaryFunc* tab, bool muldiv=false, void* usrdata=0)
1212
{
1213 1214 1215
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty();
1216

1217 1218 1219 1220
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 &&
        src1.size() == src2.size() && src1.type() == src2.type() &&
        !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == src1.depth())) ||
                       (_dst.fixedType() && _dst.type() == _src1.type())) )
V
Vadim Pisarevsky 已提交
1221
    {
1222 1223 1224 1225
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        tab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, usrdata);
V
Vadim Pisarevsky 已提交
1226 1227
        return;
    }
1228

1229
    bool haveScalar = false, swapped12 = false;
1230

1231
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
1232
        src1.size != src2.size || src1.channels() != src2.channels() )
1233
    {
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
        if( checkScalar(src1, src2.type(), kind1, kind2) )
        {
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            swapped12 = true;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same number of channels), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1246

1247 1248
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth(), wtype;
    BinaryFunc cvtsrc1 = 0, cvtsrc2 = 0, cvtdst = 0;
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    if( dtype < 0 )
    {
        if( _dst.fixedType() )
            dtype = _dst.type();
        else
        {
            if( !haveScalar && src1.type() != src2.type() )
                CV_Error(CV_StsBadArg,
                     "When the input arrays in add/subtract/multiply/divide functions have different types, "
                     "the output array type must be explicitly specified");
            dtype = src1.type();
        }
    }
    dtype = CV_MAT_DEPTH(dtype);
1264

1265 1266 1267 1268 1269 1270 1271
    if( depth1 == depth2 && dtype == depth1 )
        wtype = dtype;
    else if( !muldiv )
    {
        wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S :
                depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2);
        wtype = std::max(wtype, dtype);
1272

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
        // when the result of addition should be converted to an integer type,
        // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation,
        // instead of converting the other input to floating-point and then converting the operation result back to integers.
        if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) )
            wtype = CV_32S;
    }
    else
    {
        wtype = std::max(depth1, std::max(depth2, CV_32F));
        wtype = std::max(wtype, dtype);
    }
1284

1285 1286 1287
    cvtsrc1 = depth1 == wtype ? 0 : getConvertFunc(depth1, wtype);
    cvtsrc2 = depth2 == depth1 ? cvtsrc1 : depth2 == wtype ? 0 : getConvertFunc(depth2, wtype);
    cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype);
1288

1289 1290
    dtype = CV_MAKETYPE(dtype, cn);
    wtype = CV_MAKETYPE(wtype, cn);
1291

1292 1293 1294 1295 1296
    size_t esz1 = src1.elemSize(), esz2 = src2.elemSize();
    size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype);
    size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz;
    BinaryFunc copymask = 0;
    Mat mask;
1297

1298 1299 1300 1301 1302 1303 1304
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(dsz);
    }
1305

1306 1307 1308
    AutoBuffer<uchar> _buf;
    uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0;
    size_t bufesz = (cvtsrc1 ? wsz : 0) + (cvtsrc2 || haveScalar ? wsz : 0) + (cvtdst ? wsz : 0) + (haveMask ? dsz : 0);
1309

1310
    _dst.create(src1.dims, src1.size, dtype);
1311 1312
    Mat dst = _dst.getMat();
    BinaryFunc func = tab[CV_MAT_DEPTH(wtype)];
1313

1314 1315 1316 1317
    if( !haveScalar )
    {
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1318

1319 1320
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
        if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst )
            blocksize = std::min(blocksize, blocksize0);

        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        if( cvtsrc2 )
            buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1336

1337
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1338
        {
1339
            for( size_t j = 0; j < total; j += blocksize )
1340
            {
1341
                int bsz = (int)MIN(total - j, blocksize);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1];
                uchar* dptr = ptrs[2];
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
                if( ptrs[0] == ptrs[1] )
                    sptr2 = sptr1;
                else if( cvtsrc2 )
                {
                    cvtsrc2( sptr2, 0, 0, 0, buf2, 0, bszn, 0 );
                    sptr2 = buf2;
                }
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz;
1378 1379
            }
        }
1380 1381 1382 1383 1384
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1385

1386 1387
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1388

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1399

1400
        convertAndUnrollScalar( src2, wtype, buf2, blocksize);
1401

1402
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1403
        {
1404 1405
            for( size_t j = 0; j < total; j += blocksize )
            {
1406
                int bsz = (int)MIN(total - j, blocksize);
1407 1408 1409 1410
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0];
                const uchar* sptr2 = buf2;
                uchar* dptr = ptrs[1];
1411

