planner.c 144.9 KB
Newer Older
1 2
/*-------------------------------------------------------------------------
 *
3
 * planner.c
4
 *	  The query optimizer external interface.
5
 *
B
Bruce Momjian 已提交
6
 * Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
B
Add:  
Bruce Momjian 已提交
7
 * Portions Copyright (c) 1994, Regents of the University of California
8 9 10
 *
 *
 * IDENTIFICATION
11
 *	  src/backend/optimizer/plan/planner.c
12 13 14
 *
 *-------------------------------------------------------------------------
 */
M
Marc G. Fournier 已提交
15

16 17
#include "postgres.h"

18
#include <limits.h>
19
#include <math.h>
20

21
#include "access/htup_details.h"
22
#include "access/parallel.h"
23
#include "executor/executor.h"
24
#include "executor/nodeAgg.h"
25
#include "foreign/fdwapi.h"
26
#include "miscadmin.h"
27
#include "lib/bipartite_match.h"
B
Bruce Momjian 已提交
28
#include "nodes/makefuncs.h"
29
#include "nodes/nodeFuncs.h"
30 31 32
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
B
Bruce Momjian 已提交
33
#include "optimizer/clauses.h"
34 35
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
36
#include "optimizer/paths.h"
37
#include "optimizer/plancat.h"
B
Bruce Momjian 已提交
38
#include "optimizer/planmain.h"
39 40
#include "optimizer/planner.h"
#include "optimizer/prep.h"
41
#include "optimizer/subselect.h"
42
#include "optimizer/tlist.h"
43
#include "parser/analyze.h"
44
#include "parser/parsetree.h"
45
#include "parser/parse_agg.h"
46
#include "rewrite/rewriteManip.h"
47
#include "storage/dsm_impl.h"
48
#include "utils/rel.h"
49
#include "utils/selfuncs.h"
50

51

52
/* GUC parameter */
53
double		cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
54

55 56 57 58
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;


59
/* Expression kind codes for preprocess_expression */
60 61 62
#define EXPRKIND_QUAL			0
#define EXPRKIND_TARGET			1
#define EXPRKIND_RTFUNC			2
B
Bruce Momjian 已提交
63
#define EXPRKIND_RTFUNC_LATERAL 3
64
#define EXPRKIND_VALUES			4
B
Bruce Momjian 已提交
65
#define EXPRKIND_VALUES_LATERAL 5
66 67 68
#define EXPRKIND_LIMIT			6
#define EXPRKIND_APPINFO		7
#define EXPRKIND_PHV			8
B
Bruce Momjian 已提交
69
#define EXPRKIND_TABLESAMPLE	9
70

71 72 73 74 75
/* Passthrough data for standard_qp_callback */
typedef struct
{
	List	   *tlist;			/* preprocessed query targetlist */
	List	   *activeWindows;	/* active windows, if any */
76
	List	   *groupClause;	/* overrides parse->groupClause */
77
} standard_qp_extra;
78

79
/* Local functions */
80 81
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
82
static Plan *inheritance_planner(PlannerInfo *root);
83
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
84
static void preprocess_rowmarks(PlannerInfo *root);
85
static double preprocess_limit(PlannerInfo *root,
B
Bruce Momjian 已提交
86
				 double tuple_fraction,
B
Bruce Momjian 已提交
87
				 int64 *offset_est, int64 *count_est);
88
static bool limit_needed(Query *parse);
89 90 91
static List *preprocess_groupclause(PlannerInfo *root, List *force);
static List *extract_rollup_sets(List *groupingSets);
static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
92
static void standard_qp_callback(PlannerInfo *root, void *extra);
93 94
static bool choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
95
					   double path_rows, int path_width,
96
					   Path *cheapest_path, Path *sorted_path,
97
					   double dNumGroups, AggClauseCosts *agg_costs);
98 99
static bool choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
100 101 102 103
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
104
					   double dNumDistinctRows);
105
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
106
					   AttrNumber **groupColIdx, bool *need_tlist_eval);
107
static int	get_grouping_column_index(Query *parse, TargetEntry *tle);
108
static void locate_grouping_columns(PlannerInfo *root,
B
Bruce Momjian 已提交
109 110 111
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx);
112
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
T
Tom Lane 已提交
113
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
114 115
static List *make_windowInputTargetList(PlannerInfo *root,
						   List *tlist, List *activeWindows);
T
Tom Lane 已提交
116
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
117
						 List *tlist);
T
Tom Lane 已提交
118
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
119 120 121 122 123 124 125 126
						   List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators);
127
static Plan *build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
128 129 130 131 132 133 134 135 136
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
					 long numGroups,
					 Plan *result_plan);
137 138 139

/*****************************************************************************
 *
140 141
 *	   Query optimizer entry point
 *
142 143 144 145 146 147 148 149
 * To support loadable plugins that monitor or modify planner behavior,
 * we provide a hook variable that lets a plugin get control before and
 * after the standard planning process.  The plugin would normally call
 * standard_planner().
 *
 * Note to plugin authors: standard_planner() scribbles on its Query input,
 * so you'd better copy that data structure if you want to plan more than once.
 *
150
 *****************************************************************************/
151
PlannedStmt *
152
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
153 154 155 156 157 158 159 160 161 162 163 164
{
	PlannedStmt *result;

	if (planner_hook)
		result = (*planner_hook) (parse, cursorOptions, boundParams);
	else
		result = standard_planner(parse, cursorOptions, boundParams);
	return result;
}

PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
165
{
166
	PlannedStmt *result;
167
	PlannerGlobal *glob;
168
	double		tuple_fraction;
169 170
	PlannerInfo *root;
	Plan	   *top_plan;
171
	ListCell   *lp,
172
			   *lr;
173

174 175 176 177 178
	/* Cursor options may come from caller or from DECLARE CURSOR stmt */
	if (parse->utilityStmt &&
		IsA(parse->utilityStmt, DeclareCursorStmt))
		cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;

179
	/*
180 181 182 183
	 * Set up global state for this planner invocation.  This data is needed
	 * across all levels of sub-Query that might exist in the given command,
	 * so we keep it in a separate struct that's linked to by each per-Query
	 * PlannerInfo.
184
	 */
185
	glob = makeNode(PlannerGlobal);
186

187
	glob->boundParams = boundParams;
188
	glob->subplans = NIL;
189
	glob->subroots = NIL;
190
	glob->rewindPlanIDs = NULL;
191
	glob->finalrtable = NIL;
192
	glob->finalrowmarks = NIL;
193
	glob->resultRelations = NIL;
194
	glob->relationOids = NIL;
195
	glob->invalItems = NIL;
196
	glob->nParamExec = 0;
197
	glob->lastPHId = 0;
198
	glob->lastRowMarkId = 0;
199
	glob->transientPlan = false;
200
	glob->hasRowSecurity = false;
201

202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
	/*
	 * Assess whether it's feasible to use parallel mode for this query.
	 * We can't do this in a standalone backend, or if the command will
	 * try to modify any data, or if this is a cursor operation, or if any
	 * parallel-unsafe functions are present in the query tree.
	 *
	 * For now, we don't try to use parallel mode if we're running inside
	 * a parallel worker.  We might eventually be able to relax this
	 * restriction, but for now it seems best not to have parallel workers
	 * trying to create their own parallel workers.
	 */
	glob->parallelModeOK = (cursorOptions & CURSOR_OPT_PARALLEL_OK) != 0 &&
		IsUnderPostmaster && dynamic_shared_memory_type != DSM_IMPL_NONE &&
		parse->commandType == CMD_SELECT && !parse->hasModifyingCTE &&
		parse->utilityStmt == NULL && !IsParallelWorker() &&
		!contain_parallel_unsafe((Node *) parse);

	/*
	 * glob->parallelModeOK should tell us whether it's necessary to impose
	 * the parallel mode restrictions, but we don't actually want to impose
	 * them unless we choose a parallel plan, so that people who mislabel
	 * their functions but don't use parallelism anyway aren't harmed.
	 * However, it's useful for testing purposes to be able to force the
	 * restrictions to be imposed whenever a parallel plan is actually chosen
	 * or not.
	 *
	 * (It's been suggested that we should always impose these restrictions
	 * whenever glob->parallelModeOK is true, so that it's easier to notice
	 * incorrectly-labeled functions sooner.  That might be the right thing
	 * to do, but for now I've taken this approach.  We could also control
	 * this with a GUC.)
	 *
	 * FIXME: It's assumed that code further down will set parallelModeNeeded
	 * to true if a parallel path is actually chosen.  Since the core
	 * parallelism code isn't committed yet, this currently never happens.
	 */
#ifdef FORCE_PARALLEL_MODE
	glob->parallelModeNeeded = glob->parallelModeOK;
#else
	glob->parallelModeNeeded = false;
#endif

244
	/* Determine what fraction of the plan is likely to be scanned */
245
	if (cursorOptions & CURSOR_OPT_FAST_PLAN)
246 247
	{
		/*
B
Bruce Momjian 已提交
248
		 * We have no real idea how many tuples the user will ultimately FETCH
249 250 251 252 253 254 255 256
		 * from a cursor, but it is often the case that he doesn't want 'em
		 * all, or would prefer a fast-start plan anyway so that he can
		 * process some of the tuples sooner.  Use a GUC parameter to decide
		 * what fraction to optimize for.
		 */
		tuple_fraction = cursor_tuple_fraction;

		/*
257
		 * We document cursor_tuple_fraction as simply being a fraction, which
B
Bruce Momjian 已提交
258
		 * means the edge cases 0 and 1 have to be treated specially here.  We
259
		 * convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
260
		 */
261 262 263 264
		if (tuple_fraction >= 1.0)
			tuple_fraction = 0.0;
		else if (tuple_fraction <= 0.0)
			tuple_fraction = 1e-10;
265 266 267 268 269 270 271
	}
	else
	{
		/* Default assumption is we need all the tuples */
		tuple_fraction = 0.0;
	}

272
	/* primary planning entry point (may recurse for subqueries) */
273 274
	top_plan = subquery_planner(glob, parse, NULL,
								false, tuple_fraction, &root);
275

276
	/*
B
Bruce Momjian 已提交
277 278
	 * If creating a plan for a scrollable cursor, make sure it can run
	 * backwards on demand.  Add a Material node at the top at need.
279
	 */
280
	if (cursorOptions & CURSOR_OPT_SCROLL)
281
	{
282 283
		if (!ExecSupportsBackwardScan(top_plan))
			top_plan = materialize_finished_plan(top_plan);
284 285
	}

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
	/*
	 * If any Params were generated, run through the plan tree and compute
	 * each plan node's extParam/allParam sets.  Ideally we'd merge this into
	 * set_plan_references' tree traversal, but for now it has to be separate
	 * because we need to visit subplans before not after main plan.
	 */
	if (glob->nParamExec > 0)
	{
		Assert(list_length(glob->subplans) == list_length(glob->subroots));
		forboth(lp, glob->subplans, lr, glob->subroots)
		{
			Plan	   *subplan = (Plan *) lfirst(lp);
			PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);

			SS_finalize_plan(subroot, subplan);
		}
		SS_finalize_plan(root, top_plan);
	}

305
	/* final cleanup of the plan */
306
	Assert(glob->finalrtable == NIL);
307
	Assert(glob->finalrowmarks == NIL);
308
	Assert(glob->resultRelations == NIL);
309
	top_plan = set_plan_references(root, top_plan);
310
	/* ... and the subplans (both regular subplans and initplans) */
311 312
	Assert(list_length(glob->subplans) == list_length(glob->subroots));
	forboth(lp, glob->subplans, lr, glob->subroots)
313
	{
B
Bruce Momjian 已提交
314
		Plan	   *subplan = (Plan *) lfirst(lp);
315
		PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
316

317
		lfirst(lp) = set_plan_references(subroot, subplan);
318
	}
319 320 321 322 323

