planner.c 146.5 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18
#include <limits.h>
19
#include <math.h>
20

21
#include "access/htup_details.h"
22
#include "access/parallel.h"
23
#include "access/xact.h"
24
#include "executor/executor.h"
25
#include "executor/nodeAgg.h"
26
#include "foreign/fdwapi.h"
27
#include "miscadmin.h"
28
#include "lib/bipartite_match.h"
B
Bruce Momjian 已提交
29
#include "nodes/makefuncs.h"
30
#include "nodes/nodeFuncs.h"
31 32 33
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
34
#include "optimizer/clauses.h"
35 36
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
37
#include "optimizer/paths.h"
38
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
39
#include "optimizer/planmain.h"
40 41
#include "optimizer/planner.h"
#include "optimizer/prep.h"
42
#include "optimizer/subselect.h"
43
#include "optimizer/tlist.h"
44
#include "parser/analyze.h"
45
#include "parser/parsetree.h"
46
#include "parser/parse_agg.h"
47
#include "rewrite/rewriteManip.h"
48
#include "storage/dsm_impl.h"
49
#include "utils/rel.h"
50
#include "utils/selfuncs.h"
51

52

53
/* GUC parameter */
54
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
55

56 57 58 59
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


60
/* Expression kind codes for preprocess_expression */
61 62 63
#define EXPRKIND_QUAL			0
#define EXPRKIND_TARGET			1
#define EXPRKIND_RTFUNC			2
B
Bruce Momjian 已提交
64
#define EXPRKIND_RTFUNC_LATERAL 3
65
#define EXPRKIND_VALUES			4
B
Bruce Momjian 已提交
66
#define EXPRKIND_VALUES_LATERAL 5
67 68 69
#define EXPRKIND_LIMIT			6
#define EXPRKIND_APPINFO		7
#define EXPRKIND_PHV			8
B
Bruce Momjian 已提交
70
#define EXPRKIND_TABLESAMPLE	9
71

72 73 74 75 76
/* Passthrough data for standard_qp_callback */
typedef struct
{
	List	   *tlist;			/* preprocessed query targetlist */
	List	   *activeWindows;	/* active windows, if any */
77
	List	   *groupClause;	/* overrides parse->groupClause */
78
} standard_qp_extra;
79

80
/* Local functions */
81 82
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
83
static Plan *inheritance_planner(PlannerInfo *root);
84
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
85
static void preprocess_rowmarks(PlannerInfo *root);
86
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
87
				 double tuple_fraction,
B
Bruce Momjian 已提交
88
				 int64 *offset_est, int64 *count_est);
89
static bool limit_needed(Query *parse);
90 91 92
static List *preprocess_groupclause(PlannerInfo *root, List *force);
static List *extract_rollup_sets(List *groupingSets);
static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
93
static void standard_qp_callback(PlannerInfo *root, void *extra);
94 95
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
96
					   double path_rows, int path_width,
97
					   Path *cheapest_path, Path *sorted_path,
98
					   double dNumGroups, AggClauseCosts *agg_costs);
99 100
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
101 102 103 104
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
105
					   double dNumDistinctRows);
106
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
107
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
108
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
109
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
110 111 112
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
113
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
114
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
115 116
static List *make_windowInputTargetList(PlannerInfo *root,
						   List *tlist, List *activeWindows);
T
Tom Lane 已提交
117
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
118
						 List *tlist);
T
Tom Lane 已提交
119
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
120 121 122 123 124 125 126 127
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
128
static Plan *build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
129 130 131 132 133 134 135 136 137
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
					 long numGroups,
					 Plan *result_plan);
138 139 140

/*****************************************************************************
 *
141 142
 *	   Query optimizer entry point
 *
143 144 145 146 147 148 149 150
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
151
 *****************************************************************************/
152
PlannedStmt *
153
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
154 155 156 157 158 159 160 161 162 163 164 165
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
166
{
167
	PlannedStmt *result;
168
	PlannerGlobal *glob;
169
	double		tuple_fraction;
170 171
	PlannerInfo *root;
	Plan	   *top_plan;
172
	ListCell   *lp,
173
			   *lr;
174

175 176 177 178 179
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

180
	/*
181 182 183 184
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
185
	 */
186
	glob = makeNode(PlannerGlobal);
187

188
	glob->boundParams = boundParams;
189
	glob->subplans = NIL;
190
	glob->subroots = NIL;
191
	glob->rewindPlanIDs = NULL;
192
	glob->finalrtable = NIL;
193
	glob->finalrowmarks = NIL;
194
	glob->resultRelations = NIL;
195
	glob->relationOids = NIL;
196
	glob->invalItems = NIL;
197
	glob->nParamExec = 0;
198
	glob->lastPHId = 0;
199
	glob->lastRowMarkId = 0;
R
Robert Haas 已提交
200
	glob->lastPlanNodeId = 0;
201
	glob->transientPlan = false;
202
	glob->hasRowSecurity = false;
203

204
	/*
205 206 207 208 209
	 * Assess whether it's feasible to use parallel mode for this query. We
	 * can't do this in a standalone backend, or if the command will try to
	 * modify any data, or if this is a cursor operation, or if GUCs are set
	 * to values that don't permit parallelism, or if parallel-unsafe
	 * functions are present in the query tree.
210
	 *
211 212
	 * For now, we don't try to use parallel mode if we're running inside a
	 * parallel worker.  We might eventually be able to relax this
213 214
	 * restriction, but for now it seems best not to have parallel workers
	 * trying to create their own parallel workers.
215 216 217 218 219 220
	 *
	 * We can't use parallelism in serializable mode because the predicate
	 * locking code is not parallel-aware.  It's not catastrophic if someone
	 * tries to run a parallel plan in serializable mode; it just won't get
	 * any workers and will run serially.  But it seems like a good heuristic
	 * to assume that the same serialization level will be in effect at plan
221 222
	 * time and execution time, so don't generate a parallel plan if we're in
	 * serializable mode.
223 224 225 226
	 */
	glob->parallelModeOK = (cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 &&
		IsUnderPostmaster && dynamic_shared_memory_type != DSM_IMPL_NONE &&
		parse->commandType == CMD_SELECT && !parse->hasModifyingCTE &&
227 228 229
		parse->utilityStmt == NULL && max_parallel_degree > 0 &&
		!IsParallelWorker() && !IsolationIsSerializable() &&
		!has_parallel_hazard((Node *) parse, true);
230 231 232 233 234 235 236 237 238 239 240 241

	/*
	 * glob->parallelModeOK should tell us whether it's necessary to impose
	 * the parallel mode restrictions, but we don't actually want to impose
	 * them unless we choose a parallel plan, so that people who mislabel
	 * their functions but don't use parallelism anyway aren't harmed.
	 * However, it's useful for testing purposes to be able to force the
	 * restrictions to be imposed whenever a parallel plan is actually chosen
	 * or not.
	 *
	 * (It's been suggested that we should always impose these restrictions
	 * whenever glob->parallelModeOK is true, so that it's easier to notice
242 243 244
	 * incorrectly-labeled functions sooner.  That might be the right thing to
	 * do, but for now I've taken this approach.  We could also control this
	 * with a GUC.)
245 246 247 248 249 250 251 252 253 254 255
	 *
	 * FIXME: It's assumed that code further down will set parallelModeNeeded
	 * to true if a parallel path is actually chosen.  Since the core
	 * parallelism code isn't committed yet, this currently never happens.
	 */
#ifdef FORCE_PARALLEL_MODE
	glob->parallelModeNeeded = glob->parallelModeOK;
#else
	glob->parallelModeNeeded = false;
#endif

256
	/* Determine what fraction of the plan is likely to be scanned */
257
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
258 259
	{
		/*
B
Bruce Momjian 已提交
260
		 * We have no real idea how many tuples the user will ultimately FETCH
261 262 263 264 265 266 267 268
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
269
		 * We document cursor_tuple_fraction as simply being a fraction, which
B
Bruce Momjian 已提交
270
		 * means the edge cases 0 and 1 have to be treated specially here.  We
271
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
272
		 */
273 274 275 276
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
277 278 279 280 281 282 283
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

284
	/* primary planning entry point (may recurse for subqueries) */
285 286
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
287

288
	/*
B
Bruce Momjian 已提交
289 290
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
291
	 */
292
	if (cursorOptions & CURSOR_OPT_SCROLL)
293
	{
294 295
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
296 297
	}

298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
	/*
	 * If any Params were generated, run through the plan tree and compute
	 * each plan node's extParam/allParam sets.  Ideally we'd merge this into
	 * set_plan_references' tree traversal, but for now it has to be separate
	 * because we need to visit subplans before not after main plan.
	 */
	if (glob->nParamExec > 0)
	{
		Assert(list_length(glob->subplans) == list_length(glob->subroots));
		forboth(lp, glob->subplans, lr, glob->subroots)
		{
			Plan	   *subplan = (Plan *) lfirst(lp);
			PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);

			SS_finalize_plan(subroot, subplan);
		}
		SS_finalize_plan(root, top_plan);
	}

317
	/* final cleanup of the plan */
318
	Assert(glob->finalrtable == NIL);
319
	Assert(glob->finalrowmarks == NIL);
320
	Assert(glob->resultRelations == NIL);
321
	top_plan = set_plan_references(root, top_plan);
322
	/* ... and the subplans (both regular subplans and initplans) */
323 324
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
325
	{
B
Bruce Momjian 已提交
326
		Plan	   *subplan = (Plan *) lfirst(lp);
327
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
328

329
		lfirst(lp) = set_plan_references(subroot, subplan);
330
	}
331 332 333 334 335

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
336
	result->queryId = parse->queryId;
337
	result->hasReturning = (parse->returningList != NIL);
338
	result->hasModifyingCTE = parse->hasModifyingCTE;
339
	result->canSetTag = parse->canSetTag;
340
	result->transientPlan = glob->transientPlan;
341
	result->planTree = top_plan;
342
	result->rtable = glob->finalrtable;
343
	result->resultRelations = glob->resultRelations;
344
	result->utilityStmt = parse->utilityStmt;
345
	result->subplans = glob->subplans;
346
	result->rewindPlanIDs = glob->rewindPlanIDs;
347
	result->rowMarks = glob->finalrowmarks;
348
	result->relationOids = glob->relationOids;
349
	result->invalItems = glob->invalItems;
350
	result->nParamExec = glob->nParamExec;
351
	result->hasRowSecurity = glob->hasRowSecurity;
352
	result->parallelModeNeeded = glob->parallelModeNeeded;
353 354

	return result;
355
}
356

357

358
/*--------------------
359 360 361
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
362
 *
363
 * glob is the global state for the current planner run.
364
 * parse is the querytree produced by the parser & rewriter.
365 366
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
367
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
368
 * tuple_fraction is interpreted as explained for grouping_planner, below.
369
 *
370 371
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
372
 *
373
 * Basically, this routine does the stuff that should only be done once
374 375 376 377 378
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
379 380
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
381
 *
382 383
 * Returns a query plan.
 *--------------------
384
 */
385
Plan *
386
subquery_planner(PlannerGlobal *glob, Query *parse,
387 388
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
389
				 PlannerInfo **subroot)
390
{
391
	PlannerInfo *root;
392
	Plan	   *plan;
393
	List	   *newWithCheckOptions;
394
	List	   *newHaving;
395
	bool		hasOuterJoins;
396
	ListCell   *l;
397

398 399 400
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
401
	root->glob = glob;
402 403
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
404
	root->plan_params = NIL;
405
	root->outer_params = NULL;
406
	root->planner_cxt = CurrentMemoryContext;
407
	root->init_plans = NIL;
408
	root->cte_plan_ids = NIL;
409
	root->multiexpr_params = NIL;
410
	root->eq_classes = NIL;
411
	root->append_rel_list = NIL;
412
	root->rowMarks = NIL;
413
	root->hasInheritedTarget = false;
414
	root->grouping_map = NULL;
415

416 417
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
418
		root->wt_param_id = SS_assign_special_param(root);
419 420 421 422 423
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
424 425
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
426 427 428 429
	 */
	if (parse->cteList)
		SS_process_ctes(root);

430
	/*
431 432 433 434
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
435 436
	 */
	if (parse->hasSubLinks)
437
		pull_up_sublinks(root);
438

439
	/*
440 441
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
442
	 * Recursion issues here are handled in the same way as for SubLinks.
443 444 445
	 */
	inline_set_returning_functions(root);

446
	/*
447 448
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
449
	 */
450
	pull_up_subqueries(root);
B
Bruce Momjian 已提交
451

452
	/*
453 454 455
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
456 457 458 459 460
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