1412 1413 1414 1415 1416
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
1417

1418 1419
                if( swapped12 )
                    std::swap(sptr1, sptr2);
1420

1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz;
            }
1442 1443 1444
        }
    }
}
1445

1446 1447
static BinaryFunc addTab[] =
{
A
Andrey Kamaev 已提交
1448 1449 1450 1451 1452
    (BinaryFunc)GET_OPTIMIZED(add8u), (BinaryFunc)GET_OPTIMIZED(add8s),
    (BinaryFunc)GET_OPTIMIZED(add16u), (BinaryFunc)GET_OPTIMIZED(add16s),
    (BinaryFunc)GET_OPTIMIZED(add32s),
    (BinaryFunc)GET_OPTIMIZED(add32f), (BinaryFunc)add64f,
    0
1453
};
1454

1455 1456
static BinaryFunc subTab[] =
{
A
Andrey Kamaev 已提交
1457 1458 1459 1460 1461
    (BinaryFunc)GET_OPTIMIZED(sub8u), (BinaryFunc)GET_OPTIMIZED(sub8s),
    (BinaryFunc)GET_OPTIMIZED(sub16u), (BinaryFunc)GET_OPTIMIZED(sub16s),
    (BinaryFunc)GET_OPTIMIZED(sub32s),
    (BinaryFunc)GET_OPTIMIZED(sub32f), (BinaryFunc)sub64f,
    0
1462 1463
};

1464
static BinaryFunc absdiffTab[] =
1465
{
A
Andrey Kamaev 已提交
1466 1467 1468 1469 1470
    (BinaryFunc)GET_OPTIMIZED(absdiff8u), (BinaryFunc)GET_OPTIMIZED(absdiff8s),
    (BinaryFunc)GET_OPTIMIZED(absdiff16u), (BinaryFunc)GET_OPTIMIZED(absdiff16s),
    (BinaryFunc)GET_OPTIMIZED(absdiff32s),
    (BinaryFunc)GET_OPTIMIZED(absdiff32f), (BinaryFunc)absdiff64f,
    0
1471
};
1472 1473

}
1474

1475 1476
void cv::add( InputArray src1, InputArray src2, OutputArray dst,
          InputArray mask, int dtype )
1477
{
1478
    arithm_op(src1, src2, dst, mask, dtype, addTab );
1479 1480
}

1481 1482
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
               InputArray mask, int dtype )
1483
{
1484
    arithm_op(src1, src2, dst, mask, dtype, subTab );
1485 1486
}

1487
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
1488
{
1489
    arithm_op(src1, src2, dst, noArray(), -1, absdiffTab);
1490
}
1491 1492 1493 1494 1495

/****************************************************************************************\
*                                    multiply/divide                                     *
\****************************************************************************************/

1496 1497 1498
namespace cv
{

1499
template<typename T, typename WT> static void
1500 1501
mul_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, WT scale )
1502
{
1503 1504 1505
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1506

1507
    if( scale == (WT)1. )
1508
    {
1509
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1510 1511 1512 1513
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
1514 1515 1516 1517 1518 1519
                T t0;
                T t1;
                t0 = saturate_cast<T>(src1[i  ] * src2[i  ]);
                t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
                dst[i  ] = t0;
                dst[i+1] = t1;
1520 1521 1522

                t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
                t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
1523 1524
                dst[i+2] = t0;
                dst[i+3] = t1;
1525 1526 1527 1528 1529 1530 1531 1532
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(src1[i] * src2[i]);
        }
    }
    else
    {
1533
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
                T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
                T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
                dst[i] = t0; dst[i+1] = t1;

                t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
                t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
                dst[i+2] = t0; dst[i+3] = t1;
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
        }
    }
}

template<typename T> static void
1554 1555
div_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, double scale )
1556
{
1557 1558 1559
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1560

1561
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1573

1574 1575 1576 1577
                T z0 = saturate_cast<T>(src2[i+1] * ((double)src1[i] * b));
                T z1 = saturate_cast<T>(src2[i] * ((double)src1[i+1] * b));
                T z2 = saturate_cast<T>(src2[i+3] * ((double)src1[i+2] * a));
                T z3 = saturate_cast<T>(src2[i+2] * ((double)src1[i+3] * a));
1578

1579 1580 1581 1582 1583 1584 1585 1586 1587
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(src1[i+1]*scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(src1[i+2]*scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(src1[i+3]*scale/src2[i+3]) : 0;
1588

