arithm.cpp 92.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                           License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

/* ////////////////////////////////////////////////////////////////////
//
45
//  Arithmetic and logical operations: +, -, *, /, &, |, ^, ~, abs ...
46 47 48 49 50 51 52 53
//
// */

#include "precomp.hpp"

namespace cv
{

54 55 56 57 58
#if ARITHM_USE_IPP
struct IPPArithmInitializer
{
    IPPArithmInitializer(void)
    {
59
        ippStaticInit();
60 61
    }
};
62

63 64
IPPArithmInitializer ippArithmInitializer;
#endif
65

66
struct NOP {};
67

68 69
template<typename T, class Op, class Op8>
void vBinOp8(const T* src1, size_t step1, const T* src2, size_t step2, T* dst, size_t step, Size sz)
70
{
71 72
    Op8 op8;
    Op op;
73

74 75 76
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
                        src2 += step2/sizeof(src2[0]),
                        dst += step/sizeof(dst[0]) )
77 78
    {
        int x = 0;
79

80 81
    #if CV_SSE2
        if( USE_SSE2 )
82
        {
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            for( ; x <= sz.width - 32; x += 32 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 16));
                r0 = op8(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op8(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 16)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 8; x += 8 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op8(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
98
        }
99
    #endif
100

101
        for( ; x <= sz.width - 4; x += 4 )
102
        {
103 104 105 106 107 108
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
109
        }
110

111 112
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
113
    }
114
}
115

116 117 118
template<typename T, class Op, class Op16>
void vBinOp16(const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size sz)
119
{
120 121
    Op16 op16;
    Op op;
122

123 124 125
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
126 127
    {
        int x = 0;
128

129 130
    #if CV_SSE2
        if( USE_SSE2 )
131
        {
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            for( ; x <= sz.width - 16; x += 16 )
            {
                __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 8));
                r0 = op16(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                r1 = op16(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 8)));
                _mm_storeu_si128((__m128i*)(dst + x), r0);
                _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
            }
            for( ; x <= sz.width - 4; x += 4 )
            {
                __m128i r0 = _mm_loadl_epi64((const __m128i*)(src1 + x));
                r0 = op16(r0,_mm_loadl_epi64((const __m128i*)(src2 + x)));
                _mm_storel_epi64((__m128i*)(dst + x), r0);
            }
147
        }
148 149
        else
    #endif
150

151
        for( ; x <= sz.width - 4; x += 4 )
152
        {
153 154 155 156 157 158
            T v0 = op(src1[x], src2[x]);
            T v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
159
        }
160

161 162
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
163
    }
164
}
165

166

167 168 169
template<class Op, class Op32>
void vBinOp32s(const int* src1, size_t step1, const int* src2, size_t step2,
               int* dst, size_t step, Size sz)
170
{
171 172
    Op32 op32;
    Op op;
173

174 175 176
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
177 178
    {
        int x = 0;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_load_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_load_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_load_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_load_si128((const __m128i*)(src2 + x + 4)));
                    _mm_store_si128((__m128i*)(dst + x), r0);
                    _mm_store_si128((__m128i*)(dst + x + 16), r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128i r0 = _mm_loadu_si128((const __m128i*)(src1 + x));
                    __m128i r1 = _mm_loadu_si128((const __m128i*)(src1 + x + 4));
                    r0 = op32(r0,_mm_loadu_si128((const __m128i*)(src2 + x)));
                    r1 = op32(r1,_mm_loadu_si128((const __m128i*)(src2 + x + 4)));
                    _mm_storeu_si128((__m128i*)(dst + x), r0);
                    _mm_storeu_si128((__m128i*)(dst + x + 16), r1);
                }
        }
#endif
205

206 207 208 209 210 211 212 213 214
        for( ; x <= sz.width - 4; x += 4 )
        {
            int v0 = op(src1[x], src2[x]);
            int v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
215

216 217 218 219 220
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

221

222 223 224 225 226 227
template<class Op, class Op32>
void vBinOp32f(const float* src1, size_t step1, const float* src2, size_t step2,
               float* dst, size_t step, Size sz)
{
    Op32 op32;
    Op op;
228

229 230 231 232 233
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
    #if CV_SSE2
        if( USE_SSE2 )
        {
            if( (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_load_ps(src1 + x);
                    __m128 r1 = _mm_load_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_load_ps(src2 + x));
                    r1 = op32(r1,_mm_load_ps(src2 + x + 4));
                    _mm_store_ps(dst + x, r0);
                    _mm_store_ps(dst + x + 4, r1);
                }
            else
                for( ; x <= sz.width - 8; x += 8 )
                {
                    __m128 r0 = _mm_loadu_ps(src1 + x);
                    __m128 r1 = _mm_loadu_ps(src1 + x + 4);
                    r0 = op32(r0,_mm_loadu_ps(src2 + x));
                    r1 = op32(r1,_mm_loadu_ps(src2 + x + 4));
                    _mm_storeu_ps(dst + x, r0);
                    _mm_storeu_ps(dst + x + 4, r1);
                }
        }
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            float v0 = op(src1[x], src2[x]);
            float v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
269

270 271 272 273 274 275 276 277 278 279 280
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
    }
}

template<class Op, class Op64>
void vBinOp64f(const double* src1, size_t step1, const double* src2, size_t step2,
               double* dst, size_t step, Size sz)
{
    Op64 op64;
    Op op;
281

282 283 284 285 286
    for( ; sz.height--; src1 += step1/sizeof(src1[0]),
        src2 += step2/sizeof(src2[0]),
        dst += step/sizeof(dst[0]) )
    {
        int x = 0;
287

288 289 290
    #if CV_SSE2
        if( USE_SSE2 && (((size_t)src1|(size_t)src2|(size_t)dst)&15) == 0 )
            for( ; x <= sz.width - 4; x += 4 )
291
            {
292 293 294 295 296 297
                __m128d r0 = _mm_load_pd(src1 + x);
                __m128d r1 = _mm_load_pd(src1 + x + 2);
                r0 = op64(r0,_mm_load_pd(src2 + x));
                r1 = op64(r1,_mm_load_pd(src2 + x + 2));
                _mm_store_pd(dst + x, r0);
                _mm_store_pd(dst + x + 2, r1);
298 299
            }
        else
300 301 302 303 304 305 306 307 308 309
    #endif
        for( ; x <= sz.width - 4; x += 4 )
        {
            double v0 = op(src1[x], src2[x]);
            double v1 = op(src1[x+1], src2[x+1]);
            dst[x] = v0; dst[x+1] = v1;
            v0 = op(src1[x+2], src2[x+2]);
            v1 = op(src1[x+3], src2[x+3]);
            dst[x+2] = v0; dst[x+3] = v1;
        }
310

311 312
        for( ; x < sz.width; x++ )
            dst[x] = op(src1[x], src2[x]);
313
    }
314
}
315

316
#if CV_SSE2
317

318 319 320 321 322 323 324 325 326
struct _VAdd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu8(a,b); }};
struct _VSub8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu8(a,b); }};
struct _VMin8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epu8(a,b); }};
struct _VMax8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epu8(a,b); }};
struct _VAbsDiff8u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi8(_mm_subs_epu8(a,b),_mm_subs_epu8(b,a)); }
};
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355

struct _VAdd8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi8(a,b); }};
struct _VSub8s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi8(a,b); }};
struct _VMin8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff8s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_subs_epi8(a, b);
        __m128i m = _mm_cmpgt_epi8(b, a);
        return _mm_subs_epi8(_mm_xor_si128(d, m), m);
    }
};

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
struct _VAdd16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epu16(a,b); }};
struct _VSub16u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epu16(a,b); }};
struct _VMin16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_subs_epu16(a,_mm_subs_epu16(a,b)); }
};
struct _VMax16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_adds_epu16(_mm_subs_epu16(a,b),b); }
};
struct _VAbsDiff16u
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    { return _mm_add_epi16(_mm_subs_epu16(a,b),_mm_subs_epu16(b,a)); }
};
373

374 375 376 377 378 379 380 381 382 383 384 385
struct _VAdd16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_adds_epi16(a,b); }};
struct _VSub16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_subs_epi16(a,b); }};
struct _VMin16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_min_epi16(a,b); }};
struct _VMax16s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_max_epi16(a,b); }};
struct _VAbsDiff16s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i M = _mm_max_epi16(a,b), m = _mm_min_epi16(a,b);
        return _mm_subs_epi16(M, m);
    }
};
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412

struct _VAdd32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_add_epi32(a,b); }};
struct _VSub32s { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_sub_epi32(a,b); }};
struct _VMin32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(a, b);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VMax32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_xor_si128(a, _mm_and_si128(_mm_xor_si128(a, b), m));
    }
};
struct _VAbsDiff32s
{
    __m128i operator()(const __m128i& a, const __m128i& b) const
    {
        __m128i d = _mm_sub_epi32(a, b);
        __m128i m = _mm_cmpgt_epi32(b, a);
        return _mm_sub_epi32(_mm_xor_si128(d, m), m);
    }
413
};
414

415 416 417 418 419 420 421 422 423 424 425 426 427
struct _VAdd32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_add_ps(a,b); }};
struct _VSub32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_sub_ps(a,b); }};
struct _VMin32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_min_ps(a,b); }};
struct _VMax32f { __m128 operator()(const __m128& a, const __m128& b) const { return _mm_max_ps(a,b); }};
static int CV_DECL_ALIGNED(16) v32f_absmask[] = { 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff };
struct _VAbsDiff32f
{
    __m128 operator()(const __m128& a, const __m128& b) const
    {
        return _mm_and_ps(_mm_sub_ps(a,b), *(const __m128*)v32f_absmask);
    }
};

428 429 430 431
struct _VAdd64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_add_pd(a,b); }};
struct _VSub64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_sub_pd(a,b); }};
struct _VMin64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_min_pd(a,b); }};
struct _VMax64f { __m128d operator()(const __m128d& a, const __m128d& b) const { return _mm_max_pd(a,b); }};
432