461
	/*
B
Bruce Momjian 已提交
462 463
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
464 465 466
	 * outer joins --- if none, we can skip reduce_outer_joins().  And check
	 * for LATERAL RTEs, too.  This must be done after we have done
	 * pull_up_subqueries(), of course.
467
	 */
468
	root->hasJoinRTEs = false;
469
	root->hasLateralRTEs = false;
470
	hasOuterJoins = false;
471
	foreach(l, parse->rtable)
472
	{
473
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
474 475 476

		if (rte->rtekind == RTE_JOIN)
		{
477
			root->hasJoinRTEs = true;
478
			if (IS_OUTER_JOIN(rte->jointype))
479
				hasOuterJoins = true;
480
		}
481 482
		if (rte->lateral)
			root->hasLateralRTEs = true;
483 484
	}

485
	/*
B
Bruce Momjian 已提交
486
	 * Preprocess RowMark information.  We need to do this after subquery
487 488 489
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
490
	 */
491
	preprocess_rowmarks(root);
492

493 494 495 496 497 498 499 500 501 502
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

503 504
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
505 506
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
507
	 */
508
	root->hasHavingQual = (parse->havingQual != NULL);
509

510 511 512
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

513
	/*
514 515 516 517
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
518
	 */
519
	parse->targetList = (List *)
520
		preprocess_expression(root, (Node *) parse->targetList,
521 522
							  EXPRKIND_TARGET);

523 524 525 526 527 528 529 530 531 532 533 534
	newWithCheckOptions = NIL;
	foreach(l, parse->withCheckOptions)
	{
		WithCheckOption *wco = (WithCheckOption *) lfirst(l);

		wco->qual = preprocess_expression(root, wco->qual,
										  EXPRKIND_QUAL);
		if (wco->qual != NULL)
			newWithCheckOptions = lappend(newWithCheckOptions, wco);
	}
	parse->withCheckOptions = newWithCheckOptions;

535 536 537 538
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

539
	preprocess_qual_conditions(root, (Node *) parse->jointree);
540

541
	parse->havingQual = preprocess_expression(root, parse->havingQual,
542 543
											  EXPRKIND_QUAL);

544 545 546 547 548 549 550 551 552 553 554
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

555
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
556
											   EXPRKIND_LIMIT);
557
	parse->limitCount = preprocess_expression(root, parse->limitCount,
558 559
											  EXPRKIND_LIMIT);

560 561 562 563 564 565 566 567 568 569 570
	if (parse->onConflict)
	{
		parse->onConflict->onConflictSet = (List *)
			preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
								  EXPRKIND_TARGET);

		parse->onConflict->onConflictWhere =
			preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
								  EXPRKIND_QUAL);
	}

571 572
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
573
							  EXPRKIND_APPINFO);
574

575
	/* Also need to preprocess expressions within RTEs */
576
	foreach(l, parse->rtable)
577
	{
578
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
579
		int			kind;
580

581 582 583
		if (rte->rtekind == RTE_RELATION)
		{
			if (rte->tablesample)
584 585 586
				rte->tablesample = (TableSampleClause *)
					preprocess_expression(root,
										  (Node *) rte->tablesample,
587 588 589
										  EXPRKIND_TABLESAMPLE);
		}
		else if (rte->rtekind == RTE_SUBQUERY)
590 591 592 593 594 595 596 597 598 599 600 601 602 603
		{
			/*
			 * We don't want to do all preprocessing yet on the subquery's
			 * expressions, since that will happen when we plan it.  But if it
			 * contains any join aliases of our level, those have to get
			 * expanded now, because planning of the subquery won't do it.
			 * That's only possible if the subquery is LATERAL.
			 */
			if (rte->lateral && root->hasJoinRTEs)
				rte->subquery = (Query *)
					flatten_join_alias_vars(root, (Node *) rte->subquery);
		}
		else if (rte->rtekind == RTE_FUNCTION)
		{
604
			/* Preprocess the function expression(s) fully */
605
			kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
606
			rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
607
		}
608
		else if (rte->rtekind == RTE_VALUES)
609 610 611
		{
			/* Preprocess the values lists fully */
			kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
612
			rte->values_lists = (List *)
613 614
				preprocess_expression(root, (Node *) rte->values_lists, kind);
		}
615 616
	}

617
	/*
B
Bruce Momjian 已提交
618 619 620
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
621 622 623 624
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
625
	 * containing subplans are left in HAVING.  Otherwise, we move or copy the
B
Bruce Momjian 已提交
626
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
627 628
	 * aggregation instead of after.
	 *
629 630 631 632 633 634 635 636
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
637 638
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
639 640
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
641 642
	 */
	newHaving = NIL;
643
	foreach(l, (List *) parse->havingQual)
644
	{
645
		Node	   *havingclause = (Node *) lfirst(l);
646

647 648
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
649
			contain_subplans(havingclause))
650 651
		{
			/* keep it in HAVING */
652
			newHaving = lappend(newHaving, havingclause);
653
		}
654
		else if (parse->groupClause && !parse->groupingSets)
655 656
		{
			/* move it to WHERE */
657 658
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
659 660 661 662 663 664 665 666 667
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
668 669 670
	}
	parse->havingQual = (Node *) newHaving;

671
	/*
B
Bruce Momjian 已提交
672 673
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
674
	 * preprocessing.
675
	 */
676
	if (hasOuterJoins)
677
		reduce_outer_joins(root);
678

679
	/*
B
Bruce Momjian 已提交
680 681
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
682
	 */
683
	if (parse->resultRelation &&
684 685
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
686
	else
687
	{
688
		plan = grouping_planner(root, tuple_fraction);
689 690 691
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
692
			List	   *withCheckOptionLists;
B
Bruce Momjian 已提交
693 694
			List	   *returningLists;
			List	   *rowMarks;
695

696
			/*
697 698
			 * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
			 * needed.
699
			 */
700 701 702 703 704
			if (parse->withCheckOptions)
				withCheckOptionLists = list_make1(parse->withCheckOptions);
			else
				withCheckOptionLists = NIL;

705
			if (parse->returningList)
706
				returningLists = list_make1(parse->returningList);
707 708 709
			else
				returningLists = NIL;

710
			/*
B
Bruce Momjian 已提交
711 712 713
			 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
			 * will have dealt with fetching non-locked marked rows, else we
			 * need to have ModifyTable do that.
714 715 716 717 718 719
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

T
Tom Lane 已提交
720 721
			plan = (Plan *) make_modifytable(root,
											 parse->commandType,
722
											 parse->canSetTag,
723
											 parse->resultRelation,
724
									   list_make1_int(parse->resultRelation),
725
											 list_make1(plan),
726
											 withCheckOptionLists,
727 728
											 returningLists,
											 rowMarks,
729
											 parse->onConflict,
730
											 SS_assign_special_param(root));
731 732
		}
	}
733 734

	/*
735 736 737 738 739 740 741 742 743
	 * Capture the set of outer-level param IDs we have access to, for use in
	 * extParam/allParam calculations later.
	 */
	SS_identify_outer_params(root);

	/*
	 * If any initPlans were created in this query level, attach them to the
	 * topmost plan node for the level, and increment that node's cost to
	 * account for them.
744
	 */
745
	SS_attach_initplans(root, plan);
B
Bruce Momjian 已提交
746

747 748 749
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
750

751
	return plan;
752
}
753

754 755 756 757
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
758
 *		conditions), a HAVING clause, or a few other things.
759 760
 */
static Node *
761
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
762
{
763
	/*
B
Bruce Momjian 已提交
764 765 766
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
767 768 769 770
	 */
	if (expr == NULL)
		return NULL;

771 772
	/*
	 * If the query has any join RTEs, replace join alias variables with
773 774
	 * base-relation variables.  We must do this before sublink processing,
	 * else sublinks expanded out from join aliases would not get processed.
775 776 777
	 * We can skip it in non-lateral RTE functions, VALUES lists, and
	 * TABLESAMPLE clauses, however, since they can't contain any Vars of the
	 * current query level.
778
	 */
779
	if (root->hasJoinRTEs &&
780 781 782
		!(kind == EXPRKIND_RTFUNC ||
		  kind == EXPRKIND_VALUES ||
		  kind == EXPRKIND_TABLESAMPLE))
783
		expr = flatten_join_alias_vars(root, expr);
784

785
	/*
786
	 * Simplify constant expressions.
787
	 *
788
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
789 790 791 792 793
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
794
	 *
795 796 797 798 799
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
800
	expr = eval_const_expressions(root, expr);
801 802 803

	/*
	 * If it's a qual or havingQual, canonicalize it.
804
	 */
805
	if (kind == EXPRKIND_QUAL)
806
	{
807
		expr = (Node *) canonicalize_qual((Expr *) expr);
808 809 810 811 812 813

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
814

815
	/* Expand SubLinks to SubPlans */
816
	if (root->parse->hasSubLinks)
817
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
818

819
	/*
B
Bruce Momjian 已提交
820 821
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
822 823
	 */

824
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
825 826
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
827

828
	/*
B
Bruce Momjian 已提交
829 830 831
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
832
	 * SS_process_sublinks expects explicit-AND format.)
833 834 835 836
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

837 838 839 840 841 842 843 844 845
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
846
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
847 848 849 850 851 852 853 854 855 856
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
857
		ListCell   *l;
858

859
		foreach(l, f->fromlist)
860
			preprocess_qual_conditions(root, lfirst(l));
861

862
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
863 864 865 866 867
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

868 869
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
870

871
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
872 873
	}
	else
874 875
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
876
}
877

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
/*
 * preprocess_phv_expression
 *	  Do preprocessing on a PlaceHolderVar expression that's been pulled up.
 *
 * If a LATERAL subquery references an output of another subquery, and that
 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
 * join, then we'll push the PlaceHolderVar expression down into the subquery
 * and later pull it back up during find_lateral_references, which runs after
 * subquery_planner has preprocessed all the expressions that were in the
 * current query level to start with.  So we need to preprocess it then.
 */
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
	return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

895
/*
896 897 898 899
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
900 901 902 903
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
904
 * different targetlist matching its own column set.  Fortunately,
905 906
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
907 908 909 910
 *
 * Returns a query plan.
 */
static Plan *
911
inheritance_planner(PlannerInfo *root)
912
{
913
	Query	   *parse = root->parse;
914
	int			parentRTindex = parse->resultRelation;
915 916 917
	Bitmapset  *resultRTindexes;
	Bitmapset  *subqueryRTindexes;
	Bitmapset  *modifiableARIindexes;
918
	int			nominalRelation = -1;
919 920 921
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
922
	List	   *subplans = NIL;
923
	List	   *resultRelations = NIL;
924
	List	   *withCheckOptionLists = NIL;
925
	List	   *returningLists = NIL;
926
	List	   *rowMarks;
927
	ListCell   *lc;
928
	Index		rti;
929

930 931
	Assert(parse->commandType != CMD_INSERT);

932 933 934 935 936 937 938 939 940 941 942 943 944 945
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
946 947 948
	 *
	 * Note that any RTEs with security barrier quals will be turned into
	 * subqueries during planning, and so we must create copies of them too,
B
Bruce Momjian 已提交
949 950
	 * except where they are target relations, which will each only be used in
	 * a single plan.
951 952
	 *
	 * To begin with, we'll need a bitmapset of the target relation relids.
953
	 */
954
	resultRTindexes = bms_make_singleton(parentRTindex);
955 956 957
	foreach(lc, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
B
Bruce Momjian 已提交
958

959 960 961 962 963
		if (appinfo->parent_relid == parentRTindex)
			resultRTindexes = bms_add_member(resultRTindexes,
											 appinfo->child_relid);
	}

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	/*
	 * Now, generate a bitmapset of the relids of the subquery RTEs, including
	 * security-barrier RTEs that will become subqueries, as just explained.
	 */
	subqueryRTindexes = NULL;
	rti = 1;
	foreach(lc, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);

		if (rte->rtekind == RTE_SUBQUERY ||
			(rte->securityQuals != NIL &&
			 !bms_is_member(rti, resultRTindexes)))
			subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
		rti++;
	}

	/*
	 * Next, we want to identify which AppendRelInfo items contain references
	 * to any of the aforesaid subquery RTEs.  These items will need to be
	 * copied and modified to adjust their subquery references; whereas the
	 * other ones need not be touched.  It's worth being tense over this
	 * because we can usually avoid processing most of the AppendRelInfo
	 * items, thereby saving O(N^2) space and time when the target is a large
	 * inheritance tree.  We can identify AppendRelInfo items by their
	 * child_relid, since that should be unique within the list.
	 */
	modifiableARIindexes = NULL;
	if (subqueryRTindexes != NULL)
	{
		foreach(lc, root->append_rel_list)
		{
			AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);

			if (bms_is_member(appinfo->parent_relid, subqueryRTindexes) ||
				bms_is_member(appinfo->child_relid, subqueryRTindexes) ||
				bms_overlap(pull_varnos((Node *) appinfo->translated_vars),
							subqueryRTindexes))
				modifiableARIindexes = bms_add_member(modifiableARIindexes,
													  appinfo->child_relid);
		}
	}