	/* build the PlannedStmt result */
	result = makeNode(PlannedStmt);

	result->commandType = parse->commandType;
324
	result->queryId = parse->queryId;
325
	result->hasReturning = (parse->returningList != NIL);
326
	result->hasModifyingCTE = parse->hasModifyingCTE;
327
	result->canSetTag = parse->canSetTag;
328
	result->transientPlan = glob->transientPlan;
329
	result->planTree = top_plan;
330
	result->rtable = glob->finalrtable;
331
	result->resultRelations = glob->resultRelations;
332
	result->utilityStmt = parse->utilityStmt;
333
	result->subplans = glob->subplans;
334
	result->rewindPlanIDs = glob->rewindPlanIDs;
335
	result->rowMarks = glob->finalrowmarks;
336
	result->relationOids = glob->relationOids;
337
	result->invalItems = glob->invalItems;
338
	result->nParamExec = glob->nParamExec;
339
	result->hasRowSecurity = glob->hasRowSecurity;
340
	result->parallelModeNeeded = glob->parallelModeNeeded;
341 342

	return result;
343
}
344

345

346
/*--------------------
347 348 349
 * subquery_planner
 *	  Invokes the planner on a subquery.  We recurse to here for each
 *	  sub-SELECT found in the query tree.
350
 *
351
 * glob is the global state for the current planner run.
352
 * parse is the querytree produced by the parser & rewriter.
353 354
 * parent_root is the immediate parent Query's info (NULL at the top level).
 * hasRecursion is true if this is a recursive WITH query.
355
 * tuple_fraction is the fraction of tuples we expect will be retrieved.
356
 * tuple_fraction is interpreted as explained for grouping_planner, below.
357
 *
358 359
 * If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
 * among other things this tells the output sort ordering of the plan.
360
 *
361
 * Basically, this routine does the stuff that should only be done once
362 363 364 365 366
 * per Query object.  It then calls grouping_planner.  At one time,
 * grouping_planner could be invoked recursively on the same Query object;
 * that's not currently true, but we keep the separation between the two
 * routines anyway, in case we need it again someday.
 *
367 368
 * subquery_planner will be called recursively to handle sub-Query nodes
 * found within the query's expressions and rangetable.
369
 *
370 371
 * Returns a query plan.
 *--------------------
372
 */
373
Plan *
374
subquery_planner(PlannerGlobal *glob, Query *parse,
375 376
				 PlannerInfo *parent_root,
				 bool hasRecursion, double tuple_fraction,
377
				 PlannerInfo **subroot)
378
{
379
	PlannerInfo *root;
380
	Plan	   *plan;
381
	List	   *newWithCheckOptions;
382
	List	   *newHaving;
383
	bool		hasOuterJoins;
384
	ListCell   *l;
385

386 387 388
	/* Create a PlannerInfo data structure for this subquery */
	root = makeNode(PlannerInfo);
	root->parse = parse;
389
	root->glob = glob;
390 391
	root->query_level = parent_root ? parent_root->query_level + 1 : 1;
	root->parent_root = parent_root;
392
	root->plan_params = NIL;
393
	root->outer_params = NULL;
394
	root->planner_cxt = CurrentMemoryContext;
395
	root->init_plans = NIL;
396
	root->cte_plan_ids = NIL;
397
	root->multiexpr_params = NIL;
398
	root->eq_classes = NIL;
399
	root->append_rel_list = NIL;
400
	root->rowMarks = NIL;
401
	root->hasInheritedTarget = false;
402
	root->grouping_map = NULL;
403

404 405
	root->hasRecursion = hasRecursion;
	if (hasRecursion)
406
		root->wt_param_id = SS_assign_special_param(root);
407 408 409 410 411
	else
		root->wt_param_id = -1;
	root->non_recursive_plan = NULL;

	/*
412 413
	 * If there is a WITH list, process each WITH query and build an initplan
	 * SubPlan structure for it.
414 415 416 417
	 */
	if (parse->cteList)
		SS_process_ctes(root);

418
	/*
419 420 421 422
	 * Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
	 * to transform them into joins.  Note that this step does not descend
	 * into subqueries; if we pull up any subqueries below, their SubLinks are
	 * processed just before pulling them up.
423 424
	 */
	if (parse->hasSubLinks)
425
		pull_up_sublinks(root);
426

427
	/*
428 429
	 * Scan the rangetable for set-returning functions, and inline them if
	 * possible (producing subqueries that might get pulled up next).
430
	 * Recursion issues here are handled in the same way as for SubLinks.
431 432 433
	 */
	inline_set_returning_functions(root);

434
	/*
435 436
	 * Check to see if any subqueries in the jointree can be merged into this
	 * query.
437
	 */
438
	pull_up_subqueries(root);
B
Bruce Momjian 已提交
439

440
	/*
441 442 443
	 * If this is a simple UNION ALL query, flatten it into an appendrel. We
	 * do this now because it requires applying pull_up_subqueries to the leaf
	 * queries of the UNION ALL, which weren't touched above because they
444 445 446 447 448
	 * weren't referenced by the jointree (they will be after we do this).
	 */
	if (parse->setOperations)
		flatten_simple_union_all(root);

449
	/*
B
Bruce Momjian 已提交
450 451
	 * Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
	 * avoid the expense of doing flatten_join_alias_vars().  Also check for
452 453 454
	 * outer joins --- if none, we can skip reduce_outer_joins().  And check
	 * for LATERAL RTEs, too.  This must be done after we have done
	 * pull_up_subqueries(), of course.
455
	 */
456
	root->hasJoinRTEs = false;
457
	root->hasLateralRTEs = false;
458
	hasOuterJoins = false;
459
	foreach(l, parse->rtable)
460
	{
461
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
462 463 464

		if (rte->rtekind == RTE_JOIN)
		{
465
			root->hasJoinRTEs = true;
466
			if (IS_OUTER_JOIN(rte->jointype))
467
				hasOuterJoins = true;
468
		}
469 470
		if (rte->lateral)
			root->hasLateralRTEs = true;
471 472
	}

473
	/*
B
Bruce Momjian 已提交
474
	 * Preprocess RowMark information.  We need to do this after subquery
475 476 477
	 * pullup (so that all non-inherited RTEs are present) and before
	 * inheritance expansion (so that the info is available for
	 * expand_inherited_tables to examine and modify).
478
	 */
479
	preprocess_rowmarks(root);
480

481 482 483 484 485 486 487 488 489 490
	/*
	 * Expand any rangetable entries that are inheritance sets into "append
	 * relations".  This can add entries to the rangetable, but they must be
	 * plain base relations not joins, so it's OK (and marginally more
	 * efficient) to do it after checking for join RTEs.  We must do it after
	 * pulling up subqueries, else we'd fail to handle inherited tables in
	 * subqueries.
	 */
	expand_inherited_tables(root);

491 492
	/*
	 * Set hasHavingQual to remember if HAVING clause is present.  Needed
B
Bruce Momjian 已提交
493 494
	 * because preprocess_expression will reduce a constant-true condition to
	 * an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
495
	 */
496
	root->hasHavingQual = (parse->havingQual != NULL);
497

498 499 500
	/* Clear this flag; might get set in distribute_qual_to_rels */
	root->hasPseudoConstantQuals = false;

501
	/*
502 503 504 505
	 * Do expression preprocessing on targetlist and quals, as well as other
	 * random expressions in the querytree.  Note that we do not need to
	 * handle sort/group expressions explicitly, because they are actually
	 * part of the targetlist.
506
	 */
507
	parse->targetList = (List *)
508
		preprocess_expression(root, (Node *) parse->targetList,
509 510
							  EXPRKIND_TARGET);

511 512 513 514 515 516 517 518 519 520 521 522
	newWithCheckOptions = NIL;
	foreach(l, parse->withCheckOptions)
	{
		WithCheckOption *wco = (WithCheckOption *) lfirst(l);

		wco->qual = preprocess_expression(root, wco->qual,
										  EXPRKIND_QUAL);
		if (wco->qual != NULL)
			newWithCheckOptions = lappend(newWithCheckOptions, wco);
	}
	parse->withCheckOptions = newWithCheckOptions;

523 524 525 526
	parse->returningList = (List *)
		preprocess_expression(root, (Node *) parse->returningList,
							  EXPRKIND_TARGET);

527
	preprocess_qual_conditions(root, (Node *) parse->jointree);
528

529
	parse->havingQual = preprocess_expression(root, parse->havingQual,
530 531
											  EXPRKIND_QUAL);

532 533 534 535 536 537 538 539 540 541 542
	foreach(l, parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(l);

		/* partitionClause/orderClause are sort/group expressions */
		wc->startOffset = preprocess_expression(root, wc->startOffset,
												EXPRKIND_LIMIT);
		wc->endOffset = preprocess_expression(root, wc->endOffset,
											  EXPRKIND_LIMIT);
	}

543
	parse->limitOffset = preprocess_expression(root, parse->limitOffset,
544
											   EXPRKIND_LIMIT);
545
	parse->limitCount = preprocess_expression(root, parse->limitCount,
546 547
											  EXPRKIND_LIMIT);

548 549 550 551 552 553 554 555 556 557 558
	if (parse->onConflict)
	{
		parse->onConflict->onConflictSet = (List *)
			preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
								  EXPRKIND_TARGET);

		parse->onConflict->onConflictWhere =
			preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
								  EXPRKIND_QUAL);
	}

559 560
	root->append_rel_list = (List *)
		preprocess_expression(root, (Node *) root->append_rel_list,
561
							  EXPRKIND_APPINFO);
562

563
	/* Also need to preprocess expressions within RTEs */
564
	foreach(l, parse->rtable)
565
	{
566
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
567
		int			kind;
568

569 570 571
		if (rte->rtekind == RTE_RELATION)
		{
			if (rte->tablesample)
572 573 574
				rte->tablesample = (TableSampleClause *)
					preprocess_expression(root,
										  (Node *) rte->tablesample,
575 576 577
										  EXPRKIND_TABLESAMPLE);
		}
		else if (rte->rtekind == RTE_SUBQUERY)
578 579 580 581 582 583 584 585 586 587 588 589 590 591
		{
			/*
			 * We don't want to do all preprocessing yet on the subquery's
			 * expressions, since that will happen when we plan it.  But if it
			 * contains any join aliases of our level, those have to get
			 * expanded now, because planning of the subquery won't do it.
			 * That's only possible if the subquery is LATERAL.
			 */
			if (rte->lateral && root->hasJoinRTEs)
				rte->subquery = (Query *)
					flatten_join_alias_vars(root, (Node *) rte->subquery);
		}
		else if (rte->rtekind == RTE_FUNCTION)
		{
592
			/* Preprocess the function expression(s) fully */
593
			kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
594
			rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
595
		}
596
		else if (rte->rtekind == RTE_VALUES)
597 598 599
		{
			/* Preprocess the values lists fully */
			kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
600
			rte->values_lists = (List *)
601 602
				preprocess_expression(root, (Node *) rte->values_lists, kind);
		}
603 604
	}

605
	/*
B
Bruce Momjian 已提交
606 607 608
	 * In some cases we may want to transfer a HAVING clause into WHERE. We
	 * cannot do so if the HAVING clause contains aggregates (obviously) or
	 * volatile functions (since a HAVING clause is supposed to be executed
609 610 611 612
	 * only once per group).  Also, it may be that the clause is so expensive
	 * to execute that we're better off doing it only once per group, despite
	 * the loss of selectivity.  This is hard to estimate short of doing the
	 * entire planning process twice, so we use a heuristic: clauses
B
Bruce Momjian 已提交
613
	 * containing subplans are left in HAVING.  Otherwise, we move or copy the
B
Bruce Momjian 已提交
614
	 * HAVING clause into WHERE, in hopes of eliminating tuples before
615 616
	 * aggregation instead of after.
	 *
617 618 619 620 621 622 623 624
	 * If the query has explicit grouping then we can simply move such a
	 * clause into WHERE; any group that fails the clause will not be in the
	 * output because none of its tuples will reach the grouping or
	 * aggregation stage.  Otherwise we must have a degenerate (variable-free)
	 * HAVING clause, which we put in WHERE so that query_planner() can use it
	 * in a gating Result node, but also keep in HAVING to ensure that we
	 * don't emit a bogus aggregated row. (This could be done better, but it
	 * seems not worth optimizing.)
625 626
	 *
	 * Note that both havingQual and parse->jointree->quals are in
B
Bruce Momjian 已提交
627 628
	 * implicitly-ANDed-list form at this point, even though they are declared
	 * as Node *.
629 630
	 */
	newHaving = NIL;
631
	foreach(l, (List *) parse->havingQual)
632
	{
633
		Node	   *havingclause = (Node *) lfirst(l);
634

635 636
		if (contain_agg_clause(havingclause) ||
			contain_volatile_functions(havingclause) ||
637
			contain_subplans(havingclause))
638 639
		{
			/* keep it in HAVING */
640
			newHaving = lappend(newHaving, havingclause);
641
		}
642
		else if (parse->groupClause && !parse->groupingSets)
643 644
		{
			/* move it to WHERE */
645 646
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals, havingclause);
647 648 649 650 651 652 653 654 655
		}
		else
		{
			/* put a copy in WHERE, keep it in HAVING */
			parse->jointree->quals = (Node *)
				lappend((List *) parse->jointree->quals,
						copyObject(havingclause));
			newHaving = lappend(newHaving, havingclause);
		}
656 657 658
	}
	parse->havingQual = (Node *) newHaving;