433 434 435 436 437 438 439
static int CV_DECL_ALIGNED(16) v64f_absmask[] = { 0xffffffff, 0x7fffffff, 0xffffffff, 0x7fffffff };
struct _VAbsDiff64f
{
    __m128d operator()(const __m128d& a, const __m128d& b) const
    {
        return _mm_and_pd(_mm_sub_pd(a,b), *(const __m128d*)v64f_absmask);
    }
440 441
};

442
struct _VAnd8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_and_si128(a,b); }};
443
struct _VOr8u  { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_or_si128(a,b); }};
444
struct _VXor8u { __m128i operator()(const __m128i& a, const __m128i& b) const { return _mm_xor_si128(a,b); }};
445
struct _VNot8u { __m128i operator()(const __m128i& a, const __m128i&) const { return _mm_andnot_si128(_mm_setzero_si128(),a); }};
446

447
#endif
448

449 450
#if CV_SSE2
#define IF_SIMD(op) op
451
#else
452
#define IF_SIMD(op) NOP
453
#endif
454

455 456 457 458
template<> inline uchar OpAdd<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a + b); }
template<> inline uchar OpSub<uchar>::operator ()(uchar a, uchar b) const
{ return CV_FAST_CAST_8U(a - b); }
459

460
template<typename T> struct OpAbsDiff
461
{
462 463 464 465
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()(T a, T b) const { return (T)std::abs(a - b); }
466 467
};

468 469
template<> inline short OpAbsDiff<short>::operator ()(short a, short b) const
{ return saturate_cast<short>(std::abs(a - b)); }
470

471 472
template<> inline schar OpAbsDiff<schar>::operator ()(schar a, schar b) const
{ return saturate_cast<schar>(std::abs(a - b)); }
473

474
template<typename T, typename WT=T> struct OpAbsDiffS
475
{
476 477 478 479
    typedef T type1;
    typedef WT type2;
    typedef T rtype;
    T operator()(T a, WT b) const { return saturate_cast<T>(std::abs(a - b)); }
480 481
};

482
template<typename T> struct OpAnd
483
{
484 485 486 487
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a & b; }
488 489
};

490
template<typename T> struct OpOr
491
{
492 493 494 495
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a | b; }
496 497
};

498
template<typename T> struct OpXor
499
{
500 501 502 503
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T b ) const { return a ^ b; }
504 505
};

506
template<typename T> struct OpNot
507
{
508 509 510 511
    typedef T type1;
    typedef T type2;
    typedef T rtype;
    T operator()( T a, T ) const { return ~a; }
512
};
513

514 515 516 517 518
static inline void fixSteps(Size sz, size_t elemSize, size_t& step1, size_t& step2, size_t& step)
{
    if( sz.height == 1 )
        step1 = step2 = step = sz.width*elemSize;
}
519

520 521 522 523 524
static void add8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
525
           ippiAdd_8u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
526 527
           (vBinOp8<uchar, OpAdd<uchar>, IF_SIMD(_VAdd8u)>(src1, step1, src2, step2, dst, step, sz)));
}
528

529 530 531
static void add8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
532
{
533 534
    vBinOp8<schar, OpAdd<schar>, IF_SIMD(_VAdd8s)>(src1, step1, src2, step2, dst, step, sz);
}
535

536 537 538
static void add16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
539
{
540
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
541
           ippiAdd_16u_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
542 543
            (vBinOp16<ushort, OpAdd<ushort>, IF_SIMD(_VAdd16u)>(src1, step1, src2, step2, dst, step, sz)));
}
544

545 546 547
static void add16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
548
{
549
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
550
           ippiAdd_16s_C1RSfs(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz, 0),
551 552
           (vBinOp16<short, OpAdd<short>, IF_SIMD(_VAdd16s)>(src1, step1, src2, step2, dst, step, sz)));
}
553

554 555 556
static void add32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
557
{
558 559
    vBinOp32s<OpAdd<int>, IF_SIMD(_VAdd32s)>(src1, step1, src2, step2, dst, step, sz);
}
560

561 562 563
static void add32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
564
{
565
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
566
           ippiAdd_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
567 568
           (vBinOp32f<OpAdd<float>, IF_SIMD(_VAdd32f)>(src1, step1, src2, step2, dst, step, sz)));
}
569

570 571 572
static void add64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
573
{
574 575
    vBinOp64f<OpAdd<double>, IF_SIMD(_VAdd64f)>(src1, step1, src2, step2, dst, step, sz);
}
576

577 578 579
static void sub8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
580
{
581
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
582
           ippiSub_8u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
583 584
           (vBinOp8<uchar, OpSub<uchar>, IF_SIMD(_VSub8u)>(src1, step1, src2, step2, dst, step, sz)));
}
585

586 587 588
static void sub8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
589
{
590 591
    vBinOp8<schar, OpSub<schar>, IF_SIMD(_VSub8s)>(src1, step1, src2, step2, dst, step, sz);
}
592

593 594 595
static void sub16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
596
{
597
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
598
           ippiSub_16u_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
599 600
           (vBinOp16<ushort, OpSub<ushort>, IF_SIMD(_VSub16u)>(src1, step1, src2, step2, dst, step, sz)));
}
601

602 603 604
static void sub16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
605
{
606
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
607
           ippiSub_16s_C1RSfs(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz, 0),
608 609
           (vBinOp16<short, OpSub<short>, IF_SIMD(_VSub16s)>(src1, step1, src2, step2, dst, step, sz)));
}
610

611 612 613
static void sub32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
614
{
615 616
    vBinOp32s<OpSub<int>, IF_SIMD(_VSub32s)>(src1, step1, src2, step2, dst, step, sz);
}
617

618 619 620
static void sub32f( const float* src1, size_t step1,
                   const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* )
621
{
622
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
623
           ippiSub_32f_C1R(src2, (int)step2, src1, (int)step1, dst, (int)step, (IppiSize&)sz),
624 625
           (vBinOp32f<OpSub<float>, IF_SIMD(_VSub32f)>(src1, step1, src2, step2, dst, step, sz)));
}
626

627 628 629
static void sub64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
630
{
631
    vBinOp64f<OpSub<double>, IF_SIMD(_VSub64f)>(src1, step1, src2, step2, dst, step, sz);
632
}
633

634 635
template<> inline uchar OpMin<uchar>::operator ()(uchar a, uchar b) const { return CV_MIN_8U(a, b); }
template<> inline uchar OpMax<uchar>::operator ()(uchar a, uchar b) const { return CV_MAX_8U(a, b); }
636

637 638 639
static void max8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
640
{
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMax<uchar>, IF_SIMD(_VMax8u)>(src1, step1, src2, step2, dst, step, sz)));
662
}
663

664 665 666
static void max8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
667
{
668 669
    vBinOp8<schar, OpMax<schar>, IF_SIMD(_VMax8s)>(src1, step1, src2, step2, dst, step, sz);
}
670

671 672 673
static void max16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
674
{
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMax<ushort>, IF_SIMD(_VMax16u)>(src1, step1, src2, step2, dst, step, sz)));
696
}
697

698 699 700
static void max16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
701
{
702
    vBinOp16<short, OpMax<short>, IF_SIMD(_VMax16s)>(src1, step1, src2, step2, dst, step, sz);
703
}
704

705 706 707
static void max32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
708
{
709 710
    vBinOp32s<OpMax<int>, IF_SIMD(_VMax32s)>(src1, step1, src2, step2, dst, step, sz);
}
711

712 713 714
static void max32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
715
{
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMaxEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMaxEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMax<float>, IF_SIMD(_VMax32f)>(src1, step1, src2, step2, dst, step, sz)));
736
}
737

738 739 740
static void max64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
741
{
742 743
    vBinOp64f<OpMax<double>, IF_SIMD(_VMax64f)>(src1, step1, src2, step2, dst, step, sz);
}
744

745 746 747
static void min8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
748
{
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
#if (ARITHM_USE_IPP == 1)
  {
    uchar* s1 = (uchar*)src1;
    uchar* s2 = (uchar*)src2;
    uchar* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_8u(s1, s2, d, sz.width);
      s1 += step1;
      s2 += step2;
      d  += step;
    }
  }
#else
  vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp8<uchar, OpMin<uchar>, IF_SIMD(_VMin8u)>(src1, step1, src2, step2, dst, step, sz)));
770
}
771

772 773 774 775 776 777
static void min8s( const schar* src1, size_t step1,
                   const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpMin<schar>, IF_SIMD(_VMin8s)>(src1, step1, src2, step2, dst, step, sz);
}
778

779 780 781 782
static void min16u( const ushort* src1, size_t step1,
                    const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* )
{
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
#if (ARITHM_USE_IPP == 1)
  {
    ushort* s1 = (ushort*)src1;
    ushort* s2 = (ushort*)src2;
    ushort* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_16u(s1, s2, d, sz.width);
      s1 = (ushort*)((uchar*)s1 + step1);
      s2 = (ushort*)((uchar*)s2 + step2);
      d  = (ushort*)((uchar*)d + step);
    }
  }
#else
  vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz);
#endif

//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp16<ushort, OpMin<ushort>, IF_SIMD(_VMin16u)>(src1, step1, src2, step2, dst, step, sz)));
804
}
805

806 807 808 809
static void min16s( const short* src1, size_t step1,
                    const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* )
{
810
    vBinOp16<short, OpMin<short>, IF_SIMD(_VMin16s)>(src1, step1, src2, step2, dst, step, sz);
811
}
812

813 814 815
static void min32s( const int* src1, size_t step1,
                    const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* )
816
{
817 818
    vBinOp32s<OpMin<int>, IF_SIMD(_VMin32s)>(src1, step1, src2, step2, dst, step, sz);
}
819