	/*
	 * And now we can get on with generating a plan for each child table.
	 */
1010
	foreach(lc, root->append_rel_list)
1011
	{
1012 1013
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
1014
		Plan	   *subplan;
1015

1016 1017 1018 1019
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

1020
		/*
1021 1022
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
1023 1024
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
1025 1026 1027 1028 1029 1030 1031

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
1032
		subroot.parse = (Query *)
1033 1034
			adjust_appendrel_attrs(root,
								   (Node *) parse,
1035
								   appinfo);
1036 1037 1038

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
1039 1040 1041
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
1042 1043 1044
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

1045 1046 1047
		/*
		 * The append_rel_list likewise might contain references to subquery
		 * RTEs (if any subqueries were flattenable UNION ALLs).  So prepare
1048 1049 1050 1051 1052 1053
		 * to apply ChangeVarNodes to that, too.  As explained above, we only
		 * want to copy items that actually contain such references; the rest
		 * can just get linked into the subroot's append_rel_list.
		 *
		 * If we know there are no such references, we can just use the outer
		 * append_rel_list unmodified.
1054
		 */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
		if (modifiableARIindexes != NULL)
		{
			ListCell   *lc2;

			subroot.append_rel_list = NIL;
			foreach(lc2, root->append_rel_list)
			{
				AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

				if (bms_is_member(appinfo2->child_relid, modifiableARIindexes))
					appinfo2 = (AppendRelInfo *) copyObject(appinfo2);

				subroot.append_rel_list = lappend(subroot.append_rel_list,
												  appinfo2);
			}
		}
1071

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
1084 1085 1086 1087 1088
		 * subquery (or subquery-to-be) RTEs, and adjust Var numbering to
		 * reference the duplicates.  To simplify the loop logic, we scan the
		 * original rtable not the copy just made by adjust_appendrel_attrs;
		 * that should be OK since subquery RTEs couldn't contain any
		 * references to the target rel.
1089
		 */
1090
		if (final_rtable != NIL && subqueryRTindexes != NULL)
1091 1092 1093 1094 1095 1096 1097 1098
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

1099
				if (bms_is_member(rti, subqueryRTindexes))
1100
				{
1101
					Index		newrti;
1102 1103 1104

					/*
					 * The RTE can't contain any references to its own RT
1105 1106 1107
					 * index, except in the security barrier quals, so we can
					 * save a few cycles by applying ChangeVarNodes before we
					 * append the RTE to the rangetable.
1108 1109 1110 1111
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
					/* Skip processing unchanging parts of append_rel_list */
					if (modifiableARIindexes != NULL)
					{
						ListCell   *lc2;

						foreach(lc2, subroot.append_rel_list)
						{
							AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

							if (bms_is_member(appinfo2->child_relid,
											  modifiableARIindexes))
								ChangeVarNodes((Node *) appinfo2, rti, newrti, 0);
						}
					}
1126
					rte = copyObject(rte);
1127
					ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
1128 1129 1130 1131 1132 1133 1134
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

1135
		/* There shouldn't be any OJ info to translate, as yet */
1136
		Assert(subroot.join_info_list == NIL);
1137 1138
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
1139 1140
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
1141

1142
		/* Generate plan */
1143 1144
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

1145
		/*
B
Bruce Momjian 已提交
1146 1147
		 * Planning may have modified the query result relation (if there were
		 * security barrier quals on the result RTE).
1148 1149 1150
		 */
		appinfo->child_relid = subroot.parse->resultRelation;

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		/*
		 * We'll use the first child relation (even if it's excluded) as the
		 * nominal target relation of the ModifyTable node.  Because of the
		 * way expand_inherited_rtentry works, this should always be the RTE
		 * representing the parent table in its role as a simple member of the
		 * inheritance set.  (It would be logically cleaner to use the
		 * inheritance parent RTE as the nominal target; but since that RTE
		 * will not be otherwise referenced in the plan, doing so would give
		 * rise to confusing use of multiple aliases in EXPLAIN output for
		 * what the user will think is the "same" table.)
		 */
		if (nominalRelation < 0)
			nominalRelation = appinfo->child_relid;

1165
		/*
B
Bruce Momjian 已提交
1166
		 * If this child rel was excluded by constraint exclusion, exclude it
1167
		 * from the result plan.
1168 1169 1170
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
1171

1172 1173
		subplans = lappend(subplans, subplan);

1174 1175 1176 1177 1178 1179 1180 1181
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
1182 1183
		{
			List	   *tmp_rtable = NIL;
B
Bruce Momjian 已提交
1184 1185
			ListCell   *cell1,
					   *cell2;
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213

			/*
			 * Check to see if any of the original RTEs were turned into
			 * subqueries during planning.  Currently, this should only ever
			 * happen due to securityQuals being involved which push a
			 * relation down under a subquery, to ensure that the security
			 * barrier quals are evaluated first.
			 *
			 * When this happens, we want to use the new subqueries in the
			 * final rtable.
			 */
			forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
			{
				RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
				RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);

				if (rte1->rtekind == RTE_RELATION &&
					rte2->rtekind == RTE_SUBQUERY)
				{
					/* Should only be when there are securityQuals today */
					Assert(rte1->securityQuals != NIL);
					tmp_rtable = lappend(tmp_rtable, rte2);
				}
				else
					tmp_rtable = lappend(tmp_rtable, rte1);
			}

			final_rtable = list_concat(tmp_rtable,
1214
									   list_copy_tail(subroot.parse->rtable,
1215
												 list_length(final_rtable)));
1216
		}
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

1236
		/* Make sure any initplans from this rel get into the outer list */
1237
		root->init_plans = subroot.init_plans;
1238

1239
		/* Build list of target-relation RT indexes */
1240 1241
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

1242 1243 1244 1245
		/* Build lists of per-relation WCO and RETURNING targetlists */
		if (parse->withCheckOptions)
			withCheckOptionLists = lappend(withCheckOptionLists,
										   subroot.parse->withCheckOptions);
1246
		if (parse->returningList)
1247 1248
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
1249 1250

		Assert(!parse->onConflict);
1251 1252
	}

1253 1254 1255 1256
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
1257 1258
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
1259 1260
	 */
	if (subplans == NIL)
1261 1262
	{
		/* although dummy, it must have a valid tlist for executor */
1263 1264
		List	   *tlist;

1265
		tlist = preprocess_targetlist(root, parse->targetList);
1266 1267
		return (Plan *) make_result(root,
									tlist,
1268 1269 1270
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
1271
	}
1272

1273
	/*
1274
	 * Put back the final adjusted rtable into the master copy of the Query.
1275
	 */
1276 1277 1278
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
1279

1280
	/*
B
Bruce Momjian 已提交
1281 1282
	 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
	 * have dealt with fetching non-locked marked rows, else we need to have
B
Bruce Momjian 已提交
1283
	 * ModifyTable do that.
1284 1285 1286 1287 1288 1289
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

1290
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
T
Tom Lane 已提交
1291 1292
	return (Plan *) make_modifytable(root,
									 parse->commandType,
1293
									 parse->canSetTag,
1294
									 nominalRelation,
1295
									 resultRelations,
B
Bruce Momjian 已提交
1296
									 subplans,
1297
									 withCheckOptionLists,
1298 1299
									 returningLists,
									 rowMarks,
1300
									 NULL,
1301
									 SS_assign_special_param(root));
1302 1303 1304 1305 1306 1307 1308
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
1309 1310 1311 1312
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
1313
 *	  0: expect all tuples to be retrieved (normal case)
1314 1315 1316 1317 1318
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
1319
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
1320
 * actual output ordering of the plan (in pathkey format).
1321 1322
 *--------------------
 */
1323
static Plan *
1324
grouping_planner(PlannerInfo *root, double tuple_fraction)
1325
{
1326
	Query	   *parse = root->parse;
1327
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
1328 1329
	int64		offset_est = 0;
	int64		count_est = 0;
1330
	double		limit_tuples = -1.0;
1331 1332
	Plan	   *result_plan;
	List	   *current_pathkeys;
1333
	double		dNumGroups = 0;
1334 1335
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
1336

1337 1338
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
1339
	{
1340 1341
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
1342

1343
		/*
B
Bruce Momjian 已提交
1344 1345
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
1346 1347 1348 1349
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
1350

1351
	if (parse->setOperations)
B
Bruce Momjian 已提交
1352
	{
B
Bruce Momjian 已提交
1353
		List	   *set_sortclauses;
1354

1355
		/*
B
Bruce Momjian 已提交
1356
		 * If there's a top-level ORDER BY, assume we have to fetch all the
B
Bruce Momjian 已提交
1357
		 * tuples.  This might be too simplistic given all the hackery below
1358 1359
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
1360 1361 1362 1363
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

1364
		/*
B
Bruce Momjian 已提交
1365
		 * Construct the plan for set operations.  The result will not need
1366 1367 1368
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
1369
		 */
1370
		result_plan = plan_set_operations(root, tuple_fraction,
1371 1372 1373
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1374 1375 1376
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1377
		 */
1378 1379
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1380
													result_plan->targetlist);
1381 1382

		/*
B
Bruce Momjian 已提交
1383
		 * We should not need to call preprocess_targetlist, since we must be
B
Bruce Momjian 已提交
1384
		 * in a SELECT query node.  Instead, use the targetlist returned by
B
Bruce Momjian 已提交
1385 1386 1387
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1388 1389
		 */
		Assert(parse->commandType == CMD_SELECT);
1390

1391 1392
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1393

1394
		/*
B
Bruce Momjian 已提交
1395 1396
		 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
		 * checked already, but let's make sure).
1397 1398
		 */
		if (parse->rowMarks)
1399 1400
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
B
Bruce Momjian 已提交
1401 1402
			/*------
			  translator: %s is a SQL row locking clause such as FOR UPDATE */
1403 1404
					 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
							LCS_asString(((RowMarkClause *)
B
Bruce Momjian 已提交
1405
									linitial(parse->rowMarks))->strength))));
1406

1407
		/*
1408
		 * Calculate pathkeys that represent result ordering requirements
1409
		 */
1410
		Assert(parse->distinctClause == NIL);
1411 1412
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
1413
															tlist);
B
Bruce Momjian 已提交
1414
	}
1415
	else
1416
	{
1417
		/* No set operations, do regular planning */
1418
		long		numGroups = 0;
1419
		AggClauseCosts agg_costs;
1420
		int			numGroupCols;
1421 1422
		double		path_rows;
		int			path_width;
1423
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1424 1425
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1426
		OnConflictExpr *onconfl;
1427 1428 1429 1430 1431 1432 1433 1434
		int			maxref = 0;
		List	   *rollup_lists = NIL;
		List	   *rollup_groupclauses = NIL;
		standard_qp_extra qp_extra;
		RelOptInfo *final_rel;
		Path	   *cheapest_path;
		Path	   *sorted_path;
		Path	   *best_path;
1435

1436
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1437

1438 1439 1440
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1441
		/* Preprocess grouping sets, if any */
1442 1443
		if (parse->groupingSets)
		{
1444 1445
			int		   *tleref_to_colnum_map;
			List	   *sets;
1446
			ListCell   *lc;
1447 1448
			ListCell   *lc2;
			ListCell   *lc_set;
1449

1450 1451 1452 1453
			parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1);

			/* Identify max SortGroupRef in groupClause, for array sizing */
			/* (note this value will be used again later) */
1454 1455 1456
			foreach(lc, parse->groupClause)
			{
				SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1457

1458 1459 1460 1461
				if (gc->tleSortGroupRef > maxref)
					maxref = gc->tleSortGroupRef;
			}

1462 1463
			/* Allocate workspace array for remapping */
			tleref_to_colnum_map = (int *) palloc((maxref + 1) * sizeof(int));
1464

1465 1466
			/* Examine the rollup sets */
			sets = extract_rollup_sets(parse->groupingSets);
1467 1468 1469

			foreach(lc_set, sets)
			{
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
				List	   *current_sets = (List *) lfirst(lc_set);
				List	   *groupclause;
				int			ref;

				/*
				 * Reorder the current list of grouping sets into correct
				 * prefix order.  If only one aggregation pass is needed, try
				 * to make the list match the ORDER BY clause; if more than
				 * one pass is needed, we don't bother with that.
				 */
				current_sets = reorder_grouping_sets(current_sets,
													 (list_length(sets) == 1
													  ? parse->sortClause
													  : NIL));