659
	/*
B
Bruce Momjian 已提交
660 661
	 * If we have any outer joins, try to reduce them to plain inner joins.
	 * This step is most easily done after we've done expression
B
Bruce Momjian 已提交
662
	 * preprocessing.
663
	 */
664
	if (hasOuterJoins)
665
		reduce_outer_joins(root);
666

667
	/*
B
Bruce Momjian 已提交
668 669
	 * Do the main planning.  If we have an inherited target relation, that
	 * needs special processing, else go straight to grouping_planner.
670
	 */
671
	if (parse->resultRelation &&
672 673
		rt_fetch(parse->resultRelation, parse->rtable)->inh)
		plan = inheritance_planner(root);
674
	else
675
	{
676
		plan = grouping_planner(root, tuple_fraction);
677 678 679
		/* If it's not SELECT, we need a ModifyTable node */
		if (parse->commandType != CMD_SELECT)
		{
680
			List	   *withCheckOptionLists;
B
Bruce Momjian 已提交
681 682
			List	   *returningLists;
			List	   *rowMarks;
683

684
			/*
685 686
			 * Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
			 * needed.
687
			 */
688 689 690 691 692
			if (parse->withCheckOptions)
				withCheckOptionLists = list_make1(parse->withCheckOptions);
			else
				withCheckOptionLists = NIL;

693
			if (parse->returningList)
694
				returningLists = list_make1(parse->returningList);
695 696 697
			else
				returningLists = NIL;

698
			/*
B
Bruce Momjian 已提交
699 700 701
			 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
			 * will have dealt with fetching non-locked marked rows, else we
			 * need to have ModifyTable do that.
702 703 704 705 706 707
			 */
			if (parse->rowMarks)
				rowMarks = NIL;
			else
				rowMarks = root->rowMarks;

T
Tom Lane 已提交
708 709
			plan = (Plan *) make_modifytable(root,
											 parse->commandType,
710
											 parse->canSetTag,
711
											 parse->resultRelation,
712
									   list_make1_int(parse->resultRelation),
713
											 list_make1(plan),
714
											 withCheckOptionLists,
715 716
											 returningLists,
											 rowMarks,
717
											 parse->onConflict,
718
											 SS_assign_special_param(root));
719 720
		}
	}
721 722

	/*
723 724 725 726 727 728 729 730 731
	 * Capture the set of outer-level param IDs we have access to, for use in
	 * extParam/allParam calculations later.
	 */
	SS_identify_outer_params(root);

	/*
	 * If any initPlans were created in this query level, attach them to the
	 * topmost plan node for the level, and increment that node's cost to
	 * account for them.
732
	 */
733
	SS_attach_initplans(root, plan);
B
Bruce Momjian 已提交
734

735 736 737
	/* Return internal info if caller wants it */
	if (subroot)
		*subroot = root;
738

739
	return plan;
740
}
741

742 743 744 745
/*
 * preprocess_expression
 *		Do subquery_planner's preprocessing work for an expression,
 *		which can be a targetlist, a WHERE clause (including JOIN/ON
746
 *		conditions), a HAVING clause, or a few other things.
747 748
 */
static Node *
749
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
750
{
751
	/*
B
Bruce Momjian 已提交
752 753 754
	 * Fall out quickly if expression is empty.  This occurs often enough to
	 * be worth checking.  Note that null->null is the correct conversion for
	 * implicit-AND result format, too.
755 756 757 758
	 */
	if (expr == NULL)
		return NULL;

759 760
	/*
	 * If the query has any join RTEs, replace join alias variables with
761 762
	 * base-relation variables.  We must do this before sublink processing,
	 * else sublinks expanded out from join aliases would not get processed.
763 764 765
	 * We can skip it in non-lateral RTE functions, VALUES lists, and
	 * TABLESAMPLE clauses, however, since they can't contain any Vars of the
	 * current query level.
766
	 */
767
	if (root->hasJoinRTEs &&
768 769 770
		!(kind == EXPRKIND_RTFUNC ||
		  kind == EXPRKIND_VALUES ||
		  kind == EXPRKIND_TABLESAMPLE))
771
		expr = flatten_join_alias_vars(root, expr);
772

773
	/*
774
	 * Simplify constant expressions.
775
	 *
776
	 * Note: an essential effect of this is to convert named-argument function
B
Bruce Momjian 已提交
777 778 779 780 781
	 * calls to positional notation and insert the current actual values of
	 * any default arguments for functions.  To ensure that happens, we *must*
	 * process all expressions here.  Previous PG versions sometimes skipped
	 * const-simplification if it didn't seem worth the trouble, but we can't
	 * do that anymore.
782
	 *
783 784 785 786 787
	 * Note: this also flattens nested AND and OR expressions into N-argument
	 * form.  All processing of a qual expression after this point must be
	 * careful to maintain AND/OR flatness --- that is, do not generate a tree
	 * with AND directly under AND, nor OR directly under OR.
	 */
788
	expr = eval_const_expressions(root, expr);
789 790 791

	/*
	 * If it's a qual or havingQual, canonicalize it.
792
	 */
793
	if (kind == EXPRKIND_QUAL)
794
	{
795
		expr = (Node *) canonicalize_qual((Expr *) expr);
796 797 798 799 800 801

#ifdef OPTIMIZER_DEBUG
		printf("After canonicalize_qual()\n");
		pprint(expr);
#endif
	}
802

803
	/* Expand SubLinks to SubPlans */
804
	if (root->parse->hasSubLinks)
805
		expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
806

807
	/*
B
Bruce Momjian 已提交
808 809
	 * XXX do not insert anything here unless you have grokked the comments in
	 * SS_replace_correlation_vars ...
810 811
	 */

812
	/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
813 814
	if (root->query_level > 1)
		expr = SS_replace_correlation_vars(root, expr);
815

816
	/*
B
Bruce Momjian 已提交
817 818 819
	 * If it's a qual or havingQual, convert it to implicit-AND format. (We
	 * don't want to do this before eval_const_expressions, since the latter
	 * would be unable to simplify a top-level AND correctly. Also,
820
	 * SS_process_sublinks expects explicit-AND format.)
821 822 823 824
	 */
	if (kind == EXPRKIND_QUAL)
		expr = (Node *) make_ands_implicit((Expr *) expr);

825 826 827 828 829 830 831 832 833
	return expr;
}

/*
 * preprocess_qual_conditions
 *		Recursively scan the query's jointree and do subquery_planner's
 *		preprocessing work on each qual condition found therein.
 */
static void
834
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
835 836 837 838 839 840 841 842 843 844
{
	if (jtnode == NULL)
		return;
	if (IsA(jtnode, RangeTblRef))
	{
		/* nothing to do here */
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
845
		ListCell   *l;
846

847
		foreach(l, f->fromlist)
848
			preprocess_qual_conditions(root, lfirst(l));
849

850
		f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
851 852 853 854 855
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

856 857
		preprocess_qual_conditions(root, j->larg);
		preprocess_qual_conditions(root, j->rarg);
858

859
		j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
860 861
	}
	else
862 863
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
864
}
865

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
/*
 * preprocess_phv_expression
 *	  Do preprocessing on a PlaceHolderVar expression that's been pulled up.
 *
 * If a LATERAL subquery references an output of another subquery, and that
 * output must be wrapped in a PlaceHolderVar because of an intermediate outer
 * join, then we'll push the PlaceHolderVar expression down into the subquery
 * and later pull it back up during find_lateral_references, which runs after
 * subquery_planner has preprocessed all the expressions that were in the
 * current query level to start with.  So we need to preprocess it then.
 */
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
	return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}

883
/*
884 885 886 887
 * inheritance_planner
 *	  Generate a plan in the case where the result relation is an
 *	  inheritance set.
 *
888 889 890 891
 * We have to handle this case differently from cases where a source relation
 * is an inheritance set. Source inheritance is expanded at the bottom of the
 * plan tree (see allpaths.c), but target inheritance has to be expanded at
 * the top.  The reason is that for UPDATE, each target relation needs a
892
 * different targetlist matching its own column set.  Fortunately,
893 894
 * the UPDATE/DELETE target can never be the nullable side of an outer join,
 * so it's OK to generate the plan this way.
895 896 897 898
 *
 * Returns a query plan.
 */
static Plan *
899
inheritance_planner(PlannerInfo *root)
900
{
901
	Query	   *parse = root->parse;
902
	int			parentRTindex = parse->resultRelation;
903 904 905
	Bitmapset  *resultRTindexes;
	Bitmapset  *subqueryRTindexes;
	Bitmapset  *modifiableARIindexes;
906
	int			nominalRelation = -1;
907 908 909
	List	   *final_rtable = NIL;
	int			save_rel_array_size = 0;
	RelOptInfo **save_rel_array = NULL;
910
	List	   *subplans = NIL;
911
	List	   *resultRelations = NIL;
912
	List	   *withCheckOptionLists = NIL;
913
	List	   *returningLists = NIL;
914
	List	   *rowMarks;
915
	ListCell   *lc;
916
	Index		rti;
917

918 919
	Assert(parse->commandType != CMD_INSERT);

920 921 922 923 924 925 926 927 928 929 930 931 932 933
	/*
	 * We generate a modified instance of the original Query for each target
	 * relation, plan that, and put all the plans into a list that will be
	 * controlled by a single ModifyTable node.  All the instances share the
	 * same rangetable, but each instance must have its own set of subquery
	 * RTEs within the finished rangetable because (1) they are likely to get
	 * scribbled on during planning, and (2) it's not inconceivable that
	 * subqueries could get planned differently in different cases.  We need
	 * not create duplicate copies of other RTE kinds, in particular not the
	 * target relations, because they don't have either of those issues.  Not
	 * having to duplicate the target relations is important because doing so
	 * (1) would result in a rangetable of length O(N^2) for N targets, with
	 * at least O(N^3) work expended here; and (2) would greatly complicate
	 * management of the rowMarks list.
934 935 936
	 *
	 * Note that any RTEs with security barrier quals will be turned into
	 * subqueries during planning, and so we must create copies of them too,
B
Bruce Momjian 已提交
937 938
	 * except where they are target relations, which will each only be used in
	 * a single plan.
939 940
	 *
	 * To begin with, we'll need a bitmapset of the target relation relids.
941
	 */
942
	resultRTindexes = bms_make_singleton(parentRTindex);
943 944 945
	foreach(lc, root->append_rel_list)
	{
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
B
Bruce Momjian 已提交
946

947 948 949 950 951
		if (appinfo->parent_relid == parentRTindex)
			resultRTindexes = bms_add_member(resultRTindexes,
											 appinfo->child_relid);
	}

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
	/*
	 * Now, generate a bitmapset of the relids of the subquery RTEs, including
	 * security-barrier RTEs that will become subqueries, as just explained.
	 */
	subqueryRTindexes = NULL;
	rti = 1;
	foreach(lc, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);

		if (rte->rtekind == RTE_SUBQUERY ||
			(rte->securityQuals != NIL &&
			 !bms_is_member(rti, resultRTindexes)))
			subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
		rti++;
	}

	/*
	 * Next, we want to identify which AppendRelInfo items contain references
	 * to any of the aforesaid subquery RTEs.  These items will need to be
	 * copied and modified to adjust their subquery references; whereas the
	 * other ones need not be touched.  It's worth being tense over this
	 * because we can usually avoid processing most of the AppendRelInfo
	 * items, thereby saving O(N^2) space and time when the target is a large
	 * inheritance tree.  We can identify AppendRelInfo items by their
	 * child_relid, since that should be unique within the list.
	 */
	modifiableARIindexes = NULL;
	if (subqueryRTindexes != NULL)
	{
		foreach(lc, root->append_rel_list)
		{
			AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);

			if (bms_is_member(appinfo->parent_relid, subqueryRTindexes) ||
				bms_is_member(appinfo->child_relid, subqueryRTindexes) ||
				bms_overlap(pull_varnos((Node *) appinfo->translated_vars),
							subqueryRTindexes))
				modifiableARIindexes = bms_add_member(modifiableARIindexes,
													  appinfo->child_relid);
		}
	}

	/*
	 * And now we can get on with generating a plan for each child table.
	 */
998
	foreach(lc, root->append_rel_list)
999
	{
1000 1001
		AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
		PlannerInfo subroot;
B
Bruce Momjian 已提交
1002
		Plan	   *subplan;
1003

1004 1005 1006 1007
		/* append_rel_list contains all append rels; ignore others */
		if (appinfo->parent_relid != parentRTindex)
			continue;

1008
		/*
1009 1010
		 * We need a working copy of the PlannerInfo so that we can control
		 * propagation of information back to the main copy.
1011 1012
		 */
		memcpy(&subroot, root, sizeof(PlannerInfo));
1013 1014 1015 1016 1017 1018 1019