1589 1590 1591 1592
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1593

1594 1595 1596 1597 1598 1599
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
    }
}

template<typename T> static void
1600 1601
recip_( const T*, size_t, const T* src2, size_t step2,
        T* dst, size_t step, Size size, double scale )
1602
{
1603 1604
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1605

1606
    for( ; size.height--; src2 += step2, dst += step )
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1618

1619 1620 1621 1622
                T z0 = saturate_cast<T>(src2[i+1] * b);
                T z1 = saturate_cast<T>(src2[i] * b);
                T z2 = saturate_cast<T>(src2[i+3] * a);
                T z3 = saturate_cast<T>(src2[i+2] * a);
1623

1624 1625 1626 1627 1628 1629 1630 1631 1632
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(scale/src2[i+3]) : 0;
1633
                
1634 1635 1636 1637
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1638

1639 1640 1641 1642
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
    }
}
1643 1644


1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1674

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
static void mul32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}
    
static void mul64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1686

1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
static void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    if( src1 )
        div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
    else
        recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                   ushort* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16s( const short* src1, size_t step1, const short* src2, size_t step2,
                   short* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1755

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772
static void recip32s( const int* src1, size_t step1, const int* src2, size_t step2,
                   int* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip32f( const float* src1, size_t step1, const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip64f( const double* src1, size_t step1, const double* src2, size_t step2,
                   double* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1773 1774


1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static BinaryFunc mulTab[] =
{
    (BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
    (BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
    (BinaryFunc)mul64f, 0
};

static BinaryFunc divTab[] =
{
    (BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
    (BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
    (BinaryFunc)div64f, 0
};

static BinaryFunc recipTab[] =
{
    (BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
    (BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
    (BinaryFunc)recip64f, 0
};
1795

1796

1797
}
1798

1799
void cv::multiply(InputArray src1, InputArray src2,
1800
                  OutputArray dst, double scale, int dtype)
1801
{
1802
    arithm_op(src1, src2, dst, noArray(), dtype, mulTab, true, &scale);
1803
}
1804

1805
void cv::divide(InputArray src1, InputArray src2,
1806 1807
                OutputArray dst, double scale, int dtype)
{
1808
    arithm_op(src1, src2, dst, noArray(), dtype, divTab, true, &scale);
1809 1810
}

1811
void cv::divide(double scale, InputArray src2,
1812 1813
                OutputArray dst, int dtype)
{
1814
    arithm_op(src2, src2, dst, noArray(), dtype, recipTab, true, &scale);
1815 1816
}

1817 1818 1819 1820
/****************************************************************************************\
*                                      addWeighted                                       *
\****************************************************************************************/

1821 1822 1823
namespace cv
{

1824
template<typename T, typename WT> static void
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size size, void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2];
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1835
    {
1836 1837
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
1838
        {
1839 1840 1841
            T t0 = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
            T t1 = saturate_cast<T>(src1[x+1]*alpha + src2[x+1]*beta + gamma);
            dst[x] = t0; dst[x+1] = t1;
1842

1843 1844 1845
            t0 = saturate_cast<T>(src1[x+2]*alpha + src2[x+2]*beta + gamma);
            t1 = saturate_cast<T>(src1[x+3]*alpha + src2[x+3]*beta + gamma);
            dst[x+2] = t0; dst[x+3] = t1;
1846 1847
        }

1848 1849
        for( ; x < size.width; x++ )
            dst[x] = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
1850 1851 1852 1853 1854
    }
}


static void
1855 1856 1857 1858 1859 1860 1861
addWeighted8u( const uchar* src1, size_t step1,
               const uchar* src2, size_t step2,
               uchar* dst, size_t step, Size size,
               void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    float alpha = (float)scalars[0], beta = (float)scalars[1], gamma = (float)scalars[2];
1862

1863
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1864
    {
1865
        int x = 0;
1866

1867 1868
#if CV_SSE2
        if( USE_SSE2 )
1869
        {
1870 1871
            __m128 a4 = _mm_set1_ps(alpha), b4 = _mm_set1_ps(beta), g4 = _mm_set1_ps(gamma);
            __m128i z = _mm_setzero_si128();
1872

1873
            for( ; x <= size.width - 8; x += 8 )
1874
            {
1875 1876
                __m128i u = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src1 + x)), z);
                __m128i v = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src2 + x)), z);
1877