				/*
				 * Order the groupClause appropriately.  If the first grouping
				 * set is empty, this can match regular GROUP BY
				 * preprocessing, otherwise we have to force the groupClause
				 * to match that grouping set's order.
				 */
				groupclause = preprocess_groupclause(root,
													 linitial(current_sets));
1493 1494 1495 1496 1497 1498 1499 1500

				/*
				 * Now that we've pinned down an order for the groupClause for
				 * this list of grouping sets, we need to remap the entries in
				 * the grouping sets from sortgrouprefs to plain indices
				 * (0-based) into the groupClause for this collection of
				 * grouping sets.
				 */
1501
				ref = 0;
1502 1503 1504
				foreach(lc, groupclause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1505

1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
					tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
				}

				foreach(lc, current_sets)
				{
					foreach(lc2, (List *) lfirst(lc))
					{
						lfirst_int(lc2) = tleref_to_colnum_map[lfirst_int(lc2)];
					}
				}

1517
				/* Save the reordered sets and corresponding groupclauses */
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
				rollup_lists = lcons(current_sets, rollup_lists);
				rollup_groupclauses = lcons(groupclause, rollup_groupclauses);
			}
		}
		else
		{
			/* Preprocess GROUP BY clause, if any */
			if (parse->groupClause)
				parse->groupClause = preprocess_groupclause(root, NIL);
			rollup_groupclauses = list_make1(parse->groupClause);
		}

1530 1531
		numGroupCols = list_length(parse->groupClause);

1532
		/* Preprocess targetlist */
1533
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1534

1535 1536 1537 1538 1539 1540 1541
		onconfl = parse->onConflict;
		if (onconfl)
			onconfl->onConflictSet =
				preprocess_onconflict_targetlist(onconfl->onConflictSet,
												 parse->resultRelation,
												 parse->rtable);

1542 1543 1544 1545 1546
		/*
		 * Expand any rangetable entries that have security barrier quals.
		 * This may add new security barrier subquery RTEs to the rangetable.
		 */
		expand_security_quals(root, tlist);
1547 1548
		if (parse->hasRowSecurity)
			root->glob->hasRowSecurity = true;
1549

T
Tom Lane 已提交
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1577 1578
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1579
			 * somewhat-overestimated cost is okay for our present purposes.
1580
			 */
1581 1582
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1583 1584

			/*
1585 1586 1587 1588
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1589 1590 1591 1592
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1593 1594 1595
		/* Make tuple_fraction accessible to lower-level routines */
		root->tuple_fraction = tuple_fraction;

1596 1597 1598 1599 1600 1601 1602
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
1603
			parse->groupingSets ||
1604 1605 1606 1607
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
1608
			root->limit_tuples = -1.0;
1609
		else
1610
			root->limit_tuples = limit_tuples;
1611

1612 1613 1614
		/* Set up data needed by standard_qp_callback */
		qp_extra.tlist = tlist;
		qp_extra.activeWindows = activeWindows;
1615
		qp_extra.groupClause = llast(rollup_groupclauses);
1616

1617
		/*
B
Bruce Momjian 已提交
1618
		 * Generate the best unsorted and presorted paths for this Query (but
B
Bruce Momjian 已提交
1619
		 * note there may not be any presorted paths).  We also generate (in
1620
		 * standard_qp_callback) pathkey representations of the query's sort
1621
		 * clause, distinct clause, etc.
1622
		 */
1623
		final_rel = query_planner(root, tlist,
1624
								  standard_qp_callback, &qp_extra);
1625

1626
		/*
1627 1628 1629
		 * Extract rowcount and width estimates for use below.  If final_rel
		 * has been proven dummy, its rows estimate will be zero; clamp it to
		 * one to avoid zero-divide in subsequent calculations.
1630
		 */
1631
		path_rows = clamp_row_est(final_rel->rows);
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
		path_width = final_rel->width;

		/*
		 * If there's grouping going on, estimate the number of result groups.
		 * We couldn't do this any earlier because it depends on relation size
		 * estimates that are created within query_planner().
		 *
		 * Then convert tuple_fraction to fractional form if it is absolute,
		 * and if grouping or aggregation is involved, adjust tuple_fraction
		 * to describe the fraction of the underlying un-aggregated tuples
		 * that will be fetched.
		 */
		dNumGroups = 1;			/* in case not grouping */

		if (parse->groupClause)
		{
			List	   *groupExprs;

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
			if (parse->groupingSets)
			{
				ListCell   *lc,
						   *lc2;

				dNumGroups = 0;

				forboth(lc, rollup_groupclauses, lc2, rollup_lists)
				{
					ListCell   *lc3;

					groupExprs = get_sortgrouplist_exprs(lfirst(lc),
														 parse->targetList);

					foreach(lc3, lfirst(lc2))
					{
B
Bruce Momjian 已提交
1666
						List	   *gset = lfirst(lc3);
1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682

						dNumGroups += estimate_num_groups(root,
														  groupExprs,
														  path_rows,
														  &gset);
					}
				}
			}
			else
			{
				groupExprs = get_sortgrouplist_exprs(parse->groupClause,
													 parse->targetList);

				dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
												 NULL);
			}
1683 1684 1685

			/*
			 * In GROUP BY mode, an absolute LIMIT is relative to the number
B
Bruce Momjian 已提交
1686
			 * of groups not the number of tuples.  If the caller gave us a
1687 1688 1689 1690 1691 1692
			 * fraction, keep it as-is.  (In both cases, we are effectively
			 * assuming that all the groups are about the same size.)
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;

1693 1694 1695 1696 1697 1698 1699
			/*
			 * If there's more than one grouping set, we'll have to sort the
			 * entire input.
			 */
			if (list_length(rollup_lists) > 1)
				tuple_fraction = 0.0;

1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
			/*
			 * If both GROUP BY and ORDER BY are specified, we will need two
			 * levels of sort --- and, therefore, certainly need to read all
			 * the tuples --- unless ORDER BY is a subset of GROUP BY.
			 * Likewise if we have both DISTINCT and GROUP BY, or if we have a
			 * window specification not compatible with the GROUP BY.
			 */
			if (!pathkeys_contained_in(root->sort_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->distinct_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->window_pathkeys,
									   root->group_pathkeys))
				tuple_fraction = 0.0;
		}
1715
		else if (parse->hasAggs || root->hasHavingQual || parse->groupingSets)
1716
		{
1717 1718
			/*
			 * Ungrouped aggregate will certainly want to read all the tuples,
1719 1720 1721
			 * and it will deliver a single result row per grouping set (or 1
			 * if no grouping sets were explicitly given, in which case leave
			 * dNumGroups as-is)
1722 1723
			 */
			tuple_fraction = 0.0;
1724 1725
			if (parse->groupingSets)
				dNumGroups = list_length(parse->groupingSets);
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739
		}
		else if (parse->distinctClause)
		{
			/*
			 * Since there was no grouping or aggregation, it's reasonable to
			 * assume the UNIQUE filter has effects comparable to GROUP BY.
			 * (If DISTINCT is used with grouping, we ignore its effects for
			 * rowcount estimation purposes; this amounts to assuming the
			 * grouped rows are distinct already.)
			 */
			List	   *distinctExprs;

			distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
													parse->targetList);
1740
			dNumGroups = estimate_num_groups(root, distinctExprs, path_rows, NULL);
1741 1742 1743 1744 1745 1746

			/*
			 * Adjust tuple_fraction the same way as for GROUP BY, too.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;
1747 1748
		}
		else
1749
		{
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			/*
			 * Plain non-grouped, non-aggregated query: an absolute tuple
			 * fraction can be divided by the number of tuples.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= path_rows;
		}

		/*
		 * Pick out the cheapest-total path as well as the cheapest presorted
		 * path for the requested pathkeys (if there is one).  We should take
		 * the tuple fraction into account when selecting the cheapest
		 * presorted path, but not when selecting the cheapest-total path,
		 * since if we have to sort then we'll have to fetch all the tuples.
		 * (But there's a special case: if query_pathkeys is NIL, meaning
		 * order doesn't matter, then the "cheapest presorted" path will be
		 * the cheapest overall for the tuple fraction.)
		 */
		cheapest_path = final_rel->cheapest_total_path;

		sorted_path =
			get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
													  root->query_pathkeys,
													  NULL,
													  tuple_fraction);

		/* Don't consider same path in both guises; just wastes effort */
		if (sorted_path == cheapest_path)
			sorted_path = NULL;

		/*
		 * Forget about the presorted path if it would be cheaper to sort the
		 * cheapest-total path.  Here we need consider only the behavior at
		 * the tuple_fraction point.  Also, limit_tuples is only relevant if
		 * not grouping/aggregating, so use root->limit_tuples in the
		 * cost_sort call.
		 */
		if (sorted_path)
		{
			Path		sort_path;		/* dummy for result of cost_sort */

			if (root->query_pathkeys == NIL ||
				pathkeys_contained_in(root->query_pathkeys,
									  cheapest_path->pathkeys))
			{
				/* No sort needed for cheapest path */
				sort_path.startup_cost = cheapest_path->startup_cost;
				sort_path.total_cost = cheapest_path->total_cost;
			}
			else
			{
				/* Figure cost for sorting */
				cost_sort(&sort_path, root, root->query_pathkeys,
						  cheapest_path->total_cost,
						  path_rows, path_width,
						  0.0, work_mem, root->limit_tuples);
			}

			if (compare_fractional_path_costs(sorted_path, &sort_path,
											  tuple_fraction) > 0)
			{
				/* Presorted path is a loser */
				sorted_path = NULL;
			}
1814
		}
1815

1816 1817 1818
		/*
		 * Consider whether we want to use hashing instead of sorting.
		 */
1819 1820
		if (parse->groupClause)
		{
1821
			/*
1822
			 * If grouping, decide whether to use sorted or hashed grouping.
1823 1824
			 * If grouping sets are present, we can currently do only sorted
			 * grouping.
1825
			 */
1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840

			if (parse->groupingSets)
			{
				use_hashed_grouping = false;
			}
			else
			{
				use_hashed_grouping =
					choose_hashed_grouping(root,
										   tuple_fraction, limit_tuples,
										   path_rows, path_width,
										   cheapest_path, sorted_path,
										   dNumGroups, &agg_costs);
			}

1841 1842
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1843
		}
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1864

B
Bruce Momjian 已提交
1865
		/*
1866
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1867
		 * always read all the input tuples, so use the cheapest-total path.
1868
		 * Otherwise, the comparison above is correct.
1869
		 */
1870
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1871
			best_path = cheapest_path;
1872
		else
1873
			best_path = sorted_path;
1874

1875
		/*
B
Bruce Momjian 已提交
1876 1877 1878 1879
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1880
		 */
1881
		result_plan = optimize_minmax_aggregates(root,
1882
												 tlist,
1883
												 &agg_costs,
1884 1885 1886 1887
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1888 1889
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1890 1891 1892 1893
			 */
			current_pathkeys = NIL;
		}
		else
1894
		{
1895
			/*
1896 1897
			 * Normal case --- create a plan according to query_planner's
			 * results.
1898
			 */
1899 1900 1901
			List	   *sub_tlist;
			AttrNumber *groupColIdx = NULL;
			bool		need_tlist_eval = true;
1902
			bool		need_sort_for_grouping = false;
1903

1904
			result_plan = create_plan(root, best_path);
1905 1906
			current_pathkeys = best_path->pathkeys;

1907 1908
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
B
Bruce Momjian 已提交
1909
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1910
				need_sort_for_grouping = true;
1911

1912 1913 1914 1915 1916 1917 1918
			/*
			 * Generate appropriate target list for scan/join subplan; may be
			 * different from tlist if grouping or aggregation is needed.
			 */
			sub_tlist = make_subplanTargetList(root, tlist,
											   &groupColIdx,
											   &need_tlist_eval);
1919

1920
			/*
1921 1922 1923 1924
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1925 1926 1927 1928
			 *
			 * If we need_sort_for_grouping, always override create_plan's
			 * tlist, so that we don't sort useless data from a "physical"
			 * tlist.
1929
			 */
1930
			if (need_tlist_eval || need_sort_for_grouping)
1931
			{
1932 1933
				/*
				 * If the top-level plan node is one that cannot do expression
1934 1935
				 * evaluation and its existing target list isn't already what
				 * we need, we must insert a Result node to project the
1936 1937
				 * desired tlist.
				 */
1938 1939
				if (!is_projection_capable_plan(result_plan) &&
					!tlist_same_exprs(sub_tlist, result_plan->targetlist))
1940
				{
1941 1942 1943
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1957
				 * See comments for add_tlist_costs_to_plan() for more info.
1958
				 */
1959
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1960 1961 1962 1963
			}
			else
			{
				/*
1964
				 * Since we're using create_plan's tlist and not the one
1965 1966
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1967
				 */
1968
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1969
										groupColIdx);
1970
			}
B
Bruce Momjian 已提交
1971