820 821 822
static void min32f( const float* src1, size_t step1,
                    const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* )
823
{
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
#if (ARITHM_USE_IPP == 1)
  {
    float* s1 = (float*)src1;
    float* s2 = (float*)src2;
    float* d  = dst;
    fixSteps(sz, sizeof(dst[0]), step1, step2, step);
    for(int i = 0; i < sz.height; i++)
    {
      ippsMinEvery_32f(s1, s2, d, sz.width);
      s1 = (float*)((uchar*)s1 + step1);
      s2 = (float*)((uchar*)s2 + step2);
      d  = (float*)((uchar*)d + step);
    }
  }
#else
  vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz);
#endif
//    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
//           ippiMinEvery_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (IppiSize&)sz),
//           (vBinOp32f<OpMin<float>, IF_SIMD(_VMin32f)>(src1, step1, src2, step2, dst, step, sz)));
844
}
845

846 847 848
static void min64f( const double* src1, size_t step1,
                    const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* )
849
{
850
    vBinOp64f<OpMin<double>, IF_SIMD(_VMin64f)>(src1, step1, src2, step2, dst, step, sz);
851
}
852

853 854 855
static void absdiff8u( const uchar* src1, size_t step1,
                       const uchar* src2, size_t step2,
                       uchar* dst, size_t step, Size sz, void* )
856
{
857
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
858
           ippiAbsDiff_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
859 860
           (vBinOp8<uchar, OpAbsDiff<uchar>, IF_SIMD(_VAbsDiff8u)>(src1, step1, src2, step2, dst, step, sz)));
}
861

862 863 864 865 866 867
static void absdiff8s( const schar* src1, size_t step1,
                       const schar* src2, size_t step2,
                       schar* dst, size_t step, Size sz, void* )
{
    vBinOp8<schar, OpAbsDiff<schar>, IF_SIMD(_VAbsDiff8s)>(src1, step1, src2, step2, dst, step, sz);
}
868

869 870 871 872 873
static void absdiff16u( const ushort* src1, size_t step1,
                        const ushort* src2, size_t step2,
                        ushort* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
874
           ippiAbsDiff_16u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
875 876
           (vBinOp16<ushort, OpAbsDiff<ushort>, IF_SIMD(_VAbsDiff16u)>(src1, step1, src2, step2, dst, step, sz)));
}
877

878 879 880 881
static void absdiff16s( const short* src1, size_t step1,
                        const short* src2, size_t step2,
                        short* dst, size_t step, Size sz, void* )
{
882
    vBinOp16<short, OpAbsDiff<short>, IF_SIMD(_VAbsDiff16s)>(src1, step1, src2, step2, dst, step, sz);
883
}
884

885 886 887 888 889 890
static void absdiff32s( const int* src1, size_t step1,
                        const int* src2, size_t step2,
                        int* dst, size_t step, Size sz, void* )
{
    vBinOp32s<OpAbsDiff<int>, IF_SIMD(_VAbsDiff32s)>(src1, step1, src2, step2, dst, step, sz);
}
891

892 893 894 895 896
static void absdiff32f( const float* src1, size_t step1,
                        const float* src2, size_t step2,
                        float* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
897
           ippiAbsDiff_32f_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
898 899
           (vBinOp32f<OpAbsDiff<float>, IF_SIMD(_VAbsDiff32f)>(src1, step1, src2, step2, dst, step, sz)));
}
900

901 902 903 904 905
static void absdiff64f( const double* src1, size_t step1,
                        const double* src2, size_t step2,
                        double* dst, size_t step, Size sz, void* )
{
    vBinOp64f<OpAbsDiff<double>, IF_SIMD(_VAbsDiff64f)>(src1, step1, src2, step2, dst, step, sz);
906 907
}

908

909 910 911 912 913
static void and8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
914
           ippiAnd_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
915 916 917 918 919 920 921 922
           (vBinOp8<uchar, OpAnd<uchar>, IF_SIMD(_VAnd8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void or8u( const uchar* src1, size_t step1,
                  const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
923
           ippiOr_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
924 925 926 927 928 929 930 931
           (vBinOp8<uchar, OpOr<uchar>, IF_SIMD(_VOr8u)>(src1, step1, src2, step2, dst, step, sz)));
}

static void xor8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
932
           ippiXor_8u_C1R(src1, (int)step1, src2, (int)step2, dst, (int)step, (IppiSize&)sz),
933
           (vBinOp8<uchar, OpXor<uchar>, IF_SIMD(_VXor8u)>(src1, step1, src2, step2, dst, step, sz)));
934
}
935 936 937 938 939 940

static void not8u( const uchar* src1, size_t step1,
                   const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* )
{
    IF_IPP(fixSteps(sz, sizeof(dst[0]), step1, step2, step);
941
           ippiNot_8u_C1R(src1, (int)step1, dst, (int)step, (IppiSize&)sz),
942 943
           (vBinOp8<uchar, OpNot<uchar>, IF_SIMD(_VNot8u)>(src1, step1, src2, step2, dst, step, sz)));
}
944

945 946 947
/****************************************************************************************\
*                                   logical operations                                   *
\****************************************************************************************/
948

949
void convertAndUnrollScalar( const Mat& sc, int buftype, uchar* scbuf, size_t blocksize )
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
{
    int scn = (int)sc.total(), cn = CV_MAT_CN(buftype);
    size_t esz = CV_ELEM_SIZE(buftype);
    getConvertFunc(sc.depth(), buftype)(sc.data, 0, 0, 0, scbuf, 0, Size(std::min(cn, scn), 1), 0);
    // unroll the scalar
    if( scn < cn )
    {
        CV_Assert( scn == 1 );
        size_t esz1 = CV_ELEM_SIZE1(buftype);
        for( size_t i = esz1; i < esz; i++ )
            scbuf[i] = scbuf[i - esz1];
    }
    for( size_t i = esz; i < blocksize*esz; i++ )
        scbuf[i] = scbuf[i - esz];
}
965

966 967
void binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, const BinaryFunc* tab, bool bitwise)
968 969 970 971 972 973
{
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty(), haveScalar = false;
    BinaryFunc func;
    int c;
974

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
    if( src1.dims <= 2 && src2.dims <= 2 && kind1 == kind2 &&
        src1.size() == src2.size() && src1.type() == src2.type() && !haveMask )
    {
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        if( bitwise )
        {
            func = *tab;
            c = (int)src1.elemSize();
        }
        else
        {
            func = tab[src1.depth()];
            c = src1.channels();
        }
990

991 992 993 994
        Size sz = getContinuousSize(src1, src2, dst, c);
        func(src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, 0);
        return;
    }
995

996
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                      "The operation is neither 'array op array' (where arrays have the same size and type), "
                      "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1008

1009 1010 1011 1012 1013
    size_t esz = src1.elemSize();
    size_t blocksize0 = (BLOCK_SIZE + esz-1)/esz;
    int cn = src1.channels();
    BinaryFunc copymask = 0;
    Mat mask;
1014

1015 1016 1017 1018 1019 1020 1021
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(esz);
    }
1022

1023 1024
    AutoBuffer<uchar> _buf;
    uchar *scbuf = 0, *maskbuf = 0;
1025

1026 1027
    _dst.create(src1.dims, src1.size, src1.type());
    Mat dst = _dst.getMat();
1028

1029 1030 1031 1032 1033 1034 1035 1036 1037
    if( bitwise )
    {
        func = *tab;
        c = (int)esz;
    }
    else
    {
        func = tab[src1.depth()];
        c = cn;
1038
    }
1039

1040
    if( !haveScalar )
1041
    {
1042 1043
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1044

1045 1046
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1047

1048 1049 1050 1051 1052 1053
        if( haveMask )
        {
            blocksize = std::min(blocksize, blocksize0);
            _buf.allocate(blocksize*esz);
            maskbuf = _buf;
        }
1054

1055
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1056
        {
1057
            for( size_t j = 0; j < total; j += blocksize )
1058
            {
1059
                int bsz = (int)std::min(total - j, blocksize);
1060 1061

                func( ptrs[0], 0, ptrs[1], 0, haveMask ? maskbuf : ptrs[2], 0, Size(bsz*c, 1), 0 );
1062
                if( haveMask )
1063
                {
1064 1065
                    copymask( maskbuf, 0, ptrs[3], 0, ptrs[2], 0, Size(bsz, 1), &esz );
                    ptrs[3] += bsz;
1066
                }
1067

1068 1069
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz; ptrs[2] += bsz;
1070 1071
            }
        }
1072 1073 1074 1075 1076
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1077

1078 1079
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1080

1081 1082 1083
        _buf.allocate(blocksize*(haveMask ? 2 : 1)*esz + 32);
        scbuf = _buf;
        maskbuf = alignPtr(scbuf + blocksize*esz, 16);
1084

1085
        convertAndUnrollScalar( src2, src1.type(), scbuf, blocksize);
1086

1087
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1088
        {
1089
            for( size_t j = 0; j < total; j += blocksize )
1090
            {
1091
                int bsz = (int)std::min(total - j, blocksize);
1092

1093 1094
                func( ptrs[0], 0, scbuf, 0, haveMask ? maskbuf : ptrs[1], 0, Size(bsz*c, 1), 0 );
                if( haveMask )
1095
                {
1096 1097
                    copymask( maskbuf, 0, ptrs[2], 0, ptrs[1], 0, Size(bsz, 1), &esz );
                    ptrs[2] += bsz;
1098
                }
1099

1100 1101
                bsz *= (int)esz;
                ptrs[0] += bsz; ptrs[1] += bsz;
1102 1103 1104 1105
            }
        }
    }
}
1106

1107
static BinaryFunc maxTab[] =
V
Vadim Pisarevsky 已提交
1108
{
1109 1110
    (BinaryFunc)max8u, (BinaryFunc)max8s, (BinaryFunc)max16u, (BinaryFunc)max16s,
    (BinaryFunc)max32s, (BinaryFunc)max32f, (BinaryFunc)max64f, 0
1111
};
1112

1113 1114 1115 1116 1117
static BinaryFunc minTab[] =
{
    (BinaryFunc)min8u, (BinaryFunc)min8s, (BinaryFunc)min16u, (BinaryFunc)min16s,
    (BinaryFunc)min32s, (BinaryFunc)min32f, (BinaryFunc)min64f, 0
};
1118