1878 1879 1880 1881
                __m128 u0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(u, z));
                __m128 u1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(u, z));
                __m128 v0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v, z));
                __m128 v1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v, z));
1882

1883 1884 1885
                u0 = _mm_add_ps(_mm_mul_ps(u0, a4), _mm_mul_ps(v0, b4));
                u1 = _mm_add_ps(_mm_mul_ps(u1, a4), _mm_mul_ps(v1, b4));
                u0 = _mm_add_ps(u0, g4); u1 = _mm_add_ps(u1, g4);
1886

1887 1888
                u = _mm_packs_epi32(_mm_cvtps_epi32(u0), _mm_cvtps_epi32(u1));
                u = _mm_packus_epi16(u, u);
1889

1890
                _mm_storel_epi64((__m128i*)(dst + x), u);
1891 1892
            }
        }
1893 1894
#endif
        for( ; x <= size.width - 4; x += 4 )
1895
        {
1896 1897 1898
            float t0, t1;
            t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            t1 = CV_8TO32F(src1[x+1])*alpha + CV_8TO32F(src2[x+1])*beta + gamma;
1899

1900 1901
            dst[x] = saturate_cast<uchar>(t0);
            dst[x+1] = saturate_cast<uchar>(t1);
1902

1903 1904
            t0 = CV_8TO32F(src1[x+2])*alpha + CV_8TO32F(src2[x+2])*beta + gamma;
            t1 = CV_8TO32F(src1[x+3])*alpha + CV_8TO32F(src2[x+3])*beta + gamma;
1905

1906 1907 1908
            dst[x+2] = saturate_cast<uchar>(t0);
            dst[x+3] = saturate_cast<uchar>(t1);
        }
1909

1910 1911 1912 1913
        for( ; x < size.width; x++ )
        {
            float t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            dst[x] = saturate_cast<uchar>(t0);
1914 1915 1916 1917
        }
    }
}

1918 1919
static void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                           schar* dst, size_t step, Size sz, void* scalars )
1920
{
1921
    addWeighted_<schar, float>(src1, step1, src2, step2, dst, step, sz, scalars);
1922 1923
}

1924 1925
static void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                            ushort* dst, size_t step, Size sz, void* scalars )
1926
{
1927 1928
    addWeighted_<ushort, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1929

1930 1931
static void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2,
                            short* dst, size_t step, Size sz, void* scalars )
1932
{
1933 1934
    addWeighted_<short, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1935

1936 1937
static void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2,
                            int* dst, size_t step, Size sz, void* scalars )
1938
{
1939
    addWeighted_<int, double>(src1, step1, src2, step2, dst, step, sz, scalars);
1940 1941
}

1942 1943
static void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2,
                            float* dst, size_t step, Size sz, void* scalars )
1944
{
1945 1946
    addWeighted_<float, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1947

1948 1949 1950 1951 1952
static void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2,
                            double* dst, size_t step, Size sz, void* scalars )
{
    addWeighted_<double, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
V
Vadim Pisarevsky 已提交
1953

1954 1955 1956 1957 1958 1959
static BinaryFunc addWeightedTab[] =
{
    (BinaryFunc)addWeighted8u, (BinaryFunc)addWeighted8s, (BinaryFunc)addWeighted16u,
    (BinaryFunc)addWeighted16s, (BinaryFunc)addWeighted32s, (BinaryFunc)addWeighted32f,
    (BinaryFunc)addWeighted64f, 0
};
1960

1961
}
1962

1963
void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
1964 1965 1966
                      double beta, double gamma, OutputArray dst, int dtype )
{
    double scalars[] = {alpha, beta, gamma};
1967
    arithm_op(src1, src2, dst, noArray(), dtype, addWeightedTab, true, scalars);
1968 1969
}

1970

1971
/****************************************************************************************\
1972
*                                          compare                                       *
1973 1974
\****************************************************************************************/

1975
namespace cv
1976 1977
{

1978 1979 1980
template<typename T> static void
cmp_(const T* src1, size_t step1, const T* src2, size_t step2,
     uchar* dst, size_t step, Size size, int code)
1981
{
1982 1983 1984
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
1985
    {
1986 1987 1988
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
1989
    }
1990

1991
    if( code == CMP_GT || code == CMP_LE )
1992
    {
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] > src2[x]) ^ m;
                t1 = -(src1[x+1] > src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] > src2[x+2]) ^ m;
                t1 = -(src1[x+3] > src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
2007