		/*
		 * Generate modified query with this rel as target.  We first apply
		 * adjust_appendrel_attrs, which copies the Query and changes
		 * references to the parent RTE to refer to the current child RTE,
		 * then fool around with subquery RTEs.
		 */
1020
		subroot.parse = (Query *)
1021 1022
			adjust_appendrel_attrs(root,
								   (Node *) parse,
1023
								   appinfo);
1024 1025 1026

		/*
		 * The rowMarks list might contain references to subquery RTEs, so
1027 1028 1029
		 * make a copy that we can apply ChangeVarNodes to.  (Fortunately, the
		 * executor doesn't need to see the modified copies --- we can just
		 * pass it the original rowMarks list.)
1030 1031 1032
		 */
		subroot.rowMarks = (List *) copyObject(root->rowMarks);

1033 1034 1035
		/*
		 * The append_rel_list likewise might contain references to subquery
		 * RTEs (if any subqueries were flattenable UNION ALLs).  So prepare
1036 1037 1038 1039 1040 1041
		 * to apply ChangeVarNodes to that, too.  As explained above, we only
		 * want to copy items that actually contain such references; the rest
		 * can just get linked into the subroot's append_rel_list.
		 *
		 * If we know there are no such references, we can just use the outer
		 * append_rel_list unmodified.
1042
		 */
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
		if (modifiableARIindexes != NULL)
		{
			ListCell   *lc2;

			subroot.append_rel_list = NIL;
			foreach(lc2, root->append_rel_list)
			{
				AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

				if (bms_is_member(appinfo2->child_relid, modifiableARIindexes))
					appinfo2 = (AppendRelInfo *) copyObject(appinfo2);

				subroot.append_rel_list = lappend(subroot.append_rel_list,
												  appinfo2);
			}
		}
1059

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
		/*
		 * Add placeholders to the child Query's rangetable list to fill the
		 * RT indexes already reserved for subqueries in previous children.
		 * These won't be referenced, so there's no need to make them very
		 * valid-looking.
		 */
		while (list_length(subroot.parse->rtable) < list_length(final_rtable))
			subroot.parse->rtable = lappend(subroot.parse->rtable,
											makeNode(RangeTblEntry));

		/*
		 * If this isn't the first child Query, generate duplicates of all
1072 1073 1074 1075 1076
		 * subquery (or subquery-to-be) RTEs, and adjust Var numbering to
		 * reference the duplicates.  To simplify the loop logic, we scan the
		 * original rtable not the copy just made by adjust_appendrel_attrs;
		 * that should be OK since subquery RTEs couldn't contain any
		 * references to the target rel.
1077
		 */
1078
		if (final_rtable != NIL && subqueryRTindexes != NULL)
1079 1080 1081 1082 1083 1084 1085 1086
		{
			ListCell   *lr;

			rti = 1;
			foreach(lr, parse->rtable)
			{
				RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);

1087
				if (bms_is_member(rti, subqueryRTindexes))
1088
				{
1089
					Index		newrti;
1090 1091 1092

					/*
					 * The RTE can't contain any references to its own RT
1093 1094 1095
					 * index, except in the security barrier quals, so we can
					 * save a few cycles by applying ChangeVarNodes before we
					 * append the RTE to the rangetable.
1096 1097 1098 1099
					 */
					newrti = list_length(subroot.parse->rtable) + 1;
					ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
					ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
					/* Skip processing unchanging parts of append_rel_list */
					if (modifiableARIindexes != NULL)
					{
						ListCell   *lc2;

						foreach(lc2, subroot.append_rel_list)
						{
							AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);

							if (bms_is_member(appinfo2->child_relid,
											  modifiableARIindexes))
								ChangeVarNodes((Node *) appinfo2, rti, newrti, 0);
						}
					}
1114
					rte = copyObject(rte);
1115
					ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
1116 1117 1118 1119 1120 1121 1122
					subroot.parse->rtable = lappend(subroot.parse->rtable,
													rte);
				}
				rti++;
			}
		}

1123
		/* There shouldn't be any OJ or LATERAL info to translate, as yet */
1124
		Assert(subroot.join_info_list == NIL);
1125
		Assert(subroot.lateral_info_list == NIL);
1126 1127
		/* and we haven't created PlaceHolderInfos, either */
		Assert(subroot.placeholder_list == NIL);
1128 1129
		/* hack to mark target relation as an inheritance partition */
		subroot.hasInheritedTarget = true;
1130

1131
		/* Generate plan */
1132 1133
		subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );

1134
		/*
B
Bruce Momjian 已提交
1135 1136
		 * Planning may have modified the query result relation (if there were
		 * security barrier quals on the result RTE).
1137 1138 1139
		 */
		appinfo->child_relid = subroot.parse->resultRelation;

1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
		/*
		 * We'll use the first child relation (even if it's excluded) as the
		 * nominal target relation of the ModifyTable node.  Because of the
		 * way expand_inherited_rtentry works, this should always be the RTE
		 * representing the parent table in its role as a simple member of the
		 * inheritance set.  (It would be logically cleaner to use the
		 * inheritance parent RTE as the nominal target; but since that RTE
		 * will not be otherwise referenced in the plan, doing so would give
		 * rise to confusing use of multiple aliases in EXPLAIN output for
		 * what the user will think is the "same" table.)
		 */
		if (nominalRelation < 0)
			nominalRelation = appinfo->child_relid;

1154
		/*
B
Bruce Momjian 已提交
1155
		 * If this child rel was excluded by constraint exclusion, exclude it
1156
		 * from the result plan.
1157 1158 1159
		 */
		if (is_dummy_plan(subplan))
			continue;
B
Bruce Momjian 已提交
1160

1161 1162
		subplans = lappend(subplans, subplan);

1163 1164 1165 1166 1167 1168 1169 1170
		/*
		 * If this is the first non-excluded child, its post-planning rtable
		 * becomes the initial contents of final_rtable; otherwise, append
		 * just its modified subquery RTEs to final_rtable.
		 */
		if (final_rtable == NIL)
			final_rtable = subroot.parse->rtable;
		else
1171 1172
		{
			List	   *tmp_rtable = NIL;
B
Bruce Momjian 已提交
1173 1174
			ListCell   *cell1,
					   *cell2;
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

			/*
			 * Check to see if any of the original RTEs were turned into
			 * subqueries during planning.  Currently, this should only ever
			 * happen due to securityQuals being involved which push a
			 * relation down under a subquery, to ensure that the security
			 * barrier quals are evaluated first.
			 *
			 * When this happens, we want to use the new subqueries in the
			 * final rtable.
			 */
			forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
			{
				RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
				RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);

				if (rte1->rtekind == RTE_RELATION &&
					rte2->rtekind == RTE_SUBQUERY)
				{
					/* Should only be when there are securityQuals today */
					Assert(rte1->securityQuals != NIL);
					tmp_rtable = lappend(tmp_rtable, rte2);
				}
				else
					tmp_rtable = lappend(tmp_rtable, rte1);
			}

			final_rtable = list_concat(tmp_rtable,
1203
									   list_copy_tail(subroot.parse->rtable,
1204
												 list_length(final_rtable)));
1205
		}
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224

		/*
		 * We need to collect all the RelOptInfos from all child plans into
		 * the main PlannerInfo, since setrefs.c will need them.  We use the
		 * last child's simple_rel_array (previous ones are too short), so we
		 * have to propagate forward the RelOptInfos that were already built
		 * in previous children.
		 */
		Assert(subroot.simple_rel_array_size >= save_rel_array_size);
		for (rti = 1; rti < save_rel_array_size; rti++)
		{
			RelOptInfo *brel = save_rel_array[rti];

			if (brel)
				subroot.simple_rel_array[rti] = brel;
		}
		save_rel_array_size = subroot.simple_rel_array_size;
		save_rel_array = subroot.simple_rel_array;

1225
		/* Make sure any initplans from this rel get into the outer list */
1226
		root->init_plans = subroot.init_plans;
1227

1228
		/* Build list of target-relation RT indexes */
1229 1230
		resultRelations = lappend_int(resultRelations, appinfo->child_relid);

1231 1232 1233 1234
		/* Build lists of per-relation WCO and RETURNING targetlists */
		if (parse->withCheckOptions)
			withCheckOptionLists = lappend(withCheckOptionLists,
										   subroot.parse->withCheckOptions);
1235
		if (parse->returningList)
1236 1237
			returningLists = lappend(returningLists,
									 subroot.parse->returningList);
1238 1239

		Assert(!parse->onConflict);
1240 1241
	}

1242 1243 1244 1245
	/* Mark result as unordered (probably unnecessary) */
	root->query_pathkeys = NIL;

	/*
B
Bruce Momjian 已提交
1246 1247
	 * If we managed to exclude every child rel, return a dummy plan; it
	 * doesn't even need a ModifyTable node.
1248 1249
	 */
	if (subplans == NIL)
1250 1251
	{
		/* although dummy, it must have a valid tlist for executor */
1252 1253
		List	   *tlist;

1254
		tlist = preprocess_targetlist(root, parse->targetList);
1255 1256
		return (Plan *) make_result(root,
									tlist,
1257 1258 1259
									(Node *) list_make1(makeBoolConst(false,
																	  false)),
									NULL);
1260
	}
1261

1262
	/*
1263
	 * Put back the final adjusted rtable into the master copy of the Query.
1264
	 */
1265 1266 1267
	parse->rtable = final_rtable;
	root->simple_rel_array_size = save_rel_array_size;
	root->simple_rel_array = save_rel_array;
1268

1269
	/*
B
Bruce Momjian 已提交
1270 1271
	 * If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
	 * have dealt with fetching non-locked marked rows, else we need to have
B
Bruce Momjian 已提交
1272
	 * ModifyTable do that.
1273 1274 1275 1276 1277 1278
	 */
	if (parse->rowMarks)
		rowMarks = NIL;
	else
		rowMarks = root->rowMarks;

1279
	/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
T
Tom Lane 已提交
1280 1281
	return (Plan *) make_modifytable(root,
									 parse->commandType,
1282
									 parse->canSetTag,
1283
									 nominalRelation,
1284
									 resultRelations,
B
Bruce Momjian 已提交
1285
									 subplans,
1286
									 withCheckOptionLists,
1287 1288
									 returningLists,
									 rowMarks,
1289
									 NULL,
1290
									 SS_assign_special_param(root));
1291 1292 1293 1294 1295 1296 1297
}

/*--------------------
 * grouping_planner
 *	  Perform planning steps related to grouping, aggregation, etc.
 *	  This primarily means adding top-level processing to the basic
 *	  query plan produced by query_planner.
1298 1299 1300 1301
 *
 * tuple_fraction is the fraction of tuples we expect will be retrieved
 *
 * tuple_fraction is interpreted as follows:
1302
 *	  0: expect all tuples to be retrieved (normal case)
1303 1304 1305 1306 1307
 *	  0 < tuple_fraction < 1: expect the given fraction of tuples available
 *		from the plan to be retrieved
 *	  tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
 *		expected to be retrieved (ie, a LIMIT specification)
 *
1308
 * Returns a query plan.  Also, root->query_pathkeys is returned as the
1309
 * actual output ordering of the plan (in pathkey format).
1310 1311
 *--------------------
 */
1312
static Plan *
1313
grouping_planner(PlannerInfo *root, double tuple_fraction)
1314
{
1315
	Query	   *parse = root->parse;
1316
	List	   *tlist = parse->targetList;
B
Bruce Momjian 已提交
1317 1318
	int64		offset_est = 0;
	int64		count_est = 0;
1319
	double		limit_tuples = -1.0;
1320 1321
	Plan	   *result_plan;
	List	   *current_pathkeys;
1322
	double		dNumGroups = 0;
1323 1324
	bool		use_hashed_distinct = false;
	bool		tested_hashed_distinct = false;
1325

1326 1327
	/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
	if (parse->limitCount || parse->limitOffset)
1328
	{
1329 1330
		tuple_fraction = preprocess_limit(root, tuple_fraction,
										  &offset_est, &count_est);
B
Bruce Momjian 已提交
1331

1332
		/*
B
Bruce Momjian 已提交
1333 1334
		 * If we have a known LIMIT, and don't have an unknown OFFSET, we can
		 * estimate the effects of using a bounded sort.
1335 1336 1337 1338
		 */
		if (count_est > 0 && offset_est >= 0)
			limit_tuples = (double) count_est + (double) offset_est;
	}
1339

1340
	if (parse->setOperations)
B
Bruce Momjian 已提交
1341
	{
B
Bruce Momjian 已提交
1342
		List	   *set_sortclauses;
1343