V
Vadim Pisarevsky 已提交
1119
}
1120

1121
void cv::bitwise_and(InputArray a, InputArray b, OutputArray c, InputArray mask)
1122
{
1123 1124
    BinaryFunc f = and8u;
    binary_op(a, b, c, mask, &f, true);
1125 1126
}

1127
void cv::bitwise_or(InputArray a, InputArray b, OutputArray c, InputArray mask)
1128
{
1129 1130
    BinaryFunc f = or8u;
    binary_op(a, b, c, mask, &f, true);
1131 1132
}

1133
void cv::bitwise_xor(InputArray a, InputArray b, OutputArray c, InputArray mask)
1134
{
1135 1136
    BinaryFunc f = xor8u;
    binary_op(a, b, c, mask, &f, true);
1137 1138
}

1139
void cv::bitwise_not(InputArray a, OutputArray c, InputArray mask)
1140
{
1141 1142
    BinaryFunc f = not8u;
    binary_op(a, a, c, mask, &f, true);
1143 1144
}

1145
void cv::max( InputArray src1, InputArray src2, OutputArray dst )
1146
{
1147
    binary_op(src1, src2, dst, noArray(), maxTab, false );
1148 1149
}

1150
void cv::min( InputArray src1, InputArray src2, OutputArray dst )
1151
{
1152
    binary_op(src1, src2, dst, noArray(), minTab, false );
1153 1154
}

1155
void cv::max(const Mat& src1, const Mat& src2, Mat& dst)
1156
{
1157
    OutputArray _dst(dst);
1158
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1159 1160
}

1161 1162 1163
void cv::min(const Mat& src1, const Mat& src2, Mat& dst)
{
    OutputArray _dst(dst);
1164
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1165
}
1166

1167 1168 1169
void cv::max(const Mat& src1, double src2, Mat& dst)
{
    OutputArray _dst(dst);
1170
    binary_op(src1, src2, _dst, noArray(), maxTab, false );
1171
}
1172

1173
void cv::min(const Mat& src1, double src2, Mat& dst)
1174
{
1175
    OutputArray _dst(dst);
1176
    binary_op(src1, src2, _dst, noArray(), minTab, false );
1177
}
1178

1179 1180 1181
/****************************************************************************************\
*                                      add/subtract                                      *
\****************************************************************************************/
1182

1183 1184
namespace cv
{
1185

1186 1187
void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
               InputArray _mask, int dtype, BinaryFunc* tab, bool muldiv=false, void* usrdata=0)
1188
{
1189 1190 1191
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
    bool haveMask = !_mask.empty();
1192

1193 1194 1195 1196
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 &&
        src1.size() == src2.size() && src1.type() == src2.type() &&
        !haveMask && ((!_dst.fixedType() && (dtype < 0 || CV_MAT_DEPTH(dtype) == src1.depth())) ||
                       (_dst.fixedType() && _dst.type() == _src1.type())) )
V
Vadim Pisarevsky 已提交
1197
    {
1198 1199 1200 1201
        _dst.create(src1.size(), src1.type());
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        tab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, usrdata);
V
Vadim Pisarevsky 已提交
1202 1203
        return;
    }
1204

1205
    bool haveScalar = false, swapped12 = false;
1206

1207
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
1208
        src1.size != src2.size || src1.channels() != src2.channels() )
1209
    {
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
        if( checkScalar(src1, src2.type(), kind1, kind2) )
        {
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            swapped12 = true;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same number of channels), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
1222

1223 1224
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth(), wtype;
    BinaryFunc cvtsrc1 = 0, cvtsrc2 = 0, cvtdst = 0;
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
    if( dtype < 0 )
    {
        if( _dst.fixedType() )
            dtype = _dst.type();
        else
        {
            if( !haveScalar && src1.type() != src2.type() )
                CV_Error(CV_StsBadArg,
                     "When the input arrays in add/subtract/multiply/divide functions have different types, "
                     "the output array type must be explicitly specified");
            dtype = src1.type();
        }
    }
    dtype = CV_MAT_DEPTH(dtype);
1240

1241 1242 1243 1244 1245 1246 1247
    if( depth1 == depth2 && dtype == depth1 )
        wtype = dtype;
    else if( !muldiv )
    {
        wtype = depth1 <= CV_8S && depth2 <= CV_8S ? CV_16S :
                depth1 <= CV_32S && depth2 <= CV_32S ? CV_32S : std::max(depth1, depth2);
        wtype = std::max(wtype, dtype);
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
        // when the result of addition should be converted to an integer type,
        // and just one of the input arrays is floating-point, it makes sense to convert that input to integer type before the operation,
        // instead of converting the other input to floating-point and then converting the operation result back to integers.
        if( dtype < CV_32F && (depth1 < CV_32F || depth2 < CV_32F) )
            wtype = CV_32S;
    }
    else
    {
        wtype = std::max(depth1, std::max(depth2, CV_32F));
        wtype = std::max(wtype, dtype);
    }
1260

1261 1262 1263
    cvtsrc1 = depth1 == wtype ? 0 : getConvertFunc(depth1, wtype);
    cvtsrc2 = depth2 == depth1 ? cvtsrc1 : depth2 == wtype ? 0 : getConvertFunc(depth2, wtype);
    cvtdst = dtype == wtype ? 0 : getConvertFunc(wtype, dtype);
1264

1265 1266
    dtype = CV_MAKETYPE(dtype, cn);
    wtype = CV_MAKETYPE(wtype, cn);
1267

1268 1269 1270 1271 1272
    size_t esz1 = src1.elemSize(), esz2 = src2.elemSize();
    size_t dsz = CV_ELEM_SIZE(dtype), wsz = CV_ELEM_SIZE(wtype);
    size_t blocksize0 = (size_t)(BLOCK_SIZE + wsz-1)/wsz;
    BinaryFunc copymask = 0;
    Mat mask;
1273

1274 1275 1276 1277 1278 1279 1280
    if( haveMask )
    {
        mask = _mask.getMat();
        CV_Assert( (mask.type() == CV_8UC1 || mask.type() == CV_8SC1) );
        CV_Assert( mask.size == src1.size );
        copymask = getCopyMaskFunc(dsz);
    }
1281

1282 1283 1284
    AutoBuffer<uchar> _buf;
    uchar *buf, *maskbuf = 0, *buf1 = 0, *buf2 = 0, *wbuf = 0;
    size_t bufesz = (cvtsrc1 ? wsz : 0) + (cvtsrc2 || haveScalar ? wsz : 0) + (cvtdst ? wsz : 0) + (haveMask ? dsz : 0);
1285

1286 1287 1288
    _dst.create(src1.dims, src1.size, src1.type());
    Mat dst = _dst.getMat();
    BinaryFunc func = tab[CV_MAT_DEPTH(wtype)];
1289

1290 1291 1292 1293
    if( !haveScalar )
    {
        const Mat* arrays[] = { &src1, &src2, &dst, &mask, 0 };
        uchar* ptrs[4];
1294

1295 1296
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = total;
1297

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        if( haveMask || cvtsrc1 || cvtsrc2 || cvtdst )
            blocksize = std::min(blocksize, blocksize0);

        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        if( cvtsrc2 )
            buf2 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1312

1313
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1314
        {
1315
            for( size_t j = 0; j < total; j += blocksize )
1316
            {
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
                int bsz = (int)std::min(total - j, blocksize);
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0], *sptr2 = ptrs[1];
                uchar* dptr = ptrs[2];
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
                if( ptrs[0] == ptrs[1] )
                    sptr2 = sptr1;
                else if( cvtsrc2 )
                {
                    cvtsrc2( sptr2, 0, 0, 0, buf2, 0, bszn, 0 );
                    sptr2 = buf2;
                }
1333

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[3], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[3] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*esz2; ptrs[2] += bsz*dsz;
1354 1355
            }
        }
1356 1357 1358 1359 1360
    }
    else
    {
        const Mat* arrays[] = { &src1, &dst, &mask, 0 };
        uchar* ptrs[3];
1361

1362 1363
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
1364

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
        _buf.allocate(bufesz*blocksize + 64);
        buf = _buf;
        if( cvtsrc1 )
            buf1 = buf, buf = alignPtr(buf + blocksize*wsz, 16);
        buf2 = buf; buf = alignPtr(buf + blocksize*wsz, 16);
        wbuf = maskbuf = buf;
        if( cvtdst )
            buf = alignPtr(buf + blocksize*wsz, 16);
        if( haveMask )
            maskbuf = buf;
1375

1376
        convertAndUnrollScalar( src2, wtype, buf2, blocksize);
1377

1378
        for( size_t i = 0; i < it.nplanes; i++, ++it )
1379
        {
1380 1381 1382 1383 1384 1385 1386
            for( size_t j = 0; j < total; j += blocksize )
            {
                int bsz = (int)std::min(total - j, blocksize);
                Size bszn(bsz*cn, 1);
                const uchar *sptr1 = ptrs[0];
                const uchar* sptr2 = buf2;
                uchar* dptr = ptrs[1];
1387

1388 1389 1390 1391 1392
                if( cvtsrc1 )
                {
                    cvtsrc1( sptr1, 0, 0, 0, buf1, 0, bszn, 0 );
                    sptr1 = buf1;
                }
1393

1394 1395
                if( swapped12 )
                    std::swap(sptr1, sptr2);
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
                if( !haveMask && !cvtdst )
                    func( sptr1, 0, sptr2, 0, dptr, 0, bszn, usrdata );
                else
                {
                    func( sptr1, 0, sptr2, 0, wbuf, 0, bszn, usrdata );
                    if( !haveMask )
                        cvtdst( wbuf, 0, 0, 0, dptr, 0, bszn, 0 );
                    else if( !cvtdst )
                    {
                        copymask( wbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                    else
                    {
                        cvtdst( wbuf, 0, 0, 0, maskbuf, 0, bszn, 0 );
                        copymask( maskbuf, 0, ptrs[2], 0, dptr, 0, Size(bsz, 1), &dsz );
                        ptrs[2] += bsz;
                    }
                }
                ptrs[0] += bsz*esz1; ptrs[1] += bsz*dsz;
            }
1418 1419 1420
        }
    }
}
1421