2008 2009 2010
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
        }
2011
    }
2012
    else if( code == CMP_EQ || code == CMP_NE )
2013
    {
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
        int m = code == CMP_EQ ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] == src2[x]) ^ m;
                t1 = -(src1[x+1] == src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] == src2[x+2]) ^ m;
                t1 = -(src1[x+3] == src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
2028

2029 2030 2031
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
2032
    }
2033
}
2034 2035


2036 2037
static void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2038
{
2039
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2040 2041
}

2042 2043
static void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2044
{
2045
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2046 2047
}

2048 2049
static void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2050
{
2051
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2052 2053
}

2054 2055
static void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2056
{
2057
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2058 2059
}

2060 2061 2062 2063 2064
static void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2,
                   uchar* dst, size_t step, Size size, void* _cmpop)
{
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2065

2066 2067
static void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2068
{
2069 2070
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2071

2072 2073
static void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2074
{
2075
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2076 2077
}

2078 2079
static BinaryFunc cmpTab[] =
{
A
Andrey Kamaev 已提交
2080 2081 2082 2083 2084
    (BinaryFunc)GET_OPTIMIZED(cmp8u), (BinaryFunc)GET_OPTIMIZED(cmp8s),
    (BinaryFunc)GET_OPTIMIZED(cmp16u), (BinaryFunc)GET_OPTIMIZED(cmp16s),
    (BinaryFunc)GET_OPTIMIZED(cmp32s),
    (BinaryFunc)GET_OPTIMIZED(cmp32f), (BinaryFunc)cmp64f,
    0
2085 2086
};

2087

2088
static double getMinVal(int depth)
2089
{
2090 2091 2092
    static const double tab[] = {0, -128, 0, -32768, INT_MIN, -FLT_MAX, -DBL_MAX, 0};
    return tab[depth];
}
2093

2094
static double getMaxVal(int depth)
2095
{
2096 2097 2098
    static const double tab[] = {255, 127, 65535, 32767, INT_MAX, FLT_MAX, DBL_MAX, 0};
    return tab[depth];
}
2099 2100 2101

}

2102
void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
2103 2104 2105
{
    CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ ||
               op == CMP_NE || op == CMP_GE || op == CMP_GT );
2106

2107 2108
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
2109

2110
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() )
2111
    {
2112 2113
        int cn = src1.channels();
        _dst.create(src1.size(), CV_8UC(cn));
2114 2115 2116 2117 2118
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        cmpTab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
        return;
    }
2119

2120
    bool haveScalar = false;
2121

2122
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
2123 2124 2125
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
2126
        {
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            op = op == CMP_LT ? CMP_GT : op == CMP_LE ? CMP_GE :
                op == CMP_GE ? CMP_LE : op == CMP_GT ? CMP_LT : op;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same type), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
2138

2139
    
2140
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth();
2141

2142 2143 2144 2145
    _dst.create(src1.dims, src1.size, CV_8UC(cn));
    src1 = src1.reshape(1); src2 = src2.reshape(1);
    Mat dst = _dst.getMat().reshape(1);
    
2146 2147 2148
    size_t esz = src1.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
    BinaryFunc func = cmpTab[depth1];
2149

2150
    if( !haveScalar )
2151
    {
2152 2153
        const Mat* arrays[] = { &src1, &src2, &dst, 0 };
        uchar* ptrs[3];
2154

2155 2156
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size;
2157

2158 2159
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            func( ptrs[0], 0, ptrs[1], 0, ptrs[2], 0, Size((int)total, 1), &op );
2160
    }
2161
    else
2162
    {
2163 2164
        const Mat* arrays[] = { &src1, &dst, 0 };
        uchar* ptrs[2];
2165

2166 2167
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
2168

2169 2170 2171 2172 2173 2174
        AutoBuffer<uchar> _buf(blocksize*esz);
        uchar *buf = _buf;

        if( depth1 > CV_32S )
            convertAndUnrollScalar( src2, depth1, buf, blocksize );
        else
2175
        {
2176 2177 2178 2179 2180 2181 2182
            double fval=0;
            getConvertFunc(depth2, CV_64F)(src2.data, 0, 0, 0, (uchar*)&fval, 0, Size(1,1), 0);
            if( fval < getMinVal(depth1) )
            {
                dst = Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0);
                return;
            }
2183

2184 2185 2186 2187 2188
            if( fval > getMaxVal(depth1) )
            {
                dst = Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0);
                return;
            }
2189