1344
		/*
B
Bruce Momjian 已提交
1345
		 * If there's a top-level ORDER BY, assume we have to fetch all the
B
Bruce Momjian 已提交
1346
		 * tuples.  This might be too simplistic given all the hackery below
1347 1348
		 * to possibly avoid the sort; but the odds of accurate estimates here
		 * are pretty low anyway.
1349 1350 1351 1352
		 */
		if (parse->sortClause)
			tuple_fraction = 0.0;

1353
		/*
B
Bruce Momjian 已提交
1354
		 * Construct the plan for set operations.  The result will not need
1355 1356 1357
		 * any work except perhaps a top-level sort and/or LIMIT.  Note that
		 * any special work for recursive unions is the responsibility of
		 * plan_set_operations.
1358
		 */
1359
		result_plan = plan_set_operations(root, tuple_fraction,
1360 1361 1362
										  &set_sortclauses);

		/*
B
Bruce Momjian 已提交
1363 1364 1365
		 * Calculate pathkeys representing the sort order (if any) of the set
		 * operation's result.  We have to do this before overwriting the sort
		 * key information...
1366
		 */
1367 1368
		current_pathkeys = make_pathkeys_for_sortclauses(root,
														 set_sortclauses,
B
Bruce Momjian 已提交
1369
													result_plan->targetlist);
1370 1371

		/*
B
Bruce Momjian 已提交
1372
		 * We should not need to call preprocess_targetlist, since we must be
B
Bruce Momjian 已提交
1373
		 * in a SELECT query node.  Instead, use the targetlist returned by
B
Bruce Momjian 已提交
1374 1375 1376
		 * plan_set_operations (since this tells whether it returned any
		 * resjunk columns!), and transfer any sort key information from the
		 * original tlist.
1377 1378
		 */
		Assert(parse->commandType == CMD_SELECT);
1379

1380 1381
		tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
										tlist);
1382

1383
		/*
B
Bruce Momjian 已提交
1384 1385
		 * Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
		 * checked already, but let's make sure).
1386 1387
		 */
		if (parse->rowMarks)
1388 1389
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
B
Bruce Momjian 已提交
1390 1391
			/*------
			  translator: %s is a SQL row locking clause such as FOR UPDATE */
1392 1393
					 errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
							LCS_asString(((RowMarkClause *)
B
Bruce Momjian 已提交
1394
									linitial(parse->rowMarks))->strength))));
1395

1396
		/*
1397
		 * Calculate pathkeys that represent result ordering requirements
1398
		 */
1399
		Assert(parse->distinctClause == NIL);
1400 1401
		root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
															parse->sortClause,
1402
															tlist);
B
Bruce Momjian 已提交
1403
	}
1404
	else
1405
	{
1406
		/* No set operations, do regular planning */
B
Bruce Momjian 已提交
1407
		List	   *sub_tlist;
1408
		AttrNumber *groupColIdx = NULL;
1409
		bool		need_tlist_eval = true;
1410
		long		numGroups = 0;
1411
		AggClauseCosts agg_costs;
1412
		int			numGroupCols;
1413 1414
		double		path_rows;
		int			path_width;
1415
		bool		use_hashed_grouping = false;
T
Tom Lane 已提交
1416 1417
		WindowFuncLists *wflists = NULL;
		List	   *activeWindows = NIL;
1418
		OnConflictExpr *onconfl;
1419 1420 1421 1422 1423 1424 1425 1426 1427
		int			maxref = 0;
		int		   *tleref_to_colnum_map;
		List	   *rollup_lists = NIL;
		List	   *rollup_groupclauses = NIL;
		standard_qp_extra qp_extra;
		RelOptInfo *final_rel;
		Path	   *cheapest_path;
		Path	   *sorted_path;
		Path	   *best_path;
1428

1429
		MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
1430

1431 1432 1433
		/* A recursive query should always have setOperations */
		Assert(!root->hasRecursion);

1434 1435 1436 1437
		/* Preprocess Grouping set, if any */
		if (parse->groupingSets)
			parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1);

1438
		if (parse->groupClause)
1439 1440 1441 1442 1443 1444
		{
			ListCell   *lc;

			foreach(lc, parse->groupClause)
			{
				SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
				if (gc->tleSortGroupRef > maxref)
					maxref = gc->tleSortGroupRef;
			}
		}

		tleref_to_colnum_map = palloc((maxref + 1) * sizeof(int));

		if (parse->groupingSets)
		{
			ListCell   *lc;
			ListCell   *lc2;
			ListCell   *lc_set;
			List	   *sets = extract_rollup_sets(parse->groupingSets);

			foreach(lc_set, sets)
			{
B
Bruce Momjian 已提交
1462 1463 1464 1465 1466 1467
				List	   *current_sets = reorder_grouping_sets(lfirst(lc_set),
													  (list_length(sets) == 1
													   ? parse->sortClause
													   : NIL));
				List	   *groupclause = preprocess_groupclause(root, linitial(current_sets));
				int			ref = 0;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

				/*
				 * Now that we've pinned down an order for the groupClause for
				 * this list of grouping sets, we need to remap the entries in
				 * the grouping sets from sortgrouprefs to plain indices
				 * (0-based) into the groupClause for this collection of
				 * grouping sets.
				 */

				foreach(lc, groupclause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1480

1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
					tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
				}

				foreach(lc, current_sets)
				{
					foreach(lc2, (List *) lfirst(lc))
					{
						lfirst_int(lc2) = tleref_to_colnum_map[lfirst_int(lc2)];
					}
				}

				rollup_lists = lcons(current_sets, rollup_lists);
				rollup_groupclauses = lcons(groupclause, rollup_groupclauses);
			}
		}
		else
		{
			/* Preprocess GROUP BY clause, if any */
			if (parse->groupClause)
				parse->groupClause = preprocess_groupclause(root, NIL);
			rollup_groupclauses = list_make1(parse->groupClause);
		}

1504 1505
		numGroupCols = list_length(parse->groupClause);

1506
		/* Preprocess targetlist */
1507
		tlist = preprocess_targetlist(root, tlist);
B
Bruce Momjian 已提交
1508

1509 1510 1511 1512 1513 1514 1515
		onconfl = parse->onConflict;
		if (onconfl)
			onconfl->onConflictSet =
				preprocess_onconflict_targetlist(onconfl->onConflictSet,
												 parse->resultRelation,
												 parse->rtable);

1516 1517 1518 1519 1520
		/*
		 * Expand any rangetable entries that have security barrier quals.
		 * This may add new security barrier subquery RTEs to the rangetable.
		 */
		expand_security_quals(root, tlist);
1521
		root->glob->hasRowSecurity = parse->hasRowSecurity;
1522

T
Tom Lane 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
		/*
		 * Locate any window functions in the tlist.  (We don't need to look
		 * anywhere else, since expressions used in ORDER BY will be in there
		 * too.)  Note that they could all have been eliminated by constant
		 * folding, in which case we don't need to do any more work.
		 */
		if (parse->hasWindowFuncs)
		{
			wflists = find_window_functions((Node *) tlist,
											list_length(parse->windowClause));
			if (wflists->numWindowFuncs > 0)
				activeWindows = select_active_windows(root, wflists);
			else
				parse->hasWindowFuncs = false;
		}

1539
		/*
B
Bruce Momjian 已提交
1540 1541
		 * Generate appropriate target list for subplan; may be different from
		 * tlist if grouping or aggregation is needed.
1542
		 */
1543
		sub_tlist = make_subplanTargetList(root, tlist,
B
Bruce Momjian 已提交
1544
										   &groupColIdx, &need_tlist_eval);
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		/*
		 * Do aggregate preprocessing, if the query has any aggs.
		 *
		 * Note: think not that we can turn off hasAggs if we find no aggs. It
		 * is possible for constant-expression simplification to remove all
		 * explicit references to aggs, but we still have to follow the
		 * aggregate semantics (eg, producing only one output row).
		 */
		if (parse->hasAggs)
		{
			/*
B
Bruce Momjian 已提交
1557 1558
			 * Collect statistics about aggregates for estimating costs. Note:
			 * we do not attempt to detect duplicate aggregates here; a
1559
			 * somewhat-overestimated cost is okay for our present purposes.
1560
			 */
1561 1562
			count_agg_clauses(root, (Node *) tlist, &agg_costs);
			count_agg_clauses(root, parse->havingQual, &agg_costs);
1563 1564

			/*
1565 1566 1567 1568
			 * Preprocess MIN/MAX aggregates, if any.  Note: be careful about
			 * adding logic between here and the optimize_minmax_aggregates
			 * call.  Anything that is needed in MIN/MAX-optimizable cases
			 * will have to be duplicated in planagg.c.
1569 1570 1571 1572
			 */
			preprocess_minmax_aggregates(root, tlist);
		}

1573 1574 1575
		/* Make tuple_fraction accessible to lower-level routines */
		root->tuple_fraction = tuple_fraction;

1576 1577 1578 1579 1580 1581 1582
		/*
		 * Figure out whether there's a hard limit on the number of rows that
		 * query_planner's result subplan needs to return.  Even if we know a
		 * hard limit overall, it doesn't apply if the query has any
		 * grouping/aggregation operations.
		 */
		if (parse->groupClause ||
1583
			parse->groupingSets ||
1584 1585 1586 1587
			parse->distinctClause ||
			parse->hasAggs ||
			parse->hasWindowFuncs ||
			root->hasHavingQual)
1588
			root->limit_tuples = -1.0;
1589
		else
1590
			root->limit_tuples = limit_tuples;
1591

1592 1593 1594
		/* Set up data needed by standard_qp_callback */
		qp_extra.tlist = tlist;
		qp_extra.activeWindows = activeWindows;
1595
		qp_extra.groupClause = llast(rollup_groupclauses);
1596

1597
		/*
B
Bruce Momjian 已提交
1598
		 * Generate the best unsorted and presorted paths for this Query (but
B
Bruce Momjian 已提交
1599
		 * note there may not be any presorted paths).  We also generate (in
1600
		 * standard_qp_callback) pathkey representations of the query's sort
1601
		 * clause, distinct clause, etc.
1602
		 */
1603 1604
		final_rel = query_planner(root, sub_tlist,
								  standard_qp_callback, &qp_extra);
1605

1606
		/*
1607 1608 1609
		 * Extract rowcount and width estimates for use below.  If final_rel
		 * has been proven dummy, its rows estimate will be zero; clamp it to
		 * one to avoid zero-divide in subsequent calculations.
1610
		 */
1611
		path_rows = clamp_row_est(final_rel->rows);
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
		path_width = final_rel->width;

		/*
		 * If there's grouping going on, estimate the number of result groups.
		 * We couldn't do this any earlier because it depends on relation size
		 * estimates that are created within query_planner().
		 *
		 * Then convert tuple_fraction to fractional form if it is absolute,
		 * and if grouping or aggregation is involved, adjust tuple_fraction
		 * to describe the fraction of the underlying un-aggregated tuples
		 * that will be fetched.
		 */
		dNumGroups = 1;			/* in case not grouping */

		if (parse->groupClause)
		{
			List	   *groupExprs;

1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
			if (parse->groupingSets)
			{
				ListCell   *lc,
						   *lc2;

				dNumGroups = 0;

				forboth(lc, rollup_groupclauses, lc2, rollup_lists)
				{
					ListCell   *lc3;

					groupExprs = get_sortgrouplist_exprs(lfirst(lc),
														 parse->targetList);

					foreach(lc3, lfirst(lc2))
					{
B
Bruce Momjian 已提交
1646
						List	   *gset = lfirst(lc3);
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

						dNumGroups += estimate_num_groups(root,
														  groupExprs,
														  path_rows,
														  &gset);
					}
				}
			}
			else
			{
				groupExprs = get_sortgrouplist_exprs(parse->groupClause,
													 parse->targetList);

				dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
												 NULL);
			}
1663 1664 1665

			/*
			 * In GROUP BY mode, an absolute LIMIT is relative to the number
B
Bruce Momjian 已提交
1666
			 * of groups not the number of tuples.  If the caller gave us a
1667 1668 1669 1670 1671 1672
			 * fraction, keep it as-is.  (In both cases, we are effectively
			 * assuming that all the groups are about the same size.)
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;

1673 1674 1675 1676 1677 1678 1679
			/*
			 * If there's more than one grouping set, we'll have to sort the
			 * entire input.
			 */
			if (list_length(rollup_lists) > 1)
				tuple_fraction = 0.0;