1972 1973
			/*
			 * groupColIdx is now cast in stone, so record a mapping from
1974
			 * tleSortGroupRef to column index.  setrefs.c will need this to
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
			 * finalize GROUPING() operations.
			 */
			if (parse->groupingSets)
			{
				AttrNumber *grouping_map = palloc0(sizeof(AttrNumber) * (maxref + 1));
				ListCell   *lc;
				int			i = 0;

				foreach(lc, parse->groupClause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1986

1987 1988 1989 1990 1991 1992
					grouping_map[gc->tleSortGroupRef] = groupColIdx[i++];
				}

				root->grouping_map = grouping_map;
			}

1993
			/*
1994 1995
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1996
			 *
1997
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1998
			 */
1999 2000 2001
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
2002
				result_plan = (Plan *) make_agg(root,
2003 2004 2005
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
2006
												&agg_costs,
2007 2008
												numGroupCols,
												groupColIdx,
B
Bruce Momjian 已提交
2009
									extract_grouping_ops(parse->groupClause),
2010
												NIL,
2011 2012 2013 2014 2015
												numGroups,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
2016 2017
			else if (parse->hasAggs ||
					 (parse->groupingSets && parse->groupClause))
2018
			{
2019
				/*
2020 2021
				 * Aggregation and/or non-degenerate grouping sets.
				 *
B
Bruce Momjian 已提交
2022 2023 2024
				 * Output is in sorted order by group_pathkeys if, and only
				 * if, there is a single rollup operation on a non-empty list
				 * of grouping expressions.
2025 2026 2027 2028
				 */
				if (list_length(rollup_groupclauses) == 1
					&& list_length(linitial(rollup_groupclauses)) > 0)
					current_pathkeys = root->group_pathkeys;
2029 2030 2031
				else
					current_pathkeys = NIL;

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
				result_plan = build_grouping_chain(root,
												   parse,
												   tlist,
												   need_sort_for_grouping,
												   rollup_groupclauses,
												   rollup_lists,
												   groupColIdx,
												   &agg_costs,
												   numGroups,
												   result_plan);

				/*
B
Bruce Momjian 已提交
2044 2045
				 * these are destroyed by build_grouping_chain, so make sure
				 * we don't try and touch them again
2046 2047 2048
				 */
				rollup_groupclauses = NIL;
				rollup_lists = NIL;
2049 2050
			}
			else if (parse->groupClause)
2051
			{
2052 2053 2054 2055
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
2056 2057
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
2058
				 */
2059
				if (need_sort_for_grouping)
2060
				{
2061
					result_plan = (Plan *)
2062
						make_sort_from_groupcols(root,
2063 2064 2065
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
2066
					current_pathkeys = root->group_pathkeys;
2067
				}
B
Bruce Momjian 已提交
2068

2069
				result_plan = (Plan *) make_group(root,
2070 2071 2072 2073
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
2074
									extract_grouping_ops(parse->groupClause),
2075 2076 2077
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
2078
			}
2079
			else if (root->hasHavingQual || parse->groupingSets)
2080
			{
B
Bruce Momjian 已提交
2081
				int			nrows = list_length(parse->groupingSets);
2082

2083
				/*
B
Bruce Momjian 已提交
2084 2085
				 * No aggregates, and no GROUP BY, but we have a HAVING qual
				 * or grouping sets (which by elimination of cases above must
2086 2087 2088
				 * consist solely of empty grouping sets, since otherwise
				 * groupClause will be non-empty).
				 *
2089
				 * This is a degenerate case in which we are supposed to emit
B
Bruce Momjian 已提交
2090 2091 2092 2093
				 * either 0 or 1 row for each grouping set depending on
				 * whether HAVING succeeds.  Furthermore, there cannot be any
				 * variables in either HAVING or the targetlist, so we
				 * actually do not need the FROM table at all!	We can just
T
Tom Lane 已提交
2094 2095 2096 2097
				 * throw away the plan-so-far and generate a Result node. This
				 * is a sufficiently unusual corner case that it's not worth
				 * contorting the structure of this routine to avoid having to
				 * generate the plan in the first place.
2098
				 */
2099 2100
				result_plan = (Plan *) make_result(root,
												   tlist,
2101 2102
												   parse->havingQual,
												   NULL);
2103 2104 2105 2106 2107 2108 2109 2110

				/*
				 * Doesn't seem worthwhile writing code to cons up a
				 * generate_series or a values scan to emit multiple rows.
				 * Instead just clone the result in an Append.
				 */
				if (nrows > 1)
				{
B
Bruce Momjian 已提交
2111
					List	   *plans = list_make1(result_plan);
2112 2113 2114 2115 2116 2117

					while (--nrows > 0)
						plans = lappend(plans, copyObject(result_plan));

					result_plan = (Plan *) make_append(plans, tlist);
				}
2118
			}
2119
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
2120 2121

		/*
2122 2123 2124
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
2125 2126 2127 2128 2129 2130 2131 2132
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
2133 2134
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
2135 2136 2137
			 * it's not worth trying to avoid it.  In particular, think not to
			 * skip adding the Result if the initial window_tlist matches the
			 * top-level plan node's output, because we might change the tlist
B
Bruce Momjian 已提交
2138
			 * inside the following loop.)	Note that on second and subsequent
2139 2140 2141
			 * passes through the following loop, the top-level node will be a
			 * WindowAgg which we know can project; so we only need to check
			 * once.
T
Tom Lane 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
2152
			 * The "base" targetlist for all steps of the windowing process is
B
Bruce Momjian 已提交
2153
			 * a flat tlist of all Vars and Aggs needed in the result.  (In
2154 2155 2156
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
2157 2158 2159
			 * though.)  We also add window partitioning and sorting
			 * expressions to the base tlist, to ensure they're computed only
			 * once at the bottom of the stack (that's critical for volatile
B
Bruce Momjian 已提交
2160
			 * functions).  As we climb up the stack, we'll add outputs for
2161 2162 2163 2164 2165 2166 2167 2168
			 * the WindowFuncs computed at each level.
			 */
			window_tlist = make_windowInputTargetList(root,
													  tlist,
													  activeWindows);

			/*
			 * The copyObject steps here are needed to ensure that each plan
B
Bruce Momjian 已提交
2169
			 * node has a separately modifiable tlist.  (XXX wouldn't a
2170
			 * shallow list copy do for that?)
T
Tom Lane 已提交
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186
			 */
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
2187
														   tlist);
T
Tom Lane 已提交
2188 2189 2190 2191 2192 2193

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
2194 2195
				 * aren't plain Vars.  (In theory, make_windowInputTargetList
				 * should have provided all such columns, but let's not assume
B
Bruce Momjian 已提交
2196
				 * that here.)	Furthermore, this way we can use existing
2197 2198
				 * infrastructure to identify which input columns are the
				 * interesting ones.
T
Tom Lane 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
2241
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
2253
								   wflists->windowFuncs[wc->winref],
2254
								   wc->winref,
T
Tom Lane 已提交
2255 2256 2257 2258 2259 2260
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
2261
								   wc->frameOptions,
2262 2263
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
2264 2265 2266
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
2267
	}							/* end of if (setOperations) */
2268

2269
	/*
2270
	 * If there is a DISTINCT clause, add the necessary node(s).
2271
	 */
2272
	if (parse->distinctClause)
2273
	{
2274 2275
		double		dNumDistinctRows;
		long		numDistinctRows;
2276 2277 2278 2279 2280

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
2281
		 * distinct-groups calculated previously.
2282
		 */
2283
		if (parse->groupClause || parse->groupingSets || root->hasHavingQual || parse->hasAggs)
2284 2285 2286 2287 2288 2289 2290
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

2291 2292
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
2293
		{
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
2310 2311 2312 2313 2314 2315 2316 2317 2318
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
2319
											NULL,
2320 2321 2322 2323
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
2324
											NIL,
2325 2326 2327 2328 2329 2330 2331 2332 2333 2334
											numDistinctRows,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
2335 2336 2337 2338
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
2339 2340 2341
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
2342
			 */
2343
			List	   *needed_pathkeys;
2344 2345 2346 2347 2348 2349 2350 2351 2352

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
2367
															current_pathkeys,
2368 2369 2370 2371 2372 2373 2374
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
2375
		}
2376
	}
2377 2378

	/*
2379 2380
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
2381
	 */
2382
	if (parse->sortClause)
2383
	{
2384 2385 2386 2387
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
2388
														 root->sort_pathkeys,
2389 2390 2391
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
2392
	}
2393

2394
	/*
B
Bruce Momjian 已提交
2395 2396 2397
	 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
	 * (Note: we intentionally test parse->rowMarks not root->rowMarks here.
	 * If there are only non-locking rowmarks, they should be handled by the
B
Bruce Momjian 已提交
2398
	 * ModifyTable node instead.)
2399 2400 2401 2402
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
2403 2404
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
2405

2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
2416
	if (limit_needed(parse))
2417 2418 2419 2420 2421 2422
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
2423 2424
	}

2425
	/*
B
Bruce Momjian 已提交
2426 2427
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
2428
	 */
2429
	root->query_pathkeys = current_pathkeys;
2430

2431
	return result_plan;
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

/*
 * Given a groupclause for a collection of grouping sets, produce the
 * corresponding groupColIdx.
 *
 * root->grouping_map maps the tleSortGroupRef to the actual column position in
 * the input tuple. So we get the ref from the entries in the groupclause and
 * look them up there.
 */
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
	AttrNumber *grouping_map = root->grouping_map;
	AttrNumber *new_grpColIdx;
	ListCell   *lc;
	int			i;

	Assert(grouping_map);

	new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));

	i = 0;
	foreach(lc, groupClause)
	{
		SortGroupClause *clause = lfirst(lc);
B
Bruce Momjian 已提交
2459

2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
		new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
	}

	return new_grpColIdx;
}

/*
 * Build Agg and Sort nodes to implement sorted grouping with one or more
 * grouping sets. (A plain GROUP BY or just the presence of aggregates counts
 * for this purpose as a single grouping set; the calling code is responsible
 * for providing a non-empty rollup_groupclauses list for such cases, though
 * rollup_lists may be null.)
 *
 * The last entry in rollup_groupclauses (which is the one the input is sorted
 * on, if at all) is the one used for the returned Agg node. Any additional
 * rollups are attached, with corresponding sort info, to subsidiary Agg and
 * Sort nodes attached to the side of the real Agg node; these nodes don't
 * participate in the plan directly, but they are both a convenient way to
 * represent the required data and a convenient way to account for the costs
 * of execution.
 *
 * rollup_groupclauses and rollup_lists are destroyed by this function.
 */
static Plan *
build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
2485 2486 2487 2488 2489
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
2490 2491
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
B
Bruce Momjian 已提交
2492 2493
					 long numGroups,
					 Plan *result_plan)
2494 2495 2496 2497 2498 2499 2500 2501
{
	AttrNumber *top_grpColIdx = groupColIdx;
	List	   *chain = NIL;

	/*
	 * Prepare the grpColIdx for the real Agg node first, because we may need
	 * it for sorting
	 */
2502 2503
	if (parse->groupingSets)
		top_grpColIdx = remap_groupColIdx(root, llast(rollup_groupclauses));
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541

	/*
	 * If we need a Sort operation on the input, generate that.
	 */
	if (need_sort_for_grouping)
	{
		result_plan = (Plan *)
			make_sort_from_groupcols(root,
									 llast(rollup_groupclauses),
									 top_grpColIdx,
									 result_plan);
	}

	/*
	 * Generate the side nodes that describe the other sort and group
	 * operations besides the top one.
	 */
	while (list_length(rollup_groupclauses) > 1)
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = linitial(rollup_lists);
		AttrNumber *new_grpColIdx;
		Plan	   *sort_plan;
		Plan	   *agg_plan;

		Assert(groupClause);
		Assert(gsets);

		new_grpColIdx = remap_groupColIdx(root, groupClause);

		sort_plan = (Plan *)
			make_sort_from_groupcols(root,
									 groupClause,
									 new_grpColIdx,
									 result_plan);