1422 1423
static BinaryFunc addTab[] =
{
1424 1425
    (BinaryFunc)add8u, (BinaryFunc)add8s, (BinaryFunc)add16u, (BinaryFunc)add16s,
    (BinaryFunc)add32s, (BinaryFunc)add32f, (BinaryFunc)add64f, 0
1426
};
1427

1428 1429
static BinaryFunc subTab[] =
{
1430 1431
    (BinaryFunc)sub8u, (BinaryFunc)sub8s, (BinaryFunc)sub16u, (BinaryFunc)sub16s,
    (BinaryFunc)sub32s, (BinaryFunc)sub32f, (BinaryFunc)sub64f, 0
1432 1433
};

1434
static BinaryFunc absdiffTab[] =
1435
{
1436 1437 1438
    (BinaryFunc)absdiff8u, (BinaryFunc)absdiff8s, (BinaryFunc)absdiff16u,
    (BinaryFunc)absdiff16s, (BinaryFunc)absdiff32s, (BinaryFunc)absdiff32f,
    (BinaryFunc)absdiff64f, 0
1439
};
1440 1441

}
1442

1443 1444
void cv::add( InputArray src1, InputArray src2, OutputArray dst,
          InputArray mask, int dtype )
1445
{
1446
    arithm_op(src1, src2, dst, mask, dtype, addTab );
1447 1448
}

1449 1450
void cv::subtract( InputArray src1, InputArray src2, OutputArray dst,
               InputArray mask, int dtype )
1451
{
1452
    arithm_op(src1, src2, dst, mask, dtype, subTab );
1453 1454
}

1455
void cv::absdiff( InputArray src1, InputArray src2, OutputArray dst )
1456
{
1457
    arithm_op(src1, src2, dst, noArray(), -1, absdiffTab);
1458
}
1459 1460 1461 1462 1463

/****************************************************************************************\
*                                    multiply/divide                                     *
\****************************************************************************************/

1464 1465 1466
namespace cv
{

1467
template<typename T, typename WT> static void
1468 1469
mul_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, WT scale )
1470
{
1471 1472 1473
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1474

1475
    if( scale == (WT)1. )
1476
    {
1477
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1478 1479 1480 1481
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
1482 1483 1484 1485 1486 1487
                T t0;
                T t1;
                t0 = saturate_cast<T>(src1[i  ] * src2[i  ]);
                t1 = saturate_cast<T>(src1[i+1] * src2[i+1]);
                dst[i  ] = t0;
                dst[i+1] = t1;
1488 1489 1490

                t0 = saturate_cast<T>(src1[i+2] * src2[i+2]);
                t1 = saturate_cast<T>(src1[i+3] * src2[i+3]);
1491 1492
                dst[i+2] = t0;
                dst[i+3] = t1;
1493 1494 1495 1496 1497 1498 1499 1500
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(src1[i] * src2[i]);
        }
    }
    else
    {
1501
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
        {
            int i;
            for( i = 0; i <= size.width - 4; i += 4 )
            {
                T t0 = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
                T t1 = saturate_cast<T>(scale*(WT)src1[i+1]*src2[i+1]);
                dst[i] = t0; dst[i+1] = t1;

                t0 = saturate_cast<T>(scale*(WT)src1[i+2]*src2[i+2]);
                t1 = saturate_cast<T>(scale*(WT)src1[i+3]*src2[i+3]);
                dst[i+2] = t0; dst[i+3] = t1;
            }

            for( ; i < size.width; i++ )
                dst[i] = saturate_cast<T>(scale*(WT)src1[i]*src2[i]);
        }
    }
}

template<typename T> static void
1522 1523
div_( const T* src1, size_t step1, const T* src2, size_t step2,
      T* dst, size_t step, Size size, double scale )
1524
{
1525 1526 1527
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1528

1529
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1541

1542 1543 1544 1545
                T z0 = saturate_cast<T>(src2[i+1] * ((double)src1[i] * b));
                T z1 = saturate_cast<T>(src2[i] * ((double)src1[i+1] * b));
                T z2 = saturate_cast<T>(src2[i+3] * ((double)src1[i+2] * a));
                T z3 = saturate_cast<T>(src2[i+2] * ((double)src1[i+3] * a));
1546

1547 1548 1549 1550 1551 1552 1553 1554 1555
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(src1[i+1]*scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(src1[i+2]*scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(src1[i+3]*scale/src2[i+3]) : 0;
1556

1557 1558 1559 1560
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1561

1562 1563 1564 1565 1566 1567
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(src1[i]*scale/src2[i]) : 0;
    }
}

template<typename T> static void
1568 1569
recip_( const T*, size_t, const T* src2, size_t step2,
        T* dst, size_t step, Size size, double scale )
1570
{
1571 1572
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);
1573

1574
    for( ; size.height--; src2 += step2, dst += step )
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
    {
        int i = 0;
        for( ; i <= size.width - 4; i += 4 )
        {
            if( src2[i] != 0 && src2[i+1] != 0 && src2[i+2] != 0 && src2[i+3] != 0 )
            {
                double a = (double)src2[i] * src2[i+1];
                double b = (double)src2[i+2] * src2[i+3];
                double d = scale/(a * b);
                b *= d;
                a *= d;
1586

1587 1588 1589 1590
                T z0 = saturate_cast<T>(src2[i+1] * b);
                T z1 = saturate_cast<T>(src2[i] * b);
                T z2 = saturate_cast<T>(src2[i+3] * a);
                T z3 = saturate_cast<T>(src2[i+2] * a);
1591

1592 1593 1594 1595 1596 1597 1598 1599 1600
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
            else
            {
                T z0 = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
                T z1 = src2[i+1] != 0 ? saturate_cast<T>(scale/src2[i+1]) : 0;
                T z2 = src2[i+2] != 0 ? saturate_cast<T>(scale/src2[i+2]) : 0;
                T z3 = src2[i+3] != 0 ? saturate_cast<T>(scale/src2[i+3]) : 0;
1601
                
1602 1603 1604 1605
                dst[i] = z0; dst[i+1] = z1;
                dst[i+2] = z2; dst[i+3] = z3;
            }
        }
1606

1607 1608 1609 1610
        for( ; i < size.width; i++ )
            dst[i] = src2[i] != 0 ? saturate_cast<T>(scale/src2[i]) : 0;
    }
}
1611 1612


1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
static void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                   schar* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}

static void mul32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
static void mul32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, (float)*(const double*)scale);
}
    
static void mul64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    mul_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1654

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722
static void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                   uchar* dst, size_t step, Size sz, void* scale)
{
    if( src1 )
        div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
    else
        recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                    ushort* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div16s( const short* src1, size_t step1, const short* src2, size_t step2,
                    short* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32s( const int* src1, size_t step1, const int* src2, size_t step2,
                    int* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div32f( const float* src1, size_t step1, const float* src2, size_t step2,
                    float* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void div64f( const double* src1, size_t step1, const double* src2, size_t step2,
                    double* dst, size_t step, Size sz, void* scale)
{
    div_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                  schar* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                   ushort* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip16s( const short* src1, size_t step1, const short* src2, size_t step2,
                   short* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
static void recip32s( const int* src1, size_t step1, const int* src2, size_t step2,
                   int* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip32f( const float* src1, size_t step1, const float* src2, size_t step2,
                   float* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}

static void recip64f( const double* src1, size_t step1, const double* src2, size_t step2,
                   double* dst, size_t step, Size sz, void* scale)
{
    recip_(src1, step1, src2, step2, dst, step, sz, *(const double*)scale);
}
1741 1742


1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762
static BinaryFunc mulTab[] =
{
    (BinaryFunc)mul8u, (BinaryFunc)mul8s, (BinaryFunc)mul16u,
    (BinaryFunc)mul16s, (BinaryFunc)mul32s, (BinaryFunc)mul32f,
    (BinaryFunc)mul64f, 0
};

static BinaryFunc divTab[] =
{
    (BinaryFunc)div8u, (BinaryFunc)div8s, (BinaryFunc)div16u,
    (BinaryFunc)div16s, (BinaryFunc)div32s, (BinaryFunc)div32f,
    (BinaryFunc)div64f, 0
};

static BinaryFunc recipTab[] =
{
    (BinaryFunc)recip8u, (BinaryFunc)recip8s, (BinaryFunc)recip16u,
    (BinaryFunc)recip16s, (BinaryFunc)recip32s, (BinaryFunc)recip32f,
    (BinaryFunc)recip64f, 0
};
1763

1764

1765
}
1766

1767
void cv::multiply(InputArray src1, InputArray src2,
1768
                  OutputArray dst, double scale, int dtype)
1769
{
1770
    arithm_op(src1, src2, dst, noArray(), dtype, mulTab, true, &scale);
1771
}
1772

1773
void cv::divide(InputArray src1, InputArray src2,
1774 1775
                OutputArray dst, double scale, int dtype)
{
1776
    arithm_op(src1, src2, dst, noArray(), dtype, divTab, true, &scale);
1777 1778
}

1779
void cv::divide(double scale, InputArray src2,
1780 1781
                OutputArray dst, int dtype)
{
1782
    arithm_op(src2, src2, dst, noArray(), dtype, recipTab, true, &scale);
1783 1784
}

1785 1786 1787 1788
/****************************************************************************************\
*                                      addWeighted                                       *
\****************************************************************************************/

1789 1790 1791
namespace cv
{

1792
template<typename T, typename WT> static void
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
addWeighted_( const T* src1, size_t step1, const T* src2, size_t step2,
              T* dst, size_t step, Size size, void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    WT alpha = (WT)scalars[0], beta = (WT)scalars[1], gamma = (WT)scalars[2];
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step /= sizeof(dst[0]);