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
			/*
			 * If both GROUP BY and ORDER BY are specified, we will need two
			 * levels of sort --- and, therefore, certainly need to read all
			 * the tuples --- unless ORDER BY is a subset of GROUP BY.
			 * Likewise if we have both DISTINCT and GROUP BY, or if we have a
			 * window specification not compatible with the GROUP BY.
			 */
			if (!pathkeys_contained_in(root->sort_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->distinct_pathkeys,
									   root->group_pathkeys) ||
				!pathkeys_contained_in(root->window_pathkeys,
									   root->group_pathkeys))
				tuple_fraction = 0.0;
		}
1695
		else if (parse->hasAggs || root->hasHavingQual || parse->groupingSets)
1696
		{
1697 1698
			/*
			 * Ungrouped aggregate will certainly want to read all the tuples,
1699 1700 1701
			 * and it will deliver a single result row per grouping set (or 1
			 * if no grouping sets were explicitly given, in which case leave
			 * dNumGroups as-is)
1702 1703
			 */
			tuple_fraction = 0.0;
1704 1705
			if (parse->groupingSets)
				dNumGroups = list_length(parse->groupingSets);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
		}
		else if (parse->distinctClause)
		{
			/*
			 * Since there was no grouping or aggregation, it's reasonable to
			 * assume the UNIQUE filter has effects comparable to GROUP BY.
			 * (If DISTINCT is used with grouping, we ignore its effects for
			 * rowcount estimation purposes; this amounts to assuming the
			 * grouped rows are distinct already.)
			 */
			List	   *distinctExprs;

			distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
													parse->targetList);
1720
			dNumGroups = estimate_num_groups(root, distinctExprs, path_rows, NULL);
1721 1722 1723 1724 1725 1726

			/*
			 * Adjust tuple_fraction the same way as for GROUP BY, too.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= dNumGroups;
1727 1728
		}
		else
1729
		{
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
			/*
			 * Plain non-grouped, non-aggregated query: an absolute tuple
			 * fraction can be divided by the number of tuples.
			 */
			if (tuple_fraction >= 1.0)
				tuple_fraction /= path_rows;
		}

		/*
		 * Pick out the cheapest-total path as well as the cheapest presorted
		 * path for the requested pathkeys (if there is one).  We should take
		 * the tuple fraction into account when selecting the cheapest
		 * presorted path, but not when selecting the cheapest-total path,
		 * since if we have to sort then we'll have to fetch all the tuples.
		 * (But there's a special case: if query_pathkeys is NIL, meaning
		 * order doesn't matter, then the "cheapest presorted" path will be
		 * the cheapest overall for the tuple fraction.)
		 */
		cheapest_path = final_rel->cheapest_total_path;

		sorted_path =
			get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
													  root->query_pathkeys,
													  NULL,
													  tuple_fraction);

		/* Don't consider same path in both guises; just wastes effort */
		if (sorted_path == cheapest_path)
			sorted_path = NULL;

		/*
		 * Forget about the presorted path if it would be cheaper to sort the
		 * cheapest-total path.  Here we need consider only the behavior at
		 * the tuple_fraction point.  Also, limit_tuples is only relevant if
		 * not grouping/aggregating, so use root->limit_tuples in the
		 * cost_sort call.
		 */
		if (sorted_path)
		{
			Path		sort_path;		/* dummy for result of cost_sort */

			if (root->query_pathkeys == NIL ||
				pathkeys_contained_in(root->query_pathkeys,
									  cheapest_path->pathkeys))
			{
				/* No sort needed for cheapest path */
				sort_path.startup_cost = cheapest_path->startup_cost;
				sort_path.total_cost = cheapest_path->total_cost;
			}
			else
			{
				/* Figure cost for sorting */
				cost_sort(&sort_path, root, root->query_pathkeys,
						  cheapest_path->total_cost,
						  path_rows, path_width,
						  0.0, work_mem, root->limit_tuples);
			}

			if (compare_fractional_path_costs(sorted_path, &sort_path,
											  tuple_fraction) > 0)
			{
				/* Presorted path is a loser */
				sorted_path = NULL;
			}
1794
		}
1795

1796 1797 1798
		/*
		 * Consider whether we want to use hashing instead of sorting.
		 */
1799 1800
		if (parse->groupClause)
		{
1801
			/*
1802
			 * If grouping, decide whether to use sorted or hashed grouping.
1803 1804
			 * If grouping sets are present, we can currently do only sorted
			 * grouping.
1805
			 */
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820

			if (parse->groupingSets)
			{
				use_hashed_grouping = false;
			}
			else
			{
				use_hashed_grouping =
					choose_hashed_grouping(root,
										   tuple_fraction, limit_tuples,
										   path_rows, path_width,
										   cheapest_path, sorted_path,
										   dNumGroups, &agg_costs);
			}

1821 1822
			/* Also convert # groups to long int --- but 'ware overflow! */
			numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
1823
		}
1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
		else if (parse->distinctClause && sorted_path &&
				 !root->hasHavingQual && !parse->hasAggs && !activeWindows)
		{
			/*
			 * We'll reach the DISTINCT stage without any intermediate
			 * processing, so figure out whether we will want to hash or not
			 * so we can choose whether to use cheapest or sorted path.
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   path_rows, path_width,
									   cheapest_path->startup_cost,
									   cheapest_path->total_cost,
									   sorted_path->startup_cost,
									   sorted_path->total_cost,
									   sorted_path->pathkeys,
									   dNumGroups);
			tested_hashed_distinct = true;
		}
1844

B
Bruce Momjian 已提交
1845
		/*
1846
		 * Select the best path.  If we are doing hashed grouping, we will
B
Bruce Momjian 已提交
1847
		 * always read all the input tuples, so use the cheapest-total path.
1848
		 * Otherwise, the comparison above is correct.
1849
		 */
1850
		if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
1851
			best_path = cheapest_path;
1852
		else
1853
			best_path = sorted_path;
1854

1855
		/*
B
Bruce Momjian 已提交
1856 1857 1858 1859
		 * Check to see if it's possible to optimize MIN/MAX aggregates. If
		 * so, we will forget all the work we did so far to choose a "regular"
		 * path ... but we had to do it anyway to be able to tell which way is
		 * cheaper.
1860
		 */
1861
		result_plan = optimize_minmax_aggregates(root,
1862
												 tlist,
1863
												 &agg_costs,
1864 1865 1866 1867
												 best_path);
		if (result_plan != NULL)
		{
			/*
B
Bruce Momjian 已提交
1868 1869
			 * optimize_minmax_aggregates generated the full plan, with the
			 * right tlist, and it has no sort order.
1870 1871 1872 1873
			 */
			current_pathkeys = NIL;
		}
		else
1874
		{
1875
			/*
1876 1877
			 * Normal case --- create a plan according to query_planner's
			 * results.
1878
			 */
1879
			bool		need_sort_for_grouping = false;
1880

1881
			result_plan = create_plan(root, best_path);
1882 1883
			current_pathkeys = best_path->pathkeys;

1884 1885
			/* Detect if we'll need an explicit sort for grouping */
			if (parse->groupClause && !use_hashed_grouping &&
B
Bruce Momjian 已提交
1886
			  !pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
1887 1888
			{
				need_sort_for_grouping = true;
1889

1890
				/*
1891 1892
				 * Always override create_plan's tlist, so that we don't sort
				 * useless data from a "physical" tlist.
1893 1894 1895 1896
				 */
				need_tlist_eval = true;
			}

1897
			/*
1898 1899 1900 1901
			 * create_plan returns a plan with just a "flat" tlist of required
			 * Vars.  Usually we need to insert the sub_tlist as the tlist of
			 * the top plan node.  However, we can skip that if we determined
			 * that whatever create_plan chose to return will be good enough.
1902 1903
			 */
			if (need_tlist_eval)
1904
			{
1905 1906
				/*
				 * If the top-level plan node is one that cannot do expression
1907 1908
				 * evaluation and its existing target list isn't already what
				 * we need, we must insert a Result node to project the
1909 1910
				 * desired tlist.
				 */
1911 1912
				if (!is_projection_capable_plan(result_plan) &&
					!tlist_same_exprs(sub_tlist, result_plan->targetlist))
1913
				{
1914 1915 1916
					result_plan = (Plan *) make_result(root,
													   sub_tlist,
													   NULL,
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
													   result_plan);
				}
				else
				{
					/*
					 * Otherwise, just replace the subplan's flat tlist with
					 * the desired tlist.
					 */
					result_plan->targetlist = sub_tlist;
				}

				/*
				 * Also, account for the cost of evaluation of the sub_tlist.
1930
				 * See comments for add_tlist_costs_to_plan() for more info.
1931
				 */
1932
				add_tlist_costs_to_plan(root, result_plan, sub_tlist);
1933 1934 1935 1936
			}
			else
			{
				/*
1937
				 * Since we're using create_plan's tlist and not the one
1938 1939
				 * make_subplanTargetList calculated, we have to refigure any
				 * grouping-column indexes make_subplanTargetList computed.
1940
				 */
1941
				locate_grouping_columns(root, tlist, result_plan->targetlist,
1942
										groupColIdx);
1943
			}
B
Bruce Momjian 已提交
1944

1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
			/*
			 * groupColIdx is now cast in stone, so record a mapping from
			 * tleSortGroupRef to column index. setrefs.c needs this to
			 * finalize GROUPING() operations.
			 */

			if (parse->groupingSets)
			{
				AttrNumber *grouping_map = palloc0(sizeof(AttrNumber) * (maxref + 1));
				ListCell   *lc;
				int			i = 0;

				foreach(lc, parse->groupClause)
				{
					SortGroupClause *gc = lfirst(lc);
B
Bruce Momjian 已提交
1960

1961 1962 1963 1964 1965 1966
					grouping_map[gc->tleSortGroupRef] = groupColIdx[i++];
				}

				root->grouping_map = grouping_map;
			}

1967
			/*
1968 1969
			 * Insert AGG or GROUP node if needed, plus an explicit sort step
			 * if necessary.
1970
			 *
1971
			 * HAVING clause, if any, becomes qual of the Agg or Group node.
1972
			 */
1973 1974 1975
			if (use_hashed_grouping)
			{
				/* Hashed aggregate plan --- no sort needed */
1976
				result_plan = (Plan *) make_agg(root,
1977 1978 1979
												tlist,
												(List *) parse->havingQual,
												AGG_HASHED,
1980
												&agg_costs,
1981 1982
												numGroupCols,
												groupColIdx,
B
Bruce Momjian 已提交
1983
									extract_grouping_ops(parse->groupClause),
1984
												NIL,
1985 1986 1987 1988 1989
												numGroups,
												result_plan);
				/* Hashed aggregation produces randomly-ordered results */
				current_pathkeys = NIL;
			}
1990
			else if (parse->hasAggs || (parse->groupingSets && parse->groupClause))
1991
			{
1992
				/*
B
Bruce Momjian 已提交
1993 1994 1995
				 * Output is in sorted order by group_pathkeys if, and only
				 * if, there is a single rollup operation on a non-empty list
				 * of grouping expressions.
1996 1997 1998 1999
				 */
				if (list_length(rollup_groupclauses) == 1
					&& list_length(linitial(rollup_groupclauses)) > 0)
					current_pathkeys = root->group_pathkeys;
2000 2001 2002
				else
					current_pathkeys = NIL;

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
				result_plan = build_grouping_chain(root,
												   parse,
												   tlist,
												   need_sort_for_grouping,
												   rollup_groupclauses,
												   rollup_lists,
												   groupColIdx,
												   &agg_costs,
												   numGroups,
												   result_plan);

				/*
B
Bruce Momjian 已提交
2015 2016
				 * these are destroyed by build_grouping_chain, so make sure
				 * we don't try and touch them again
2017 2018 2019
				 */
				rollup_groupclauses = NIL;
				rollup_lists = NIL;
2020 2021
			}
			else if (parse->groupClause)
2022
			{
2023 2024 2025 2026
				/*
				 * GROUP BY without aggregation, so insert a group node (plus
				 * the appropriate sort node, if necessary).
				 *
2027 2028
				 * Add an explicit sort if we couldn't make the path come out
				 * the way the GROUP node needs it.
2029
				 */
2030
				if (need_sort_for_grouping)
2031
				{
2032
					result_plan = (Plan *)
2033
						make_sort_from_groupcols(root,
2034 2035 2036
												 parse->groupClause,
												 groupColIdx,
												 result_plan);
2037
					current_pathkeys = root->group_pathkeys;
2038
				}
B
Bruce Momjian 已提交
2039

2040
				result_plan = (Plan *) make_group(root,
2041 2042 2043 2044
												  tlist,
												  (List *) parse->havingQual,
												  numGroupCols,
												  groupColIdx,
2045
									extract_grouping_ops(parse->groupClause),
2046 2047 2048
												  dNumGroups,
												  result_plan);
				/* The Group node won't change sort ordering */
2049
			}
2050
			else if (root->hasHavingQual || parse->groupingSets)
2051
			{
B
Bruce Momjian 已提交
2052
				int			nrows = list_length(parse->groupingSets);
2053