		/*
		 * sort_plan includes the cost of result_plan over again, which is not
B
Bruce Momjian 已提交
2542 2543
		 * what we want (since it's not actually running that plan). So
		 * correct the cost figures.
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		 */

		sort_plan->startup_cost -= result_plan->total_cost;
		sort_plan->total_cost -= result_plan->total_cost;

		agg_plan = (Plan *) make_agg(root,
									 tlist,
									 (List *) parse->havingQual,
									 AGG_SORTED,
									 agg_costs,
									 list_length(linitial(gsets)),
									 new_grpColIdx,
									 extract_grouping_ops(groupClause),
									 gsets,
									 numGroups,
									 sort_plan);

		sort_plan->lefttree = NULL;

		chain = lappend(chain, agg_plan);

		if (rollup_lists)
			rollup_lists = list_delete_first(rollup_lists);

		rollup_groupclauses = list_delete_first(rollup_groupclauses);
	}

	/*
	 * Now make the final Agg node
	 */
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = rollup_lists ? linitial(rollup_lists) : NIL;
		int			numGroupCols;
		ListCell   *lc;

		if (gsets)
			numGroupCols = list_length(linitial(gsets));
		else
			numGroupCols = list_length(parse->groupClause);

		result_plan = (Plan *) make_agg(root,
										tlist,
										(List *) parse->havingQual,
B
Bruce Momjian 已提交
2588
								 (numGroupCols > 0) ? AGG_SORTED : AGG_PLAIN,
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
										agg_costs,
										numGroupCols,
										top_grpColIdx,
										extract_grouping_ops(groupClause),
										gsets,
										numGroups,
										result_plan);

		((Agg *) result_plan)->chain = chain;

		/*
		 * Add the additional costs. But only the total costs count, since the
		 * additional sorts aren't run on startup.
		 */
		foreach(lc, chain)
		{
B
Bruce Momjian 已提交
2605
			Plan	   *subplan = lfirst(lc);
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621

			result_plan->total_cost += subplan->total_cost;

			/*
			 * Nuke stuff we don't need to avoid bloating debug output.
			 */

			subplan->targetlist = NIL;
			subplan->qual = NIL;
			subplan->lefttree->targetlist = NIL;
		}
	}

	return result_plan;
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
B
Bruce Momjian 已提交
2643
 * accounted for as we create those nodes.  Presently, of the node types we
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

2677 2678 2679 2680 2681
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
2682 2683 2684
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
2685
 */
2686
bool
2687 2688 2689 2690
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
2691
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
2692 2693 2694

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
2695
			Const	   *constqual = (Const *) linitial(rcqual);
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
B
Bruce Momjian 已提交
2769 2770 2771
		 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
		 * grouping, since grouping renders a reference to individual tuple
		 * CTIDs invalid.  This is also checked at parse time, but that's
2772 2773
		 * insufficient because of rule substitution, query pullup, etc.
		 */
2774
		CheckSelectLocking(parse, ((RowMarkClause *)
B
Bruce Momjian 已提交
2775
								   linitial(parse->rowMarks))->strength);
2776 2777 2778 2779
	}
	else
	{
		/*
B
Bruce Momjian 已提交
2780 2781
		 * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
		 * UPDATE/SHARE.
2782 2783 2784 2785 2786 2787 2788
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
2789 2790
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
2791
	 * need or have FOR [KEY] UPDATE/SHARE marks for.
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
2804 2805
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
2806

2807
		/*
2808
		 * Currently, it is syntactically impossible to have FOR UPDATE et al
B
Bruce Momjian 已提交
2809
		 * applied to an update/delete target rel.  If that ever becomes
2810 2811
		 * possible, we should drop the target from the PlanRowMark list.
		 */
2812
		Assert(rc->rti != parse->resultRelation);
2813 2814

		/*
B
Bruce Momjian 已提交
2815 2816 2817 2818
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
2819 2820 2821 2822
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

2823 2824
		rels = bms_del_member(rels, rc->rti);

2825
		newrc = makeNode(PlanRowMark);
2826
		newrc->rti = newrc->prti = rc->rti;
2827
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2828
		newrc->markType = select_rowmark_type(rte, rc->strength);
2829 2830
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = rc->strength;
2831
		newrc->waitPolicy = rc->waitPolicy;
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2852
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2853
		newrc->markType = select_rowmark_type(rte, LCS_NONE);
2854 2855
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = LCS_NONE;
2856
		newrc->waitPolicy = LockWaitBlock;		/* doesn't matter */
2857 2858 2859 2860 2861 2862 2863 2864
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877
/*
 * Select RowMarkType to use for a given table
 */
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
	if (rte->rtekind != RTE_RELATION)
	{
		/* If it's not a table at all, use ROW_MARK_COPY */
		return ROW_MARK_COPY;
	}
	else if (rte->relkind == RELKIND_FOREIGN_TABLE)
	{
2878 2879 2880 2881 2882 2883
		/* Let the FDW select the rowmark type, if it wants to */
		FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);

		if (fdwroutine->GetForeignRowMarkType != NULL)
			return fdwroutine->GetForeignRowMarkType(rte, strength);
		/* Otherwise, use ROW_MARK_COPY by default */
2884 2885 2886 2887 2888 2889 2890 2891
		return ROW_MARK_COPY;
	}
	else
	{
		/* Regular table, apply the appropriate lock type */
		switch (strength)
		{
			case LCS_NONE:
B
Bruce Momjian 已提交
2892

2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
				/*
				 * We don't need a tuple lock, only the ability to re-fetch
				 * the row.  Regular tables support ROW_MARK_REFERENCE, but if
				 * this RTE has security barrier quals, it will be turned into
				 * a subquery during planning, so use ROW_MARK_COPY.
				 *
				 * This is only necessary for LCS_NONE, since real tuple locks
				 * on an RTE with security barrier quals are supported by
				 * pushing the lock down into the subquery --- see
				 * expand_security_qual.
				 */
				if (rte->securityQuals != NIL)
					return ROW_MARK_COPY;
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
				return ROW_MARK_REFERENCE;
				break;
			case LCS_FORKEYSHARE:
				return ROW_MARK_KEYSHARE;
				break;
			case LCS_FORSHARE:
				return ROW_MARK_SHARE;
				break;
			case LCS_FORNOKEYUPDATE:
				return ROW_MARK_NOKEYEXCLUSIVE;
				break;
			case LCS_FORUPDATE:
				return ROW_MARK_EXCLUSIVE;
				break;
		}
		elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
		return ROW_MARK_EXCLUSIVE;		/* keep compiler quiet */
	}
}

2926
/*
2927
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2928
 *
2929
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2930
 * results back in *count_est and *offset_est.  These variables are set to
2931 2932 2933 2934 2935 2936 2937 2938
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2939
 * planning the query.  This adjustment is not overridable, since it reflects
2940 2941
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2942 2943
 */
static double
2944
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2945
				 int64 *offset_est, int64 *count_est)
2946 2947
{
	Query	   *parse = root->parse;
2948 2949
	Node	   *est;
	double		limit_fraction;
2950

2951 2952
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2953 2954

	/*
2955 2956
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2957
	 */
2958
	if (parse->limitCount)
2959
	{
2960
		est = estimate_expression_value(root, parse->limitCount);
2961
		if (est && IsA(est, Const))
2962
		{
2963
			if (((Const *) est)->constisnull)
2964
			{
2965
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2966
				*count_est = 0; /* treat as not present */
2967 2968 2969
			}
			else
			{
B
Bruce Momjian 已提交
2970
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2971 2972
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2973 2974
			}
		}
2975 2976
		else
			*count_est = -1;	/* can't estimate */
2977 2978
	}
	else
2979 2980 2981
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2982
	{
2983
		est = estimate_expression_value(root, parse->limitOffset);
2984 2985 2986 2987 2988
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2989
				*offset_est = 0;	/* treat as not present */
2990 2991 2992
			}
			else
			{
B
Bruce Momjian 已提交
2993
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2994
				if (*offset_est < 0)
2995
					*offset_est = 0;	/* treat as not present */
2996 2997 2998 2999
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
3000
	}
3001 3002
	else
		*offset_est = 0;		/* not present */
3003

3004
	if (*count_est != 0)
3005
	{
3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

3022 3023
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
3024 3025 3026 3027
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
3038
				/* caller absolute, limit fractional; use caller's value */
3039 3040 3041 3042 3043 3044
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
3045 3046
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
3047 3048 3049 3050
			}
			else
			{
				/* both fractional */
3051
				tuple_fraction = Min(tuple_fraction, limit_fraction);
3052 3053 3054 3055 3056 3057 3058 3059
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
3060 3061 3062
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
3063
		 * We have an OFFSET but no LIMIT.  This acts entirely differently
B
Bruce Momjian 已提交
3064 3065 3066 3067
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
3078
		 * together; likewise if they are both fractional.  If one is
B
Bruce Momjian 已提交
3079 3080
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
3106
					tuple_fraction = 0.0;		/* assume fetch all */
3107 3108 3109
			}
		}
	}
3110 3111 3112 3113

	return tuple_fraction;
}

3114 3115 3116 3117 3118
/*
 * limit_needed - do we actually need a Limit plan node?
 *
 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
 * a Limit node.  This is worth checking for because "OFFSET 0" is a common
B
Bruce Momjian 已提交
3119
 * locution for an optimization fence.  (Because other places in the planner
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153
 * merely check whether parse->limitOffset isn't NULL, it will still work as
 * an optimization fence --- we're just suppressing unnecessary run-time
 * overhead.)
 *
 * This might look like it could be merged into preprocess_limit, but there's
 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
 * in preprocess_limit it's good enough to consider estimated values.
 */
static bool
limit_needed(Query *parse)
{
	Node	   *node;

	node = parse->limitCount;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* NULL indicates LIMIT ALL, ie, no limit */
			if (!((Const *) node)->constisnull)
				return true;	/* LIMIT with a constant value */
		}
		else
			return true;		/* non-constant LIMIT */
	}

	node = parse->limitOffset;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* Treat NULL as no offset; the executor would too */
			if (!((Const *) node)->constisnull)
			{
B
Bruce Momjian 已提交
3154
				int64		offset = DatumGetInt64(((Const *) node)->constvalue);
3155

3156 3157
				if (offset != 0)
					return true;	/* OFFSET with a nonzero value */
3158 3159 3160 3161 3162 3163 3164 3165 3166
			}
		}
		else
			return true;		/* non-constant OFFSET */
	}

	return false;				/* don't need a Limit plan node */
}

3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
3180 3181 3182
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
3183 3184 3185 3186 3187
 *
 * For grouping sets, the order of items is instead forced to agree with that
 * of the grouping set (and items not in the grouping set are skipped). The
 * work of sorting the order of grouping set elements to match the ORDER BY if
 * possible is done elsewhere.
3188
 */
3189 3190
static List *
preprocess_groupclause(PlannerInfo *root, List *force)
3191 3192
{
	Query	   *parse = root->parse;
3193
	List	   *new_groupclause = NIL;
3194 3195 3196 3197
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

3198 3199 3200 3201 3202
	/* For grouping sets, we need to force the ordering */
	if (force)
	{
		foreach(sl, force)
		{
B
Bruce Momjian 已提交
3203
			Index		ref = lfirst_int(sl);
3204 3205 3206 3207 3208 3209 3210 3211
			SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);

			new_groupclause = lappend(new_groupclause, cl);
		}

		return new_groupclause;
	}

3212
	/* If no ORDER BY, nothing useful to do here */
3213
	if (parse->sortClause == NIL)
3214
		return parse->groupClause;
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
3245
		return parse->groupClause;
3246 3247

	/*
3248 3249 3250 3251 3252 3253
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
3254 3255 3256 3257 3258 3259 3260 3261
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
3262
			return parse->groupClause;	/* give up, no common sort possible */
3263
		if (!OidIsValid(gc->sortop))
3264
			return parse->groupClause;	/* give up, GROUP BY can't be sorted */
3265 3266 3267 3268 3269
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296
	return new_groupclause;
}

/*
 * Extract lists of grouping sets that can be implemented using a single
 * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
 *
 * Input must be sorted with smallest sets first. Result has each sublist
 * sorted with smallest sets first.
 *
 * We want to produce the absolute minimum possible number of lists here to
 * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
 * of finding the minimal partition of a partially-ordered set into chains
 * (which is what we need, taking the list of grouping sets as a poset ordered
 * by set inclusion) can be mapped to the problem of finding the maximum
 * cardinality matching on a bipartite graph, which is solvable in polynomial
 * time with a worst case of no worse than O(n^2.5) and usually much
 * better. Since our N is at most 4096, we don't need to consider fallbacks to
 * heuristic or approximate methods.  (Planning time for a 12-d cube is under
 * half a second on my modest system even with optimization off and assertions
 * on.)
 */
static List *
extract_rollup_sets(List *groupingSets)
{
	int			num_sets_raw = list_length(groupingSets);
	int			num_empty = 0;
B
Bruce Momjian 已提交
3297
	int			num_sets = 0;	/* distinct sets */
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
	int			num_chains = 0;
	List	   *result = NIL;
	List	  **results;
	List	  **orig_sets;
	Bitmapset **set_masks;
	int		   *chains;
	short	  **adjacency;
	short	   *adjacency_buf;
	BipartiteMatchState *state;
	int			i;
	int			j;
	int			j_size;
	ListCell   *lc1 = list_head(groupingSets);
	ListCell   *lc;