    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1803
    {
1804 1805
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
1806
        {
1807 1808 1809
            T t0 = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
            T t1 = saturate_cast<T>(src1[x+1]*alpha + src2[x+1]*beta + gamma);
            dst[x] = t0; dst[x+1] = t1;
1810

1811 1812 1813
            t0 = saturate_cast<T>(src1[x+2]*alpha + src2[x+2]*beta + gamma);
            t1 = saturate_cast<T>(src1[x+3]*alpha + src2[x+3]*beta + gamma);
            dst[x+2] = t0; dst[x+3] = t1;
1814 1815
        }

1816 1817
        for( ; x < size.width; x++ )
            dst[x] = saturate_cast<T>(src1[x]*alpha + src2[x]*beta + gamma);
1818 1819 1820 1821 1822
    }
}


static void
1823 1824 1825 1826 1827 1828 1829
addWeighted8u( const uchar* src1, size_t step1,
               const uchar* src2, size_t step2,
               uchar* dst, size_t step, Size size,
               void* _scalars )
{
    const double* scalars = (const double*)_scalars;
    float alpha = (float)scalars[0], beta = (float)scalars[1], gamma = (float)scalars[2];
1830

1831
    for( ; size.height--; src1 += step1, src2 += step2, dst += step )
1832
    {
1833
        int x = 0;
1834

1835 1836
#if CV_SSE2
        if( USE_SSE2 )
1837
        {
1838 1839
            __m128 a4 = _mm_set1_ps(alpha), b4 = _mm_set1_ps(beta), g4 = _mm_set1_ps(gamma);
            __m128i z = _mm_setzero_si128();
1840

1841
            for( ; x <= size.width - 8; x += 8 )
1842
            {
1843 1844
                __m128i u = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src1 + x)), z);
                __m128i v = _mm_unpacklo_epi8(_mm_loadl_epi64((const __m128i*)(src2 + x)), z);
1845

1846 1847 1848 1849
                __m128 u0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(u, z));
                __m128 u1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(u, z));
                __m128 v0 = _mm_cvtepi32_ps(_mm_unpacklo_epi16(v, z));
                __m128 v1 = _mm_cvtepi32_ps(_mm_unpackhi_epi16(v, z));
1850

1851 1852 1853
                u0 = _mm_add_ps(_mm_mul_ps(u0, a4), _mm_mul_ps(v0, b4));
                u1 = _mm_add_ps(_mm_mul_ps(u1, a4), _mm_mul_ps(v1, b4));
                u0 = _mm_add_ps(u0, g4); u1 = _mm_add_ps(u1, g4);
1854

1855 1856
                u = _mm_packs_epi32(_mm_cvtps_epi32(u0), _mm_cvtps_epi32(u1));
                u = _mm_packus_epi16(u, u);
1857

1858
                _mm_storel_epi64((__m128i*)(dst + x), u);
1859 1860
            }
        }
1861 1862
#endif
        for( ; x <= size.width - 4; x += 4 )
1863
        {
1864 1865 1866
            float t0, t1;
            t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            t1 = CV_8TO32F(src1[x+1])*alpha + CV_8TO32F(src2[x+1])*beta + gamma;
1867

1868 1869
            dst[x] = saturate_cast<uchar>(t0);
            dst[x+1] = saturate_cast<uchar>(t1);
1870

1871 1872
            t0 = CV_8TO32F(src1[x+2])*alpha + CV_8TO32F(src2[x+2])*beta + gamma;
            t1 = CV_8TO32F(src1[x+3])*alpha + CV_8TO32F(src2[x+3])*beta + gamma;
1873

1874 1875 1876
            dst[x+2] = saturate_cast<uchar>(t0);
            dst[x+3] = saturate_cast<uchar>(t1);
        }
1877

1878 1879 1880 1881
        for( ; x < size.width; x++ )
        {
            float t0 = CV_8TO32F(src1[x])*alpha + CV_8TO32F(src2[x])*beta + gamma;
            dst[x] = saturate_cast<uchar>(t0);
1882 1883 1884 1885
        }
    }
}

1886 1887
static void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2,
                           schar* dst, size_t step, Size sz, void* scalars )
1888
{
1889
    addWeighted_<schar, float>(src1, step1, src2, step2, dst, step, sz, scalars);
1890 1891
}

1892 1893
static void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                            ushort* dst, size_t step, Size sz, void* scalars )
1894
{
1895 1896
    addWeighted_<ushort, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1897

1898 1899
static void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2,
                            short* dst, size_t step, Size sz, void* scalars )
1900
{
1901 1902
    addWeighted_<short, float>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1903

1904 1905
static void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2,
                            int* dst, size_t step, Size sz, void* scalars )
1906
{
1907
    addWeighted_<int, double>(src1, step1, src2, step2, dst, step, sz, scalars);
1908 1909
}

1910 1911
static void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2,
                            float* dst, size_t step, Size sz, void* scalars )
1912
{
1913 1914
    addWeighted_<float, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
1915

1916 1917 1918 1919 1920
static void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2,
                            double* dst, size_t step, Size sz, void* scalars )
{
    addWeighted_<double, double>(src1, step1, src2, step2, dst, step, sz, scalars);
}
V
Vadim Pisarevsky 已提交
1921

1922 1923 1924 1925 1926 1927
static BinaryFunc addWeightedTab[] =
{
    (BinaryFunc)addWeighted8u, (BinaryFunc)addWeighted8s, (BinaryFunc)addWeighted16u,
    (BinaryFunc)addWeighted16s, (BinaryFunc)addWeighted32s, (BinaryFunc)addWeighted32f,
    (BinaryFunc)addWeighted64f, 0
};
1928

1929
}
1930

1931
void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
1932 1933 1934
                      double beta, double gamma, OutputArray dst, int dtype )
{
    double scalars[] = {alpha, beta, gamma};
1935
    arithm_op(src1, src2, dst, noArray(), dtype, addWeightedTab, true, scalars);
1936 1937
}

1938

1939
/****************************************************************************************\
1940
*                                          compare                                       *
1941 1942
\****************************************************************************************/

1943
namespace cv
1944 1945
{

1946 1947 1948
template<typename T> static void
cmp_(const T* src1, size_t step1, const T* src2, size_t step2,
     uchar* dst, size_t step, Size size, int code)
1949
{
1950 1951 1952
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    if( code == CMP_GE || code == CMP_LT )
1953
    {
1954 1955 1956
        std::swap(src1, src2);
        std::swap(step1, step2);
        code = code == CMP_GE ? CMP_LE : CMP_GT;
1957
    }
1958

1959
    if( code == CMP_GT || code == CMP_LE )
1960
    {
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
        int m = code == CMP_GT ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] > src2[x]) ^ m;
                t1 = -(src1[x+1] > src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] > src2[x+2]) ^ m;
                t1 = -(src1[x+3] > src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
1975

1976 1977 1978
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] > src2[x]) ^ m);
        }
1979
    }
1980
    else if( code == CMP_EQ || code == CMP_NE )
1981
    {
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995
        int m = code == CMP_EQ ? 0 : 255;
        for( ; size.height--; src1 += step1, src2 += step2, dst += step )
        {
            int x = 0;
            for( ; x <= size.width - 4; x += 4 )
            {
                int t0, t1;
                t0 = -(src1[x] == src2[x]) ^ m;
                t1 = -(src1[x+1] == src2[x+1]) ^ m;
                dst[x] = (uchar)t0; dst[x+1] = (uchar)t1;
                t0 = -(src1[x+2] == src2[x+2]) ^ m;
                t1 = -(src1[x+3] == src2[x+3]) ^ m;
                dst[x+2] = (uchar)t0; dst[x+3] = (uchar)t1;
            }
1996

1997 1998 1999
            for( ; x < size.width; x++ )
                dst[x] = (uchar)(-(src1[x] == src2[x]) ^ m);
        }
2000
    }
2001
}
2002 2003


2004 2005
static void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2006
{
2007
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2008 2009
}

2010 2011
static void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2012
{
2013
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2014 2015
}

2016 2017
static void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2018
{
2019
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2020 2021
}

2022 2023
static void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2024
{
2025
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2026 2027
}

2028 2029 2030 2031 2032
static void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2,
                   uchar* dst, size_t step, Size size, void* _cmpop)
{
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2033

2034 2035
static void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2036
{
2037 2038
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
}
2039

2040 2041
static void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2,
                  uchar* dst, size_t step, Size size, void* _cmpop)
2042
{
2043
    cmp_(src1, step1, src2, step2, dst, step, size, *(int*)_cmpop);
2044 2045
}

2046 2047 2048 2049 2050
static BinaryFunc cmpTab[] =
{
    (BinaryFunc)cmp8u, (BinaryFunc)cmp8s, (BinaryFunc)cmp16u,
    (BinaryFunc)cmp16s, (BinaryFunc)cmp32s, (BinaryFunc)cmp32f,
    (BinaryFunc)cmp64f, 0
2051 2052
};

2053

2054
static double getMinVal(int depth)
2055
{
2056 2057 2058
    static const double tab[] = {0, -128, 0, -32768, INT_MIN, -FLT_MAX, -DBL_MAX, 0};
    return tab[depth];
}
2059

2060
static double getMaxVal(int depth)
2061
{
2062 2063 2064
    static const double tab[] = {255, 127, 65535, 32767, INT_MAX, FLT_MAX, DBL_MAX, 0};
    return tab[depth];
}
2065 2066 2067

}

2068
void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
2069 2070 2071
{
    CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ ||
               op == CMP_NE || op == CMP_GE || op == CMP_GT );
2072

2073 2074
    int kind1 = _src1.kind(), kind2 = _src2.kind();
    Mat src1 = _src1.getMat(), src2 = _src2.getMat();
2075