2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
            int ival = cvRound(fval);
            if( fval != ival )
            {
                if( op == CMP_LT || op == CMP_GE )
                    ival = cvCeil(fval);
                else if( op == CMP_LE || op == CMP_GT )
                    ival = cvFloor(fval);
                else
                {
                    dst = Scalar::all(op == CMP_NE ? 255 : 0);
                    return;
                }
            }
            convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, buf, blocksize);
        }
2205

2206
        for( size_t i = 0; i < it.nplanes; i++, ++it )
2207
        {
2208 2209
            for( size_t j = 0; j < total; j += blocksize )
            {
2210
                int bsz = (int)MIN(total - j, blocksize);
2211 2212 2213 2214 2215
                func( ptrs[0], 0, buf, 0, ptrs[1], 0, Size(bsz, 1), &op);
                ptrs[0] += bsz*esz;
                ptrs[1] += bsz;
            }
        }
2216
    }
2217
}
2218

2219 2220 2221
/****************************************************************************************\
*                                        inRange                                         *
\****************************************************************************************/
2222

2223 2224
namespace cv
{
2225

2226 2227 2228 2229 2230 2231 2232 2233
template<typename T> static void
inRange_(const T* src1, size_t step1, const T* src2, size_t step2,
         const T* src3, size_t step3, uchar* dst, size_t step,
         Size size)
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step3 /= sizeof(src3[0]);
2234

2235
    for( ; size.height--; src1 += step1, src2 += step2, src3 += step3, dst += step )
V
Vadim Pisarevsky 已提交
2236
    {
2237 2238
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
V
Vadim Pisarevsky 已提交
2239
        {
2240 2241 2242 2243 2244 2245 2246
            int t0, t1;
            t0 = src2[x] <= src1[x] && src1[x] <= src3[x];
            t1 = src2[x+1] <= src1[x+1] && src1[x+1] <= src3[x+1];
            dst[x] = (uchar)-t0; dst[x+1] = (uchar)-t1;
            t0 = src2[x+2] <= src1[x+2] && src1[x+2] <= src3[x+2];
            t1 = src2[x+3] <= src1[x+3] && src1[x+3] <= src3[x+3];
            dst[x+2] = (uchar)-t0; dst[x+3] = (uchar)-t1;
V
Vadim Pisarevsky 已提交
2247
        }
2248

2249 2250
        for( ; x < size.width; x++ )
            dst[x] = (uchar)-(src2[x] <= src1[x] && src1[x] <= src3[x]);
V
Vadim Pisarevsky 已提交
2251
    }
2252 2253
}

2254

2255 2256
static void inRange8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                      const uchar* src3, size_t step3, uchar* dst, size_t step, Size size)
2257
{
2258 2259
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2260

2261 2262
static void inRange8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                      const schar* src3, size_t step3, uchar* dst, size_t step, Size size)
2263
{
2264 2265
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2266

2267 2268
static void inRange16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                       const ushort* src3, size_t step3, uchar* dst, size_t step, Size size)
2269
{
2270 2271
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2272

2273 2274 2275 2276
static void inRange16s(const short* src1, size_t step1, const short* src2, size_t step2,
                       const short* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2277 2278
}

2279 2280
static void inRange32s(const int* src1, size_t step1, const int* src2, size_t step2,
                       const int* src3, size_t step3, uchar* dst, size_t step, Size size)
2281
{
2282 2283
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2284

2285 2286 2287 2288
static void inRange32f(const float* src1, size_t step1, const float* src2, size_t step2,
                       const float* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2289 2290
}

2291 2292
static void inRange64f(const double* src1, size_t step1, const double* src2, size_t step2,
                       const double* src3, size_t step3, uchar* dst, size_t step, Size size)
2293
{
2294
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2295
}
2296

2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn)
{
    int k = cn % 4 ? cn % 4 : 4;
    size_t i, j;
    if( k == 1 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j];
    else if( k == 2 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1];
    else if( k == 3 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2];
    else
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2] & src[j+3];
2313

2314 2315 2316 2317
    for( ; k < cn; k += 4 )
    {
        for( i = 0, j = k; i < len; i++, j += cn )
            dst[i] &= src[j] & src[j+1] & src[j+2] & src[j+3];
V
Vadim Pisarevsky 已提交
2318
    }
2319
}
2320

2321 2322
typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                             const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz );
2323