	/*
	 * Start by stripping out empty sets.  The algorithm doesn't require this,
	 * but the planner currently needs all empty sets to be returned in the
	 * first list, so we strip them here and add them back after.
	 */
	while (lc1 && lfirst(lc1) == NIL)
	{
		++num_empty;
		lc1 = lnext(lc1);
	}

	/* bail out now if it turns out that all we had were empty sets. */
	if (!lc1)
		return list_make1(groupingSets);

T
Tom Lane 已提交
3328
	/*----------
B
Bruce Momjian 已提交
3329 3330
	 * We don't strictly need to remove duplicate sets here, but if we don't,
	 * they tend to become scattered through the result, which is a bit
T
Tom Lane 已提交
3331 3332
	 * confusing (and irritating if we ever decide to optimize them out).
	 * So we remove them here and add them back after.
3333 3334 3335
	 *
	 * For each non-duplicate set, we fill in the following:
	 *
T
Tom Lane 已提交
3336 3337 3338
	 * orig_sets[i] = list of the original set lists
	 * set_masks[i] = bitmapset for testing inclusion
	 * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3339 3340 3341
	 *
	 * chains[i] will be the result group this set is assigned to.
	 *
T
Tom Lane 已提交
3342 3343 3344
	 * We index all of these from 1 rather than 0 because it is convenient
	 * to leave 0 free for the NIL node in the graph algorithm.
	 *----------
3345
	 */
B
Bruce Momjian 已提交
3346
	orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
	adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
	adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));

	j_size = 0;
	j = 0;
	i = 1;

	for_each_cell(lc, lc1)
	{
		List	   *candidate = lfirst(lc);
		Bitmapset  *candidate_set = NULL;
		ListCell   *lc2;
		int			dup_of = 0;

		foreach(lc2, candidate)
		{
			candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
		}

		/* we can only be a dup if we're the same length as a previous set */
		if (j_size == list_length(candidate))
		{
B
Bruce Momjian 已提交
3370 3371
			int			k;

3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393
			for (k = j; k < i; ++k)
			{
				if (bms_equal(set_masks[k], candidate_set))
				{
					dup_of = k;
					break;
				}
			}
		}
		else if (j_size < list_length(candidate))
		{
			j_size = list_length(candidate);
			j = i;
		}

		if (dup_of > 0)
		{
			orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
			bms_free(candidate_set);
		}
		else
		{
B
Bruce Momjian 已提交
3394 3395
			int			k;
			int			n_adj = 0;
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437

			orig_sets[i] = list_make1(candidate);
			set_masks[i] = candidate_set;

			/* fill in adjacency list; no need to compare equal-size sets */

			for (k = j - 1; k > 0; --k)
			{
				if (bms_is_subset(set_masks[k], candidate_set))
					adjacency_buf[++n_adj] = k;
			}

			if (n_adj > 0)
			{
				adjacency_buf[0] = n_adj;
				adjacency[i] = palloc((n_adj + 1) * sizeof(short));
				memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
			}
			else
				adjacency[i] = NULL;

			++i;
		}
	}

	num_sets = i - 1;

	/*
	 * Apply the graph matching algorithm to do the work.
	 */
	state = BipartiteMatch(num_sets, num_sets, adjacency);

	/*
	 * Now, the state->pair* fields have the info we need to assign sets to
	 * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
	 * pair_vu[v] = u (both will be true, but we check both so that we can do
	 * it in one pass)
	 */
	chains = palloc0((num_sets + 1) * sizeof(int));

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3438 3439
		int			u = state->pair_vu[i];
		int			v = state->pair_uv[i];
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449

		if (u > 0 && u < i)
			chains[i] = chains[u];
		else if (v > 0 && v < i)
			chains[i] = chains[v];
		else
			chains[i] = ++num_chains;
	}

	/* build result lists. */
B
Bruce Momjian 已提交
3450
	results = palloc0((num_chains + 1) * sizeof(List *));
3451 3452 3453

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3454
		int			c = chains[i];
3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495

		Assert(c > 0);

		results[c] = list_concat(results[c], orig_sets[i]);
	}

	/* push any empty sets back on the first list. */
	while (num_empty-- > 0)
		results[1] = lcons(NIL, results[1]);

	/* make result list */
	for (i = 1; i <= num_chains; ++i)
		result = lappend(result, results[i]);

	/*
	 * Free all the things.
	 *
	 * (This is over-fussy for small sets but for large sets we could have
	 * tied up a nontrivial amount of memory.)
	 */
	BipartiteMatchFree(state);
	pfree(results);
	pfree(chains);
	for (i = 1; i <= num_sets; ++i)
		if (adjacency[i])
			pfree(adjacency[i]);
	pfree(adjacency);
	pfree(adjacency_buf);
	pfree(orig_sets);
	for (i = 1; i <= num_sets; ++i)
		bms_free(set_masks[i]);
	pfree(set_masks);

	return result;
}

/*
 * Reorder the elements of a list of grouping sets such that they have correct
 * prefix relationships.
 *
 * The input must be ordered with smallest sets first; the result is returned
3496 3497
 * with largest sets first.  Note that the result shares no list substructure
 * with the input, so it's safe for the caller to modify it later.
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
 *
 * If we're passed in a sortclause, we follow its order of columns to the
 * extent possible, to minimize the chance that we add unnecessary sorts.
 * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
 * gets implemented in one pass.)
 */
static List *
reorder_grouping_sets(List *groupingsets, List *sortclause)
{
	ListCell   *lc;
	ListCell   *lc2;
	List	   *previous = NIL;
	List	   *result = NIL;

	foreach(lc, groupingsets)
	{
B
Bruce Momjian 已提交
3514 3515
		List	   *candidate = lfirst(lc);
		List	   *new_elems = list_difference_int(candidate, previous);
3516 3517 3518 3519 3520 3521

		if (list_length(new_elems) > 0)
		{
			while (list_length(sortclause) > list_length(previous))
			{
				SortGroupClause *sc = list_nth(sortclause, list_length(previous));
B
Bruce Momjian 已提交
3522 3523
				int			ref = sc->tleSortGroupRef;

3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549
				if (list_member_int(new_elems, ref))
				{
					previous = lappend_int(previous, ref);
					new_elems = list_delete_int(new_elems, ref);
				}
				else
				{
					/* diverged from the sortclause; give up on it */
					sortclause = NIL;
					break;
				}
			}

			foreach(lc2, new_elems)
			{
				previous = lappend_int(previous, lfirst_int(lc2));
			}
		}

		result = lcons(list_copy(previous), result);
		list_free(new_elems);
	}

	list_free(previous);

	return result;
3550 3551
}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
/*
 * Compute query_pathkeys and other pathkeys during plan generation
 */
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
	Query	   *parse = root->parse;
	standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
	List	   *tlist = qp_extra->tlist;
	List	   *activeWindows = qp_extra->activeWindows;

	/*
	 * Calculate pathkeys that represent grouping/ordering requirements.  The
	 * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
	 * be, in which case we just leave their pathkeys empty.
	 */
3568 3569
	if (qp_extra->groupClause &&
		grouping_is_sortable(qp_extra->groupClause))
3570 3571
		root->group_pathkeys =
			make_pathkeys_for_sortclauses(root,
3572
										  qp_extra->groupClause,
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633
										  tlist);
	else
		root->group_pathkeys = NIL;

	/* We consider only the first (bottom) window in pathkeys logic */
	if (activeWindows != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(activeWindows);

		root->window_pathkeys = make_pathkeys_for_window(root,
														 wc,
														 tlist);
	}
	else
		root->window_pathkeys = NIL;

	if (parse->distinctClause &&
		grouping_is_sortable(parse->distinctClause))
		root->distinct_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->distinctClause,
										  tlist);
	else
		root->distinct_pathkeys = NIL;

	root->sort_pathkeys =
		make_pathkeys_for_sortclauses(root,
									  parse->sortClause,
									  tlist);

	/*
	 * Figure out whether we want a sorted result from query_planner.
	 *
	 * If we have a sortable GROUP BY clause, then we want a result sorted
	 * properly for grouping.  Otherwise, if we have window functions to
	 * evaluate, we try to sort for the first window.  Otherwise, if there's a
	 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
	 * we try to produce output that's sufficiently well sorted for the
	 * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
	 * by the ORDER BY clause.
	 *
	 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
	 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
	 * that might just leave us failing to exploit an available sort order at
	 * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
	 * much easier, since we know that the parser ensured that one is a
	 * superset of the other.
	 */
	if (root->group_pathkeys)
		root->query_pathkeys = root->group_pathkeys;
	else if (root->window_pathkeys)
		root->query_pathkeys = root->window_pathkeys;
	else if (list_length(root->distinct_pathkeys) >
			 list_length(root->sort_pathkeys))
		root->query_pathkeys = root->distinct_pathkeys;
	else if (root->sort_pathkeys)
		root->query_pathkeys = root->sort_pathkeys;
	else
		root->query_pathkeys = NIL;
}

3634 3635
/*
 * choose_hashed_grouping - should we use hashed grouping?
3636
 *
3637
 * Returns TRUE to select hashing, FALSE to select sorting.
3638 3639
 */
static bool
3640 3641
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3642
					   double path_rows, int path_width,
3643
					   Path *cheapest_path, Path *sorted_path,
3644
					   double dNumGroups, AggClauseCosts *agg_costs)
3645
{
3646 3647 3648 3649
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
3650
	Size		hashentrysize;
3651
	List	   *target_pathkeys;
3652 3653 3654 3655
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

3656 3657
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
3658
	 * aggregates.  (Doing so would imply storing *all* the input values in
3659
	 * the hash table, and/or running many sorts in parallel, either of which
3660 3661 3662
	 * seems like a certain loser.)  We similarly don't support ordered-set
	 * aggregates in hashed aggregation, but that case is included in the
	 * numOrderedAggs count.
3663
	 */
3664
	can_hash = (agg_costs->numOrderedAggs == 0 &&
3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3682
	/* Prefer sorting when enable_hashagg is off */
3683 3684 3685 3686 3687 3688 3689 3690 3691
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
3692
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3693
	/* plus space for pass-by-ref transition values... */
3694
	hashentrysize += agg_costs->transitionSpace;
3695
	/* plus the per-hash-entry overhead */
3696
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
3697 3698 3699 3700

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

3701 3702
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
3703 3704 3705 3706
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
3707 3708 3709 3710 3711 3712 3713
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

3714
	/*
B
Bruce Momjian 已提交
3715 3716 3717 3718
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
3719
	 *
3720 3721 3722
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
3723 3724
	 * step that may not be needed.  We assume grouping_planner() will have
	 * passed us a presorted path only if it's a winner compared to
3725
	 * cheapest_path for this purpose.
3726
	 *
3727 3728
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
3729
	 */
3730
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
3731 3732
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
3733
			 path_rows);
3734
	/* Result of hashed agg is always unsorted */
3735 3736
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
3737 3738
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
3752
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
3753
	{
3754
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
3755 3756
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3757
		current_pathkeys = root->group_pathkeys;
3758 3759
	}

3760
	if (parse->hasAggs)
3761
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
3762 3763
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
3764
				 path_rows);
3765
	else
3766
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
3767
				   sorted_p.startup_cost, sorted_p.total_cost,
3768
				   path_rows);
3769
	/* The Agg or Group node will preserve ordering */
3770 3771 3772
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
3773 3774
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3775 3776

	/*
3777
	 * Now make the decision using the top-level tuple fraction.
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3788 3789 3790 3791 3792
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
3793 3794 3795
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
3796 3797
 *
 * But note that making the two choices independently is a bit bogus in
B
Bruce Momjian 已提交
3798
 * itself.  If the two could be combined into a single choice operation
3799 3800 3801 3802 3803 3804
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
3805
 * Returns TRUE to select hashing, FALSE to select sorting.
3806 3807 3808 3809
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3810 3811 3812 3813
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
3814 3815
					   double dNumDistinctRows)
{
3816 3817 3818 3819
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
3820 3821
	Size		hashentrysize;
	List	   *current_pathkeys;
3822
	List	   *needed_pathkeys;
3823 3824 3825
	Path		hashed_p;
	Path		sorted_p;