2076
    if( kind1 == kind2 && src1.dims <= 2 && src2.dims <= 2 && src1.size() == src2.size() && src1.type() == src2.type() )
2077
    {
2078 2079 2080 2081 2082 2083
        _dst.create(src1.size(), CV_8UC1);
        Mat dst = _dst.getMat();
        Size sz = getContinuousSize(src1, src2, dst, src1.channels());
        cmpTab[src1.depth()](src1.data, src1.step, src2.data, src2.step, dst.data, dst.step, sz, &op);
        return;
    }
2084

2085
    bool haveScalar = false;
2086

2087
    if( (kind1 == _InputArray::MATX) + (kind2 == _InputArray::MATX) == 1 ||
2088 2089 2090
        src1.size != src2.size || src1.type() != src2.type() )
    {
        if( checkScalar(src1, src2.type(), kind1, kind2) )
2091
        {
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
            // src1 is a scalar; swap it with src2
            swap(src1, src2);
            op = op == CMP_LT ? CMP_GT : op == CMP_LE ? CMP_GE :
                op == CMP_GE ? CMP_LE : op == CMP_GT ? CMP_LT : op;
        }
        else if( !checkScalar(src2, src1.type(), kind2, kind1) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The operation is neither 'array op array' (where arrays have the same size and the same type), "
                     "nor 'array op scalar', nor 'scalar op array'" );
        haveScalar = true;
    }
2103

2104 2105 2106
    int cn = src1.channels(), depth1 = src1.depth(), depth2 = src2.depth();
    if( cn != 1 )
        CV_Error( CV_StsUnsupportedFormat, "compare() can only process single-channel arrays" );
2107

2108 2109
    size_t esz = src1.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2110

2111 2112 2113
    _dst.create(src1.dims, src1.size, CV_8U);
    Mat dst = _dst.getMat();
    BinaryFunc func = cmpTab[depth1];
2114

2115
    if( !haveScalar )
2116
    {
2117 2118
        const Mat* arrays[] = { &src1, &src2, &dst, 0 };
        uchar* ptrs[3];
2119

2120 2121
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size;
2122

2123 2124
        for( size_t i = 0; i < it.nplanes; i++, ++it )
            func( ptrs[0], 0, ptrs[1], 0, ptrs[2], 0, Size((int)total, 1), &op );
2125
    }
2126
    else
2127
    {
2128 2129
        const Mat* arrays[] = { &src1, &dst, 0 };
        uchar* ptrs[2];
2130

2131 2132
        NAryMatIterator it(arrays, ptrs);
        size_t total = it.size, blocksize = std::min(total, blocksize0);
2133

2134 2135 2136 2137 2138 2139
        AutoBuffer<uchar> _buf(blocksize*esz);
        uchar *buf = _buf;

        if( depth1 > CV_32S )
            convertAndUnrollScalar( src2, depth1, buf, blocksize );
        else
2140
        {
2141 2142 2143 2144 2145 2146 2147
            double fval=0;
            getConvertFunc(depth2, CV_64F)(src2.data, 0, 0, 0, (uchar*)&fval, 0, Size(1,1), 0);
            if( fval < getMinVal(depth1) )
            {
                dst = Scalar::all(op == CMP_GT || op == CMP_GE || op == CMP_NE ? 255 : 0);
                return;
            }
2148

2149 2150 2151 2152 2153
            if( fval > getMaxVal(depth1) )
            {
                dst = Scalar::all(op == CMP_LT || op == CMP_LE || op == CMP_NE ? 255 : 0);
                return;
            }
2154

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
            int ival = cvRound(fval);
            if( fval != ival )
            {
                if( op == CMP_LT || op == CMP_GE )
                    ival = cvCeil(fval);
                else if( op == CMP_LE || op == CMP_GT )
                    ival = cvFloor(fval);
                else
                {
                    dst = Scalar::all(op == CMP_NE ? 255 : 0);
                    return;
                }
            }
            convertAndUnrollScalar(Mat(1, 1, CV_32S, &ival), depth1, buf, blocksize);
        }
2170

2171
        for( size_t i = 0; i < it.nplanes; i++, ++it )
2172
        {
2173 2174 2175 2176 2177 2178 2179 2180
            for( size_t j = 0; j < total; j += blocksize )
            {
                int bsz = (int)std::min(total - j, blocksize);
                func( ptrs[0], 0, buf, 0, ptrs[1], 0, Size(bsz, 1), &op);
                ptrs[0] += bsz*esz;
                ptrs[1] += bsz;
            }
        }
2181
    }
2182
}
2183

2184 2185 2186
/****************************************************************************************\
*                                        inRange                                         *
\****************************************************************************************/
2187

2188 2189
namespace cv
{
2190

2191 2192 2193 2194 2195 2196 2197 2198
template<typename T> static void
inRange_(const T* src1, size_t step1, const T* src2, size_t step2,
         const T* src3, size_t step3, uchar* dst, size_t step,
         Size size)
{
    step1 /= sizeof(src1[0]);
    step2 /= sizeof(src2[0]);
    step3 /= sizeof(src3[0]);
2199

2200
    for( ; size.height--; src1 += step1, src2 += step2, src3 += step3, dst += step )
V
Vadim Pisarevsky 已提交
2201
    {
2202 2203
        int x = 0;
        for( ; x <= size.width - 4; x += 4 )
V
Vadim Pisarevsky 已提交
2204
        {
2205 2206 2207 2208 2209 2210 2211
            int t0, t1;
            t0 = src2[x] <= src1[x] && src1[x] <= src3[x];
            t1 = src2[x+1] <= src1[x+1] && src1[x+1] <= src3[x+1];
            dst[x] = (uchar)-t0; dst[x+1] = (uchar)-t1;
            t0 = src2[x+2] <= src1[x+2] && src1[x+2] <= src3[x+2];
            t1 = src2[x+3] <= src1[x+3] && src1[x+3] <= src3[x+3];
            dst[x+2] = (uchar)-t0; dst[x+3] = (uchar)-t1;
V
Vadim Pisarevsky 已提交
2212
        }
2213

2214 2215
        for( ; x < size.width; x++ )
            dst[x] = (uchar)-(src2[x] <= src1[x] && src1[x] <= src3[x]);
V
Vadim Pisarevsky 已提交
2216
    }
2217 2218
}

2219

2220 2221
static void inRange8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                      const uchar* src3, size_t step3, uchar* dst, size_t step, Size size)
2222
{
2223 2224
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2225

2226 2227
static void inRange8s(const schar* src1, size_t step1, const schar* src2, size_t step2,
                      const schar* src3, size_t step3, uchar* dst, size_t step, Size size)
2228
{
2229 2230
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2231

2232 2233
static void inRange16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2,
                       const ushort* src3, size_t step3, uchar* dst, size_t step, Size size)
2234
{
2235 2236
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2237

2238 2239 2240 2241
static void inRange16s(const short* src1, size_t step1, const short* src2, size_t step2,
                       const short* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2242 2243
}

2244 2245
static void inRange32s(const int* src1, size_t step1, const int* src2, size_t step2,
                       const int* src3, size_t step3, uchar* dst, size_t step, Size size)
2246
{
2247 2248
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
}
2249

2250 2251 2252 2253
static void inRange32f(const float* src1, size_t step1, const float* src2, size_t step2,
                       const float* src3, size_t step3, uchar* dst, size_t step, Size size)
{
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2254 2255
}

2256 2257
static void inRange64f(const double* src1, size_t step1, const double* src2, size_t step2,
                       const double* src3, size_t step3, uchar* dst, size_t step, Size size)
2258
{
2259
    inRange_(src1, step1, src2, step2, src3, step3, dst, step, size);
2260
}
2261

2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
static void inRangeReduce(const uchar* src, uchar* dst, size_t len, int cn)
{
    int k = cn % 4 ? cn % 4 : 4;
    size_t i, j;
    if( k == 1 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j];
    else if( k == 2 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1];
    else if( k == 3 )
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2];
    else
        for( i = j = 0; i < len; i++, j += cn )
            dst[i] = src[j] & src[j+1] & src[j+2] & src[j+3];
2278

2279 2280 2281 2282
    for( ; k < cn; k += 4 )
    {
        for( i = 0, j = k; i < len; i++, j += cn )
            dst[i] &= src[j] & src[j+1] & src[j+2] & src[j+3];
V
Vadim Pisarevsky 已提交
2283
    }
2284
}
2285

2286 2287
typedef void (*InRangeFunc)( const uchar* src1, size_t step1, const uchar* src2, size_t step2,
                             const uchar* src3, size_t step3, uchar* dst, size_t step, Size sz );
2288

2289
static InRangeFunc inRangeTab[] =
2290
{
2291 2292 2293 2294
    (InRangeFunc)inRange8u, (InRangeFunc)inRange8s, (InRangeFunc)inRange16u,
    (InRangeFunc)inRange16s, (InRangeFunc)inRange32s, (InRangeFunc)inRange32f,
    (InRangeFunc)inRange64f, 0
};
2295

2296 2297
}

2298 2299
void cv::inRange(InputArray _src, InputArray _lowerb,
                 InputArray _upperb, OutputArray _dst)
2300 2301 2302
{
    int skind = _src.kind(), lkind = _lowerb.kind(), ukind = _upperb.kind();
    Mat src = _src.getMat(), lb = _lowerb.getMat(), ub = _upperb.getMat();
2303

2304
    bool lbScalar = false, ubScalar = false;
2305

2306
    if( (lkind == _InputArray::MATX && skind != _InputArray::MATX) ||
2307 2308 2309 2310 2311 2312 2313
        src.size != lb.size || src.type() != lb.type() )
    {
        if( !checkScalar(lb, src.type(), lkind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The lower bounary is neither an array of the same size and same type as src, nor a scalar");
        lbScalar = true;
    }
2314

2315
    if( (ukind == _InputArray::MATX && skind != _InputArray::MATX) ||
2316 2317 2318 2319 2320 2321 2322
        src.size != ub.size || src.type() != ub.type() )
    {
        if( !checkScalar(ub, src.type(), ukind, skind) )
            CV_Error( CV_StsUnmatchedSizes,
                     "The upper bounary is neither an array of the same size and same type as src, nor a scalar");
        ubScalar = true;
    }
2323