2054
				/*
B
Bruce Momjian 已提交
2055 2056
				 * No aggregates, and no GROUP BY, but we have a HAVING qual
				 * or grouping sets (which by elimination of cases above must
2057 2058 2059
				 * consist solely of empty grouping sets, since otherwise
				 * groupClause will be non-empty).
				 *
2060
				 * This is a degenerate case in which we are supposed to emit
B
Bruce Momjian 已提交
2061 2062 2063 2064
				 * either 0 or 1 row for each grouping set depending on
				 * whether HAVING succeeds.  Furthermore, there cannot be any
				 * variables in either HAVING or the targetlist, so we
				 * actually do not need the FROM table at all!	We can just
T
Tom Lane 已提交
2065 2066 2067 2068
				 * throw away the plan-so-far and generate a Result node. This
				 * is a sufficiently unusual corner case that it's not worth
				 * contorting the structure of this routine to avoid having to
				 * generate the plan in the first place.
2069
				 */
2070 2071
				result_plan = (Plan *) make_result(root,
												   tlist,
2072 2073
												   parse->havingQual,
												   NULL);
2074 2075 2076 2077 2078 2079 2080 2081

				/*
				 * Doesn't seem worthwhile writing code to cons up a
				 * generate_series or a values scan to emit multiple rows.
				 * Instead just clone the result in an Append.
				 */
				if (nrows > 1)
				{
B
Bruce Momjian 已提交
2082
					List	   *plans = list_make1(result_plan);
2083 2084 2085 2086 2087 2088

					while (--nrows > 0)
						plans = lappend(plans, copyObject(result_plan));

					result_plan = (Plan *) make_append(plans, tlist);
				}
2089
			}
2090
		}						/* end of non-minmax-aggregate case */
T
Tom Lane 已提交
2091 2092

		/*
2093 2094 2095
		 * Since each window function could require a different sort order, we
		 * stack up a WindowAgg node for each window, with sort steps between
		 * them as needed.
T
Tom Lane 已提交
2096 2097 2098 2099 2100 2101 2102 2103
		 */
		if (activeWindows)
		{
			List	   *window_tlist;
			ListCell   *l;

			/*
			 * If the top-level plan node is one that cannot do expression
2104 2105
			 * evaluation, we must insert a Result node to project the desired
			 * tlist.  (In some cases this might not really be required, but
2106 2107 2108
			 * it's not worth trying to avoid it.  In particular, think not to
			 * skip adding the Result if the initial window_tlist matches the
			 * top-level plan node's output, because we might change the tlist
B
Bruce Momjian 已提交
2109
			 * inside the following loop.)	Note that on second and subsequent
2110 2111 2112
			 * passes through the following loop, the top-level node will be a
			 * WindowAgg which we know can project; so we only need to check
			 * once.
T
Tom Lane 已提交
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
			 */
			if (!is_projection_capable_plan(result_plan))
			{
				result_plan = (Plan *) make_result(root,
												   NIL,
												   NULL,
												   result_plan);
			}

			/*
2123
			 * The "base" targetlist for all steps of the windowing process is
B
Bruce Momjian 已提交
2124
			 * a flat tlist of all Vars and Aggs needed in the result.  (In
2125 2126 2127
			 * some cases we wouldn't need to propagate all of these all the
			 * way to the top, since they might only be needed as inputs to
			 * WindowFuncs.  It's probably not worth trying to optimize that
2128 2129 2130
			 * though.)  We also add window partitioning and sorting
			 * expressions to the base tlist, to ensure they're computed only
			 * once at the bottom of the stack (that's critical for volatile
B
Bruce Momjian 已提交
2131
			 * functions).  As we climb up the stack, we'll add outputs for
2132 2133 2134 2135 2136 2137 2138 2139
			 * the WindowFuncs computed at each level.
			 */
			window_tlist = make_windowInputTargetList(root,
													  tlist,
													  activeWindows);

			/*
			 * The copyObject steps here are needed to ensure that each plan
B
Bruce Momjian 已提交
2140
			 * node has a separately modifiable tlist.  (XXX wouldn't a
2141
			 * shallow list copy do for that?)
T
Tom Lane 已提交
2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157
			 */
			result_plan->targetlist = (List *) copyObject(window_tlist);

			foreach(l, activeWindows)
			{
				WindowClause *wc = (WindowClause *) lfirst(l);
				List	   *window_pathkeys;
				int			partNumCols;
				AttrNumber *partColIdx;
				Oid		   *partOperators;
				int			ordNumCols;
				AttrNumber *ordColIdx;
				Oid		   *ordOperators;

				window_pathkeys = make_pathkeys_for_window(root,
														   wc,
2158
														   tlist);
T
Tom Lane 已提交
2159 2160 2161 2162 2163 2164

				/*
				 * This is a bit tricky: we build a sort node even if we don't
				 * really have to sort.  Even when no explicit sort is needed,
				 * we need to have suitable resjunk items added to the input
				 * plan's tlist for any partitioning or ordering columns that
2165 2166
				 * aren't plain Vars.  (In theory, make_windowInputTargetList
				 * should have provided all such columns, but let's not assume
B
Bruce Momjian 已提交
2167
				 * that here.)	Furthermore, this way we can use existing
2168 2169
				 * infrastructure to identify which input columns are the
				 * interesting ones.
T
Tom Lane 已提交
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
				 */
				if (window_pathkeys)
				{
					Sort	   *sort_plan;

					sort_plan = make_sort_from_pathkeys(root,
														result_plan,
														window_pathkeys,
														-1.0);
					if (!pathkeys_contained_in(window_pathkeys,
											   current_pathkeys))
					{
						/* we do indeed need to sort */
						result_plan = (Plan *) sort_plan;
						current_pathkeys = window_pathkeys;
					}
					/* In either case, extract the per-column information */
					get_column_info_for_window(root, wc, tlist,
											   sort_plan->numCols,
											   sort_plan->sortColIdx,
											   &partNumCols,
											   &partColIdx,
											   &partOperators,
											   &ordNumCols,
											   &ordColIdx,
											   &ordOperators);
				}
				else
				{
					/* empty window specification, nothing to sort */
					partNumCols = 0;
					partColIdx = NULL;
					partOperators = NULL;
					ordNumCols = 0;
					ordColIdx = NULL;
					ordOperators = NULL;
				}

				if (lnext(l))
				{
					/* Add the current WindowFuncs to the running tlist */
					window_tlist = add_to_flat_tlist(window_tlist,
2212
										   wflists->windowFuncs[wc->winref]);
T
Tom Lane 已提交
2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
				}
				else
				{
					/* Install the original tlist in the topmost WindowAgg */
					window_tlist = tlist;
				}

				/* ... and make the WindowAgg plan node */
				result_plan = (Plan *)
					make_windowagg(root,
								   (List *) copyObject(window_tlist),
2224
								   wflists->windowFuncs[wc->winref],
2225
								   wc->winref,
T
Tom Lane 已提交
2226 2227 2228 2229 2230 2231
								   partNumCols,
								   partColIdx,
								   partOperators,
								   ordNumCols,
								   ordColIdx,
								   ordOperators,
2232
								   wc->frameOptions,
2233 2234
								   wc->startOffset,
								   wc->endOffset,
T
Tom Lane 已提交
2235 2236 2237
								   result_plan);
			}
		}
B
Bruce Momjian 已提交
2238
	}							/* end of if (setOperations) */
2239

2240
	/*
2241
	 * If there is a DISTINCT clause, add the necessary node(s).
2242
	 */
2243
	if (parse->distinctClause)
2244
	{
2245 2246
		double		dNumDistinctRows;
		long		numDistinctRows;
2247 2248 2249 2250 2251

		/*
		 * If there was grouping or aggregation, use the current number of
		 * rows as the estimated number of DISTINCT rows (ie, assume the
		 * result was already mostly unique).  If not, use the number of
2252
		 * distinct-groups calculated previously.
2253
		 */
2254
		if (parse->groupClause || parse->groupingSets || root->hasHavingQual || parse->hasAggs)
2255 2256 2257 2258 2259 2260 2261
			dNumDistinctRows = result_plan->plan_rows;
		else
			dNumDistinctRows = dNumGroups;

		/* Also convert to long int --- but 'ware overflow! */
		numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);

2262 2263
		/* Choose implementation method if we didn't already */
		if (!tested_hashed_distinct)
2264
		{
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280
			/*
			 * At this point, either hashed or sorted grouping will have to
			 * work from result_plan, so we pass that as both "cheapest" and
			 * "sorted".
			 */
			use_hashed_distinct =
				choose_hashed_distinct(root,
									   tuple_fraction, limit_tuples,
									   result_plan->plan_rows,
									   result_plan->plan_width,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   result_plan->startup_cost,
									   result_plan->total_cost,
									   current_pathkeys,
									   dNumDistinctRows);
2281 2282 2283 2284 2285 2286 2287 2288 2289
		}

		if (use_hashed_distinct)
		{
			/* Hashed aggregate plan --- no sort needed */
			result_plan = (Plan *) make_agg(root,
											result_plan->targetlist,
											NIL,
											AGG_HASHED,
2290
											NULL,
2291 2292 2293 2294
										  list_length(parse->distinctClause),
								 extract_grouping_cols(parse->distinctClause,
													result_plan->targetlist),
								 extract_grouping_ops(parse->distinctClause),
2295
											NIL,
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
											numDistinctRows,
											result_plan);
			/* Hashed aggregation produces randomly-ordered results */
			current_pathkeys = NIL;
		}
		else
		{
			/*
			 * Use a Unique node to implement DISTINCT.  Add an explicit sort
			 * if we couldn't make the path come out the way the Unique node
2306 2307 2308 2309
			 * needs it.  If we do have to sort, always sort by the more
			 * rigorous of DISTINCT and ORDER BY, to avoid a second sort
			 * below.  However, for regular DISTINCT, don't sort now if we
			 * don't have to --- sorting afterwards will likely be cheaper,
2310 2311 2312
			 * and also has the possibility of optimizing via LIMIT.  But for
			 * DISTINCT ON, we *must* force the final sort now, else it won't
			 * have the desired behavior.
2313
			 */
2314
			List	   *needed_pathkeys;
2315 2316 2317 2318 2319 2320 2321 2322 2323

			if (parse->hasDistinctOn &&
				list_length(root->distinct_pathkeys) <
				list_length(root->sort_pathkeys))
				needed_pathkeys = root->sort_pathkeys;
			else
				needed_pathkeys = root->distinct_pathkeys;

			if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
			{
				if (list_length(root->distinct_pathkeys) >=
					list_length(root->sort_pathkeys))
					current_pathkeys = root->distinct_pathkeys;
				else
				{
					current_pathkeys = root->sort_pathkeys;
					/* Assert checks that parser didn't mess up... */
					Assert(pathkeys_contained_in(root->distinct_pathkeys,
												 current_pathkeys));
				}

				result_plan = (Plan *) make_sort_from_pathkeys(root,
															   result_plan,
2338
															current_pathkeys,
2339 2340 2341 2342 2343 2344 2345
															   -1.0);
			}

			result_plan = (Plan *) make_unique(result_plan,
											   parse->distinctClause);
			result_plan->plan_rows = dNumDistinctRows;
			/* The Unique node won't change sort ordering */
2346
		}
2347
	}
2348 2349

	/*
2350 2351
	 * If ORDER BY was given and we were not able to make the plan come out in
	 * the right order, add an explicit sort step.
2352
	 */
2353
	if (parse->sortClause)
2354
	{
2355 2356 2357 2358
		if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		{
			result_plan = (Plan *) make_sort_from_pathkeys(root,
														   result_plan,
2359
														 root->sort_pathkeys,
2360 2361 2362
														   limit_tuples);
			current_pathkeys = root->sort_pathkeys;
		}
2363
	}
2364

2365
	/*
B
Bruce Momjian 已提交
2366 2367 2368
	 * If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
	 * (Note: we intentionally test parse->rowMarks not root->rowMarks here.
	 * If there are only non-locking rowmarks, they should be handled by the
B
Bruce Momjian 已提交
2369
	 * ModifyTable node instead.)
2370 2371 2372 2373
	 */
	if (parse->rowMarks)
	{
		result_plan = (Plan *) make_lockrows(result_plan,
2374 2375
											 root->rowMarks,
											 SS_assign_special_param(root));
B
Bruce Momjian 已提交
2376

2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
		/*
		 * The result can no longer be assumed sorted, since locking might
		 * cause the sort key columns to be replaced with new values.
		 */
		current_pathkeys = NIL;
	}

	/*
	 * Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
	 */
2387
	if (limit_needed(parse))
2388 2389 2390 2391 2392 2393
	{
		result_plan = (Plan *) make_limit(result_plan,
										  parse->limitOffset,
										  parse->limitCount,
										  offset_est,
										  count_est);
2394 2395
	}