3826
	/*
B
Bruce Momjian 已提交
3827 3828
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3850 3851 3852 3853 3854 3855 3856 3857
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
3858 3859

	/* Estimate per-hash-entry space at tuple width... */
3860
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3861 3862
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(0);
3863 3864 3865 3866 3867 3868 3869 3870 3871 3872

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
3873 3874
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
3875
	 * step that may not be needed.
3876 3877 3878 3879
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
3880
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
3881
			 numDistinctCols, dNumDistinctRows,
3882 3883
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
3884

3885
	/*
3886 3887
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
3888
	 */
3889
	if (parse->sortClause)
3890
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
3891 3892
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3893

3894
	/*
B
Bruce Momjian 已提交
3895
	 * Now for the GROUP case.  See comments in grouping_planner about the
3896 3897
	 * sorting choices here --- this code should match that code.
	 */
3898 3899 3900 3901
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
3902 3903 3904 3905 3906 3907
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
3908 3909 3910 3911 3912 3913 3914
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
3915 3916
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3917 3918 3919
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
3920 3921
			   path_rows);
	if (parse->sortClause &&
3922 3923
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
3924 3925
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3926 3927

	/*
3928
	 * Now make the decision using the top-level tuple fraction.
3929 3930 3931 3932 3933 3934 3935 3936 3937 3938
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3939
/*
3940
 * make_subplanTargetList
3941
 *	  Generate appropriate target list when grouping is required.
3942
 *
3943 3944 3945 3946 3947
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
3948 3949 3950 3951
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
3952 3953 3954 3955
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
3956 3957
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
3958
 *		a+b,c,d
3959
 * where the a+b target will be used by the Sort/Group steps, and the
3960
 * other targets will be used for computing the final results.
3961
 *
3962 3963 3964
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
3965 3966 3967 3968
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
3969
 *
3970
 * 'tlist' is the query's target list.
3971
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
3972
 *			expressions (if there are any) in the returned target list.
3973
 * 'need_tlist_eval' is set true if we really need to evaluate the
3974 3975
 *			returned tlist as-is.  (Note: locate_grouping_columns assumes
 *			that if this is FALSE, all grouping columns are simple Vars.)
3976
 *
3977
 * The result is the targetlist to be passed to query_planner.
3978 3979
 */
static List *
3980
make_subplanTargetList(PlannerInfo *root,
3981
					   List *tlist,
3982 3983
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
3984
{
3985
	Query	   *parse = root->parse;
3986
	List	   *sub_tlist;
3987 3988
	List	   *non_group_cols;
	List	   *non_group_vars;
3989 3990 3991 3992
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
3993
	/*
3994
	 * If we're not grouping or aggregating, there's nothing to do here;
3995 3996
	 * query_planner should receive the unmodified target list.
	 */
3997
	if (!parse->hasAggs && !parse->groupClause && !parse->groupingSets && !root->hasHavingQual &&
T
Tom Lane 已提交
3998
		!parse->hasWindowFuncs)
3999 4000
	{
		*need_tlist_eval = true;
4001
		return tlist;
4002
	}
4003

B
Bruce Momjian 已提交
4004
	/*
4005 4006
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
4007
	 */
4008 4009
	sub_tlist = NIL;
	non_group_cols = NIL;
4010
	*need_tlist_eval = false;	/* only eval if not flat tlist */
4011

4012
	numCols = list_length(parse->groupClause);
4013
	if (numCols > 0)
4014
	{
4015 4016 4017 4018 4019 4020 4021
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
4022
		AttrNumber *grpColIdx;
4023
		ListCell   *tl;
4024

4025
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
4026
		*groupColIdx = grpColIdx;
4027

4028
		foreach(tl, tlist)
4029
		{
4030 4031
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
4032

4033 4034 4035 4036 4037 4038 4039 4040
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
4041

4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
4055
			{
4056
				/*
4057 4058
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
4059 4060 4061
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
4062 4063 4064
			}
		}
	}
4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
B
Bruce Momjian 已提交
4085
	 * ORDER BY and window specifications.  Vars used within Aggrefs will be
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
4096 4097 4098 4099

	return sub_tlist;
}

4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

4131 4132
/*
 * locate_grouping_columns
4133
 *		Locate grouping columns in the tlist chosen by create_plan.
4134 4135
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
4136
 * make_subplanTargetList.  We have to forget the column indexes found
T
Tom Lane 已提交
4137
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
4138
 * We assume the grouping exprs are just Vars (see make_subplanTargetList).
4139 4140
 */
static void
4141
locate_grouping_columns(PlannerInfo *root,
4142 4143 4144 4145 4146
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
4147
	ListCell   *gl;
4148 4149 4150 4151

	/*
	 * No work unless grouping.
	 */
4152
	if (!root->parse->groupClause)
4153 4154 4155 4156 4157 4158
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

4159
	foreach(gl, root->parse->groupClause)
4160
	{
4161
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
4162 4163
		Var		   *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te;
4164

4165 4166
		/*
		 * The grouping column returned by create_plan might not have the same
B
Bruce Momjian 已提交
4167
		 * typmod as the original Var.  (This can happen in cases where a
4168 4169 4170
		 * set-returning function has been inlined, so that we now have more
		 * knowledge about what it returns than we did when the original Var
		 * was created.)  So we can't use tlist_member() to search the tlist;
B
Bruce Momjian 已提交
4171
		 * instead use tlist_member_match_var.  For safety, still check that
4172 4173 4174 4175 4176
		 * the vartype matches.
		 */
		if (!(groupexpr && IsA(groupexpr, Var)))
			elog(ERROR, "grouping column is not a Var as expected");
		te = tlist_member_match_var(groupexpr, sub_tlist);
T
Tom Lane 已提交
4177
		if (!te)
4178
			elog(ERROR, "failed to locate grouping columns");
4179
		Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
4180
		groupColIdx[keyno++] = te->resno;
4181 4182 4183
	}
}

4184 4185 4186 4187 4188 4189 4190
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
4191
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
4192 4193 4194 4195 4196
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
4197 4198
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
4199 4200 4201 4202 4203 4204 4205

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
4206
		if (new_tle->resjunk)
4207 4208
			continue;

4209 4210 4211
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
4212
		if (orig_tle->resjunk)	/* should not happen */
4213
			elog(ERROR, "resjunk output columns are not implemented");
4214 4215
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
4216
	}
4217
	if (orig_tlist_item != NULL)
4218
		elog(ERROR, "resjunk output columns are not implemented");
4219 4220
	return new_tlist;
}
T
Tom Lane 已提交
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
4253 4254 4255 4256
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
4276
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

4291
/*
4292 4293 4294 4295 4296
 * make_windowInputTargetList
 *	  Generate appropriate target list for initial input to WindowAgg nodes.
 *
 * When grouping_planner inserts one or more WindowAgg nodes into the plan,
 * this function computes the initial target list to be computed by the node
B
Bruce Momjian 已提交
4297
 * just below the first WindowAgg.  This list must contain all values needed
4298 4299 4300 4301 4302 4303 4304
 * to evaluate the window functions, compute the final target list, and
 * perform any required final sort step.  If multiple WindowAggs are needed,
 * each intermediate one adds its window function results onto this tlist;
 * only the topmost WindowAgg computes the actual desired target list.
 *
 * This function is much like make_subplanTargetList, though not quite enough
 * like it to share code.  As in that function, we flatten most expressions
B
Bruce Momjian 已提交
4305
 * into their component variables.  But we do not want to flatten window
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322
 * PARTITION BY/ORDER BY clauses, since that might result in multiple
 * evaluations of them, which would be bad (possibly even resulting in
 * inconsistent answers, if they contain volatile functions).  Also, we must
 * not flatten GROUP BY clauses that were left unflattened by
 * make_subplanTargetList, because we may no longer have access to the
 * individual Vars in them.
 *
 * Another key difference from make_subplanTargetList is that we don't flatten
 * Aggref expressions, since those are to be computed below the window
 * functions and just referenced like Vars above that.
 *
 * 'tlist' is the query's final target list.
 * 'activeWindows' is the list of active windows previously identified by
 *			select_active_windows.
 *
 * The result is the targetlist to be computed by the plan node immediately
 * below the first WindowAgg node.
4323 4324
 */
static List *
4325 4326 4327
make_windowInputTargetList(PlannerInfo *root,
						   List *tlist,
						   List *activeWindows)
4328
{
4329 4330 4331 4332 4333
	Query	   *parse = root->parse;
	Bitmapset  *sgrefs;
	List	   *new_tlist;
	List	   *flattenable_cols;
	List	   *flattenable_vars;
4334 4335
	ListCell   *lc;

4336 4337 4338 4339 4340 4341 4342
	Assert(parse->hasWindowFuncs);

	/*
	 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
	 * into a bitmapset for convenient reference below.
	 */
	sgrefs = NULL;
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

4362 4363 4364 4365 4366 4367 4368 4369
	/* Add in sortgroupref numbers of GROUP BY clauses, too */
	foreach(lc, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

		sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
	}

4370
	/*
4371 4372
	 * Construct a tlist containing all the non-flattenable tlist items, and
	 * save aside the others for a moment.
4373
	 */
4374 4375 4376
	new_tlist = NIL;
	flattenable_cols = NIL;

4377 4378 4379 4380
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

4381 4382 4383 4384 4385
		/*
		 * Don't want to deconstruct window clauses or GROUP BY items.  (Note
		 * that such items can't contain window functions, so it's okay to
		 * compute them below the WindowAgg nodes.)
		 */
4386
		if (tle->ressortgroupref != 0 &&
4387
			bms_is_member(tle->ressortgroupref, sgrefs))
4388
		{
4389
			/* Don't want to deconstruct this value, so add to new_tlist */
4390 4391 4392
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
4393
									 list_length(new_tlist) + 1,
4394 4395
									 NULL,
									 false);
4396
			/* Preserve its sortgroupref marking, in case it's volatile */
4397
			newtle->ressortgroupref = tle->ressortgroupref;
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407
			new_tlist = lappend(new_tlist, newtle);
		}
		else
		{
			/*
			 * Column is to be flattened, so just remember the expression for
			 * later call to pull_var_clause.  There's no need for
			 * pull_var_clause to examine the TargetEntry node itself.
			 */
			flattenable_cols = lappend(flattenable_cols, tle->expr);
4408 4409 4410
		}
	}

4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
	/*
	 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
	 * add them to the result tlist if not already present.  (Some might be
	 * there already because they're used directly as window/group clauses.)
	 *
	 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
	 * Aggrefs are placed in the Agg node's tlist and not left to be computed
	 * at higher levels.
	 */
	flattenable_vars = pull_var_clause((Node *) flattenable_cols,
									   PVC_INCLUDE_AGGREGATES,
									   PVC_INCLUDE_PLACEHOLDERS);
	new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

	/* clean up cruft */
	list_free(flattenable_vars);
	list_free(flattenable_cols);

	return new_tlist;
4430 4431
}

T
Tom Lane 已提交
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
4443
						 List *tlist)
T
Tom Lane 已提交
4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
4458
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
4459 4460 4461 4462 4463 4464

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
4465
													tlist);
T
Tom Lane 已提交
4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
B
Bruce Momjian 已提交
4478
 * numbers associated with the resulting pathkeys.  In the easy case, there
T
Tom Lane 已提交
4479 4480 4481 4482 4483 4484 4485
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
4486
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
4487 4488 4489
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
B
Bruce Momjian 已提交
4490
 * one at a time and note when the resulting pathkey list gets longer.  But
T
Tom Lane 已提交
4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4543
														 tlist);
T
Tom Lane 已提交
4544 4545 4546
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4547 4548
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4561
														 tlist);
T
Tom Lane 已提交
4562 4563 4564
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4565 4566
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
4567 4568 4569 4570 4571 4572 4573 4574 4575
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
4590 4591 4592 4593
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

4605 4606 4607 4608
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
4609 4610 4611 4612 4613 4614 4615
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
B
Bruce Momjian 已提交
4662
	rte->relkind = RELKIND_RELATION;	/* Don't be too picky. */
4663
	rte->lateral = false;
4664 4665 4666 4667
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

4668 4669
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
4682 4683 4684 4685 4686 4687 4688 4689

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
4690
	if (lc == NULL)				/* not in the list? */
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
4701 4702 4703

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
4704 4705 4706
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
4707 4708 4709 4710 4711
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
4712
	seqScanPath = create_seqscan_path(root, rel, NULL, 0);
4713 4714 4715 4716 4717 4718
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
4719
									  NIL, NIL, NIL, NIL, NIL,
4720 4721
									  ForwardScanDirection, false,
									  NULL, 1.0);
4722 4723 4724

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}