2324
    CV_Assert( ((int)lbScalar ^ (int)ubScalar) == 0 );
2325

2326
    int cn = src.channels(), depth = src.depth();
2327

2328 2329
    size_t esz = src.elemSize();
    size_t blocksize0 = (size_t)(BLOCK_SIZE + esz-1)/esz;
2330

2331 2332 2333
    _dst.create(src.dims, src.size, CV_8U);
    Mat dst = _dst.getMat();
    InRangeFunc func = inRangeTab[depth];
2334

2335 2336 2337
    const Mat* arrays_sc[] = { &src, &dst, 0 };
    const Mat* arrays_nosc[] = { &src, &dst, &lb, &ub, 0 };
    uchar* ptrs[4];
2338

2339 2340
    NAryMatIterator it(lbScalar && ubScalar ? arrays_sc : arrays_nosc, ptrs);
    size_t total = it.size, blocksize = std::min(total, blocksize0);
2341

2342 2343 2344
    AutoBuffer<uchar> _buf(blocksize*(((int)lbScalar + (int)ubScalar)*esz + cn) + 2*cn*sizeof(int) + 128);
    uchar *buf = _buf, *mbuf = buf, *lbuf = 0, *ubuf = 0;
    buf = alignPtr(buf + blocksize*cn, 16);
2345

2346 2347 2348 2349
    if( lbScalar && ubScalar )
    {
        lbuf = buf;
        ubuf = buf = alignPtr(buf + blocksize*esz, 16);
2350

2351 2352
        CV_Assert( lb.type() == ub.type() );
        int scdepth = lb.depth();
2353

2354 2355 2356 2357
        if( scdepth != depth && depth < CV_32S )
        {
            int* ilbuf = (int*)alignPtr(buf + blocksize*esz, 16);
            int* iubuf = ilbuf + cn;
2358

2359 2360 2361
            BinaryFunc sccvtfunc = getConvertFunc(scdepth, CV_32S);
            sccvtfunc(lb.data, 0, 0, 0, (uchar*)ilbuf, 0, Size(cn, 1), 0);
            sccvtfunc(ub.data, 0, 0, 0, (uchar*)iubuf, 0, Size(cn, 1), 0);
2362
            int minval = cvRound(getMinVal(depth)), maxval = cvRound(getMaxVal(depth));
2363

2364 2365 2366 2367 2368 2369 2370 2371
            for( int k = 0; k < cn; k++ )
            {
                if( ilbuf[k] > iubuf[k] || ilbuf[k] > maxval || iubuf[k] < minval )
                    ilbuf[k] = minval+1, iubuf[k] = minval;
            }
            lb = Mat(cn, 1, CV_32S, ilbuf);
            ub = Mat(cn, 1, CV_32S, iubuf);
        }
2372

2373 2374 2375
        convertAndUnrollScalar( lb, src.type(), lbuf, blocksize );
        convertAndUnrollScalar( ub, src.type(), ubuf, blocksize );
    }
2376

2377
    for( size_t i = 0; i < it.nplanes; i++, ++it )
V
Vadim Pisarevsky 已提交
2378
    {
2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
        for( size_t j = 0; j < total; j += blocksize )
        {
            int bsz = (int)std::min(total - j, blocksize);
            size_t delta = bsz*esz;
            uchar *lptr = lbuf, *uptr = ubuf;
            if( !lbScalar )
            {
                lptr = ptrs[2];
                ptrs[2] += delta;
            }
            if( !ubScalar )
            {
                int idx = !lbScalar ? 3 : 2;
                uptr = ptrs[idx];
                ptrs[idx] += delta;
            }
            func( ptrs[0], 0, lptr, 0, uptr, 0, cn == 1 ? ptrs[1] : mbuf, 0, Size(bsz*cn, 1));
            if( cn > 1 )
                inRangeReduce(mbuf, ptrs[1], bsz, cn);
            ptrs[0] += delta;
            ptrs[1] += bsz;
        }
V
Vadim Pisarevsky 已提交
2401
    }
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
}

/****************************************************************************************\
*                                Earlier API: cvAdd etc.                                 *
\****************************************************************************************/

CV_IMPL void
cvNot( const CvArr* srcarr, CvArr* dstarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
2412
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2413 2414 2415 2416 2417 2418 2419 2420 2421
    cv::bitwise_not( src, dst );
}


CV_IMPL void
cvAnd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2422
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2423 2424 2425 2426 2427
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_and( src1, src2, dst, mask );
}

2428

2429 2430 2431 2432 2433
CV_IMPL void
cvOr( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2434
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_or( src1, src2, dst, mask );
}


CV_IMPL void
cvXor( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2446
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
    cv::bitwise_xor( src1, src2, dst, mask );
}


CV_IMPL void
cvAndS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2457
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2458 2459
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2460
    cv::bitwise_and( src, (const cv::Scalar&)s, dst, mask );
2461 2462 2463 2464 2465 2466 2467
}


CV_IMPL void
cvOrS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2468
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2469 2470
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2471
    cv::bitwise_or( src, (const cv::Scalar&)s, dst, mask );
2472 2473 2474 2475 2476 2477 2478
}


CV_IMPL void
cvXorS( const CvArr* srcarr, CvScalar s, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
2479
    CV_Assert( src.size == dst.size && src.type() == dst.type() );
2480 2481
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2482
    cv::bitwise_xor( src, (const cv::Scalar&)s, dst, mask );
2483 2484
}

2485

2486 2487 2488 2489
CV_IMPL void cvAdd( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2490
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2491 2492
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2493
    cv::add( src1, src2, dst, mask, dst.type() );
2494 2495
}

2496

2497 2498 2499 2500
CV_IMPL void cvSub( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2501
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2502 2503
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2504
    cv::subtract( src1, src2, dst, mask, dst.type() );
2505 2506
}

2507

2508 2509 2510 2511
CV_IMPL void cvAddS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2512
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2513 2514
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2515
    cv::add( src1, (const cv::Scalar&)value, dst, mask, dst.type() );
2516 2517
}

2518

2519 2520 2521 2522
CV_IMPL void cvSubRS( const CvArr* srcarr1, CvScalar value, CvArr* dstarr, const CvArr* maskarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1),
        dst = cv::cvarrToMat(dstarr), mask;
2523
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
2524 2525
    if( maskarr )
        mask = cv::cvarrToMat(maskarr);
2526
    cv::subtract( (const cv::Scalar&)value, src1, dst, mask, dst.type() );
2527 2528
}

2529

2530 2531 2532 2533 2534
CV_IMPL void cvMul( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2535 2536
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::multiply( src1, src2, dst, scale, dst.type() );
2537 2538
}

2539

2540 2541 2542 2543 2544
CV_IMPL void cvDiv( const CvArr* srcarr1, const CvArr* srcarr2,
                    CvArr* dstarr, double scale )
{
    cv::Mat src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr), mask;
2545
    CV_Assert( src2.size == dst.size && src2.channels() == dst.channels() );
2546 2547

    if( srcarr1 )
2548
        cv::divide( cv::cvarrToMat(srcarr1), src2, dst, scale, dst.type() );
2549
    else
2550
        cv::divide( scale, src2, dst, dst.type() );
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
}


CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
               const CvArr* srcarr2, double beta,
               double gamma, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
        dst = cv::cvarrToMat(dstarr);
2561 2562
    CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
    cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() );
2563 2564 2565 2566 2567 2568 2569
}


CV_IMPL  void
cvAbsDiff( const CvArr* srcarr1, const CvArr* srcarr2, CvArr* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2570
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2571 2572 2573 2574 2575 2576 2577 2578 2579

    cv::absdiff( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvAbsDiffS( const CvArr* srcarr1, CvArr* dstarr, CvScalar scalar )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2580
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2581

2582
    cv::absdiff( src1, (const cv::Scalar&)scalar, dst );
2583 2584
}

2585

2586 2587 2588 2589 2590
CV_IMPL void
cvInRange( const void* srcarr1, const void* srcarr2,
           const void* srcarr3, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2591
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2592 2593 2594 2595

    cv::inRange( src1, cv::cvarrToMat(srcarr2), cv::cvarrToMat(srcarr3), dst );
}

2596

2597 2598 2599 2600
CV_IMPL void
cvInRangeS( const void* srcarr1, CvScalar lowerb, CvScalar upperb, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2601
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2602

2603
    cv::inRange( src1, (const cv::Scalar&)lowerb, (const cv::Scalar&)upperb, dst );
2604 2605 2606 2607 2608 2609 2610
}


CV_IMPL void
cvCmp( const void* srcarr1, const void* srcarr2, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2611
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2612 2613 2614 2615 2616 2617 2618 2619 2620

    cv::compare( src1, cv::cvarrToMat(srcarr2), dst, cmp_op );
}


CV_IMPL void
cvCmpS( const void* srcarr1, double value, void* dstarr, int cmp_op )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2621
    CV_Assert( src1.size == dst.size && dst.type() == CV_8U );
2622 2623 2624 2625 2626 2627 2628 2629 2630

    cv::compare( src1, value, dst, cmp_op );
}


CV_IMPL void
cvMin( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2631
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2632 2633 2634 2635 2636 2637 2638 2639 2640

    cv::min( src1, cv::cvarrToMat(srcarr2), dst );
}


CV_IMPL void
cvMax( const void* srcarr1, const void* srcarr2, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2641
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2642 2643 2644 2645

    cv::max( src1, cv::cvarrToMat(srcarr2), dst );
}

2646

2647 2648 2649 2650
CV_IMPL void
cvMinS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2651
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2652 2653 2654 2655 2656 2657 2658 2659 2660

    cv::min( src1, value, dst );
}


CV_IMPL void
cvMaxS( const void* srcarr1, double value, void* dstarr )
{
    cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
2661
    CV_Assert( src1.size == dst.size && src1.type() == dst.type() );
2662 2663 2664 2665 2666

    cv::max( src1, value, dst );
}

/* End of file. */