2324
static InRangeFunc inRangeTab[] =
2325
{
2326 2327 2328 2329
    (InRangeFunc)inRange8u, (InRangeFunc)inRange8s, (InRangeFunc)inRange16u,
    (InRangeFunc)inRange16s, (InRangeFunc)inRange32s, (InRangeFunc)inRange32f,
    (InRangeFunc)inRange64f, 0
};
2330

2331 2332
}

2333 2334
void cv::inRange(InputArray _src, InputArray _lowerb,
                 InputArray _upperb, OutputArray _dst)
2335 2336 2337
{
    int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind();
    Mat src = _src.getMat(), lb = _lowerb.getMat(), ub = _upperb.getMat();
2338

2339
    bool lbScalar = false, ubScalar = false;
2340

2341
    if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) ||
2342 2343 2344 2345 2346 2347 2348
        src.size != lb.size || src.type() != lb.type() )
    {
        if( !checkScalar(lb, src.type(), lkind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The lower bounary is neither an array of the same size and same type as src, nor a scalar");
        lbScalar = true;
    }
2349

2350
    if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) ||
2351 2352 2353 2354 2355 2356 2357
        src.size != ub.size || src.type() != ub.type() )
    {
        if( !checkScalar(ub, src.type(), ukind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The upper bounary is neither an array of the same size and same type as src, nor a scalar");
        ubScalar = true;
    }
2358

2359
    CV_Assert( ((int)lbScalar ^ (int)ubScalar) == 0 );
2360

2361
    int cn = src.channels(), depth = src.depth();
2362

2363 2364
    size_t esz = src.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2365

2366 2367 2368
    _dst.create(src.dims, src.size, CV_8U);
    Mat dst = _dst.getMat();
    InRangeFunc func = inRangeTab[depth];
2369

2370 2371 2372
    const Mat* arrays_sc[] = { &src, &dst, 0 };
    const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 };
    uchar* ptrs[4];
2373

2374 2375
    NAryMatIterator it(lbScalar && ubScalar ? arrays_sc : arrays_nosc, ptrs);
    size_t total = it.size, blocksize = std::min(total, blocksize0);
2376

2377 2378 2379
    AutoBuffer<uchar> _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128);
    uchar *buf = _buf, *mbuf = buf, *lbuf = 0, *ubuf = 0;
    buf = alignPtr(buf + blocksize*cn, 16);
2380

2381 2382 2383 2384
    if( lbScalar && ubScalar )
    {
        lbuf = buf;
        ubuf = buf = alignPtr(buf + blocksize*esz, 16);
2385

2386 2387
        CV_Assert( lb.type() == ub.type() );
        int scdepth = lb.depth();
2388

2389 2390 2391 2392
        if( scdepth != depth && depth < CV_32S )
        {
            int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16);
            int* iubuf = ilbuf + cn;
2393

2394 2395 2396
            BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S);
            sccvtfunc(lb.data, 0, 0, 0, (uchar*)ilbuf, 0, Size(cn, 1), 0);
            sccvtfunc(ub.data, 0, 0, 0, (uchar*)iubuf, 0, Size(cn, 1), 0);
2397
            int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth));
2398

2399 2400 2401 2402 2403 2404 2405 2406
            for( int k = 0; k < cn; k++ )
            {
                if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval )
                    ilbuf[k] = minval+1, iubuf[k] = minval;
            }
            lb = Mat(cn, 1, CV_32S, ilbuf);
            ub = Mat(cn, 1, CV_32S, iubuf);
        }
2407

2408 2409 2410
        convertAndUnrollScalar( lb, src.type(), lbuf, blocksize );
        convertAndUnrollScalar( ub, src.type(), ubuf, blocksize );
    }
2411

2412
    for( size_t i = 0; i < it.nplanes; i++, ++it )
V
Vadim Pisarevsky 已提交
2413
    {
2414 2415
        for( size_t j = 0; j < total; j += blocksize )
        {
2416
            int bsz = (int)MIN(total - j, blocksize);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
            size_t delta = bsz*esz;
            uchar *lptr = lbuf, *uptr = ubuf;
            if( !lbScalar )
            {
                lptr = ptrs[2];
                ptrs[2] += delta;
            }
            if( !ubScalar )
            {
                int idx = !lbScalar ? 3 : 2;
                uptr = ptrs[idx];
                ptrs[idx] += delta;
            }
            func( ptrs[0], 0, lptr, 0, uptr, 0, cn == 1 ? ptrs[1] : mbuf, 0, Size(bsz*cn, 1));
            if( cn > 1 )
                inRangeReduce(mbuf, ptrs[1], bsz, cn);
            ptrs[0] += delta;
            ptrs[1] += bsz;
        }
V
Vadim Pisarevsky 已提交
2436
    }
2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
}

/****************************************************************************************\
*                                Earlier API: cvAdd etc.                                 *
\****************************************************************************************/

CV_IMPL void
cvNot( const CvArr* srcarr, CvArr* dstarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
2447
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2448 2449 2450 2451 2452 2453 2454 2455 2456
    cv::bitwise_not( src, dst );
}


CV_IMPL void
cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2457
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2458 2459 2460 2461 2462
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_and( src1, src2, dst, mask );
}

2463

2464 2465 2466 2467 2468
CV_IMPL void
cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2469
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_or( src1, src2, dst, mask );
}


CV_IMPL void
cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2481
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_xor( src1, src2, dst, mask );
}


CV_IMPL void
cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2492
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2493 2494
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2495
    cv::bitwise_and( src, (const cv::Scalar&)s, dst, mask );
2496 2497 2498 2499 2500 2501 2502
}


CV_IMPL void
cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2503
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2504 2505
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2506
    cv::bitwise_or( src, (const cv::Scalar&)s, dst, mask );
2507 2508 2509 2510 2511 2512 2513
}


CV_IMPL void
cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2514
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2515 2516
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2517
    cv::bitwise_xor( src, (const cv::Scalar&)s, dst, mask );
2518 2519
}

2520

2521 2522 2523 2524
CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2525
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2526 2527
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2528
    cv::add( src1, src2, dst, mask, dst.type() );
2529 2530
}

2531

2532 2533 2534 2535
CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2536
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2537 2538
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2539
    cv::subtract( src1, src2, dst, mask, dst.type() );
2540 2541
}

2542

2543 2544 2545 2546
CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2547
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2548 2549
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2550
    cv::add( src1, (const cv::Scalar&)value, dst, mask, dst.type() );
2551 2552
}

2553

2554 2555 2556 2557
CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2558
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2559 2560
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2561
    cv::subtract( (const cv::Scalar&)value, src1, dst, mask, dst.type() );
2562 2563
}

2564

2565 2566 2567 2568 2569
CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2570 2571
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::multiply( src1, src2, dst, scale, dst.type() );
2572 2573
}

2574

2575 2576 2577 2578 2579
CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2580
    CV_Assert( src2.size == dst.size && src2.channels() == dst.channels() );
2581 2582

    if( srcarr1 )
2583
        cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale, dst.type() );
2584
    else
2585
        cv::divide( scale, src2, dst, dst.type() );
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
}


CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
               const CvArr* srcarr2, double beta,
               double gamma, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2596 2597
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() );
2598 2599 2600 2601 2602 2603 2604
}


CV_IMPL  void
cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2605
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2606 2607 2608 2609 2610 2611 2612 2613 2614

    cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2615
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2616

2617
    cv::absdiff( src1, (const cv::Scalar&)scalar, dst );
2618 2619
}

2620

2621 2622 2623 2624 2625
CV_IMPL void
cvInRange( const void* srcarr1, const void* srcarr2,
           const void* srcarr3, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2626
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2627 2628 2629 2630

    cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst );
}

2631

2632 2633 2634 2635
CV_IMPL void
cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2636
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2637

2638
    cv::inRange( src1, (const cv::Scalar&)lowerb, (const cv::Scalar&)upperb, dst );
2639 2640 2641 2642 2643 2644 2645
}


CV_IMPL void
cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2646
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2647 2648 2649 2650 2651 2652 2653 2654 2655

    cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op );
}


CV_IMPL void
cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2656
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2657 2658 2659 2660 2661 2662 2663 2664 2665

    cv::compare( src1, value, dst, cmp_op );
}


CV_IMPL void
cvMin( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2666
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2667 2668 2669 2670 2671 2672 2673 2674 2675

    cv::min( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvMax( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2676
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2677 2678 2679 2680

    cv::max( src1, cv::cvarrToMat(srcarr2), dst );
}

2681

2682 2683 2684 2685
CV_IMPL void
cvMinS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2686
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2687 2688 2689 2690 2691 2692 2693 2694 2695

    cv::min( src1, value, dst );
}


CV_IMPL void
cvMaxS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2696
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2697 2698 2699 2700 2701

    cv::max( src1, value, dst );
}

/* End of file. */