2396
	/*
B
Bruce Momjian 已提交
2397 2398
	 * Return the actual output ordering in query_pathkeys for possible use by
	 * an outer query level.
2399
	 */
2400
	root->query_pathkeys = current_pathkeys;
2401

2402
	return result_plan;
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429

/*
 * Given a groupclause for a collection of grouping sets, produce the
 * corresponding groupColIdx.
 *
 * root->grouping_map maps the tleSortGroupRef to the actual column position in
 * the input tuple. So we get the ref from the entries in the groupclause and
 * look them up there.
 */
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
	AttrNumber *grouping_map = root->grouping_map;
	AttrNumber *new_grpColIdx;
	ListCell   *lc;
	int			i;

	Assert(grouping_map);

	new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));

	i = 0;
	foreach(lc, groupClause)
	{
		SortGroupClause *clause = lfirst(lc);
B
Bruce Momjian 已提交
2430

2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
		new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
	}

	return new_grpColIdx;
}

/*
 * Build Agg and Sort nodes to implement sorted grouping with one or more
 * grouping sets. (A plain GROUP BY or just the presence of aggregates counts
 * for this purpose as a single grouping set; the calling code is responsible
 * for providing a non-empty rollup_groupclauses list for such cases, though
 * rollup_lists may be null.)
 *
 * The last entry in rollup_groupclauses (which is the one the input is sorted
 * on, if at all) is the one used for the returned Agg node. Any additional
 * rollups are attached, with corresponding sort info, to subsidiary Agg and
 * Sort nodes attached to the side of the real Agg node; these nodes don't
 * participate in the plan directly, but they are both a convenient way to
 * represent the required data and a convenient way to account for the costs
 * of execution.
 *
 * rollup_groupclauses and rollup_lists are destroyed by this function.
 */
static Plan *
build_grouping_chain(PlannerInfo *root,
B
Bruce Momjian 已提交
2456 2457 2458 2459 2460
					 Query *parse,
					 List *tlist,
					 bool need_sort_for_grouping,
					 List *rollup_groupclauses,
					 List *rollup_lists,
2461 2462
					 AttrNumber *groupColIdx,
					 AggClauseCosts *agg_costs,
B
Bruce Momjian 已提交
2463 2464
					 long numGroups,
					 Plan *result_plan)
2465 2466 2467 2468 2469 2470 2471 2472
{
	AttrNumber *top_grpColIdx = groupColIdx;
	List	   *chain = NIL;

	/*
	 * Prepare the grpColIdx for the real Agg node first, because we may need
	 * it for sorting
	 */
2473 2474
	if (parse->groupingSets)
		top_grpColIdx = remap_groupColIdx(root, llast(rollup_groupclauses));
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512

	/*
	 * If we need a Sort operation on the input, generate that.
	 */
	if (need_sort_for_grouping)
	{
		result_plan = (Plan *)
			make_sort_from_groupcols(root,
									 llast(rollup_groupclauses),
									 top_grpColIdx,
									 result_plan);
	}

	/*
	 * Generate the side nodes that describe the other sort and group
	 * operations besides the top one.
	 */
	while (list_length(rollup_groupclauses) > 1)
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = linitial(rollup_lists);
		AttrNumber *new_grpColIdx;
		Plan	   *sort_plan;
		Plan	   *agg_plan;

		Assert(groupClause);
		Assert(gsets);

		new_grpColIdx = remap_groupColIdx(root, groupClause);

		sort_plan = (Plan *)
			make_sort_from_groupcols(root,
									 groupClause,
									 new_grpColIdx,
									 result_plan);

		/*
		 * sort_plan includes the cost of result_plan over again, which is not
B
Bruce Momjian 已提交
2513 2514
		 * what we want (since it's not actually running that plan). So
		 * correct the cost figures.
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
		 */

		sort_plan->startup_cost -= result_plan->total_cost;
		sort_plan->total_cost -= result_plan->total_cost;

		agg_plan = (Plan *) make_agg(root,
									 tlist,
									 (List *) parse->havingQual,
									 AGG_SORTED,
									 agg_costs,
									 list_length(linitial(gsets)),
									 new_grpColIdx,
									 extract_grouping_ops(groupClause),
									 gsets,
									 numGroups,
									 sort_plan);

		sort_plan->lefttree = NULL;

		chain = lappend(chain, agg_plan);

		if (rollup_lists)
			rollup_lists = list_delete_first(rollup_lists);

		rollup_groupclauses = list_delete_first(rollup_groupclauses);
	}

	/*
	 * Now make the final Agg node
	 */
	{
		List	   *groupClause = linitial(rollup_groupclauses);
		List	   *gsets = rollup_lists ? linitial(rollup_lists) : NIL;
		int			numGroupCols;
		ListCell   *lc;

		if (gsets)
			numGroupCols = list_length(linitial(gsets));
		else
			numGroupCols = list_length(parse->groupClause);

		result_plan = (Plan *) make_agg(root,
										tlist,
										(List *) parse->havingQual,
B
Bruce Momjian 已提交
2559
								 (numGroupCols > 0) ? AGG_SORTED : AGG_PLAIN,
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
										agg_costs,
										numGroupCols,
										top_grpColIdx,
										extract_grouping_ops(groupClause),
										gsets,
										numGroups,
										result_plan);

		((Agg *) result_plan)->chain = chain;

		/*
		 * Add the additional costs. But only the total costs count, since the
		 * additional sorts aren't run on startup.
		 */
		foreach(lc, chain)
		{
B
Bruce Momjian 已提交
2576
			Plan	   *subplan = lfirst(lc);
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

			result_plan->total_cost += subplan->total_cost;

			/*
			 * Nuke stuff we don't need to avoid bloating debug output.
			 */

			subplan->targetlist = NIL;
			subplan->qual = NIL;
			subplan->lefttree->targetlist = NIL;
		}
	}

	return result_plan;
}

2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
/*
 * add_tlist_costs_to_plan
 *
 * Estimate the execution costs associated with evaluating the targetlist
 * expressions, and add them to the cost estimates for the Plan node.
 *
 * If the tlist contains set-returning functions, also inflate the Plan's cost
 * and plan_rows estimates accordingly.  (Hence, this must be called *after*
 * any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
 *
 * Note: during initial stages of planning, we mostly consider plan nodes with
 * "flat" tlists, containing just Vars.  So their evaluation cost is zero
 * according to the model used by cost_qual_eval() (or if you prefer, the cost
 * is factored into cpu_tuple_cost).  Thus we can avoid accounting for tlist
 * cost throughout query_planner() and subroutines.  But once we apply a
 * tlist that might contain actual operators, sub-selects, etc, we'd better
 * account for its cost.  Any set-returning functions in the tlist must also
 * affect the estimated rowcount.
 *
 * Once grouping_planner() has applied a general tlist to the topmost
 * scan/join plan node, any tlist eval cost for added-on nodes should be
B
Bruce Momjian 已提交
2614
 * accounted for as we create those nodes.  Presently, of the node types we
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647
 * can add on later, only Agg, WindowAgg, and Group project new tlists (the
 * rest just copy their input tuples) --- so make_agg(), make_windowagg() and
 * make_group() are responsible for calling this function to account for their
 * tlist costs.
 */
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
	QualCost	tlist_cost;
	double		tlist_rows;

	cost_qual_eval(&tlist_cost, tlist, root);
	plan->startup_cost += tlist_cost.startup;
	plan->total_cost += tlist_cost.startup +
		tlist_cost.per_tuple * plan->plan_rows;

	tlist_rows = tlist_returns_set_rows(tlist);
	if (tlist_rows > 1)
	{
		/*
		 * We assume that execution costs of the tlist proper were all
		 * accounted for by cost_qual_eval.  However, it still seems
		 * appropriate to charge something more for the executor's general
		 * costs of processing the added tuples.  The cost is probably less
		 * than cpu_tuple_cost, though, so we arbitrarily use half of that.
		 */
		plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
			cpu_tuple_cost / 2;

		plan->plan_rows *= tlist_rows;
	}
}

2648 2649 2650 2651 2652
/*
 * Detect whether a plan node is a "dummy" plan created when a relation
 * is deemed not to need scanning due to constraint exclusion.
 *
 * Currently, such dummy plans are Result nodes with constant FALSE
2653 2654 2655
 * filter quals (see set_dummy_rel_pathlist and create_append_plan).
 *
 * XXX this probably ought to be somewhere else, but not clear where.
2656
 */
2657
bool
2658 2659 2660 2661
is_dummy_plan(Plan *plan)
{
	if (IsA(plan, Result))
	{
B
Bruce Momjian 已提交
2662
		List	   *rcqual = (List *) ((Result *) plan)->resconstantqual;
2663 2664 2665

		if (list_length(rcqual) == 1)
		{
B
Bruce Momjian 已提交
2666
			Const	   *constqual = (Const *) linitial(rcqual);
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678

			if (constqual && IsA(constqual, Const))
			{
				if (!constqual->constisnull &&
					!DatumGetBool(constqual->constvalue))
					return true;
			}
		}
	}
	return false;
}

2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/*
 * Create a bitmapset of the RT indexes of live base relations
 *
 * Helper for preprocess_rowmarks ... at this point in the proceedings,
 * the only good way to distinguish baserels from appendrel children
 * is to see what is in the join tree.
 */
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
	Bitmapset  *result;

	if (jtnode == NULL)
		return NULL;
	if (IsA(jtnode, RangeTblRef))
	{
		int			varno = ((RangeTblRef *) jtnode)->rtindex;

		result = bms_make_singleton(varno);
	}
	else if (IsA(jtnode, FromExpr))
	{
		FromExpr   *f = (FromExpr *) jtnode;
		ListCell   *l;

		result = NULL;
		foreach(l, f->fromlist)
			result = bms_join(result,
							  get_base_rel_indexes(lfirst(l)));
	}
	else if (IsA(jtnode, JoinExpr))
	{
		JoinExpr   *j = (JoinExpr *) jtnode;

		result = bms_join(get_base_rel_indexes(j->larg),
						  get_base_rel_indexes(j->rarg));
	}
	else
	{
		elog(ERROR, "unrecognized node type: %d",
			 (int) nodeTag(jtnode));
		result = NULL;			/* keep compiler quiet */
	}
	return result;
}

/*
 * preprocess_rowmarks - set up PlanRowMarks if needed
 */
static void
preprocess_rowmarks(PlannerInfo *root)
{
	Query	   *parse = root->parse;
	Bitmapset  *rels;
	List	   *prowmarks;
	ListCell   *l;
	int			i;

	if (parse->rowMarks)
	{
		/*
B
Bruce Momjian 已提交
2740 2741 2742
		 * We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
		 * grouping, since grouping renders a reference to individual tuple
		 * CTIDs invalid.  This is also checked at parse time, but that's
2743 2744
		 * insufficient because of rule substitution, query pullup, etc.
		 */
2745
		CheckSelectLocking(parse, ((RowMarkClause *)
B
Bruce Momjian 已提交
2746
								   linitial(parse->rowMarks))->strength);
2747 2748 2749 2750
	}
	else
	{
		/*
B
Bruce Momjian 已提交
2751 2752
		 * We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
		 * UPDATE/SHARE.
2753 2754 2755 2756 2757 2758 2759
		 */
		if (parse->commandType != CMD_UPDATE &&
			parse->commandType != CMD_DELETE)
			return;
	}

	/*
B
Bruce Momjian 已提交
2760 2761
	 * We need to have rowmarks for all base relations except the target. We
	 * make a bitmapset of all base rels and then remove the items we don't
2762
	 * need or have FOR [KEY] UPDATE/SHARE marks for.
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774
	 */
	rels = get_base_rel_indexes((Node *) parse->jointree);
	if (parse->resultRelation)
		rels = bms_del_member(rels, parse->resultRelation);

	/*
	 * Convert RowMarkClauses to PlanRowMark representation.
	 */
	prowmarks = NIL;
	foreach(l, parse->rowMarks)
	{
		RowMarkClause *rc = (RowMarkClause *) lfirst(l);
2775 2776
		RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
		PlanRowMark *newrc;
2777

2778
		/*
2779
		 * Currently, it is syntactically impossible to have FOR UPDATE et al
B
Bruce Momjian 已提交
2780
		 * applied to an update/delete target rel.  If that ever becomes
2781 2782
		 * possible, we should drop the target from the PlanRowMark list.
		 */
2783
		Assert(rc->rti != parse->resultRelation);
2784 2785

		/*
B
Bruce Momjian 已提交
2786 2787 2788 2789
		 * Ignore RowMarkClauses for subqueries; they aren't real tables and
		 * can't support true locking.  Subqueries that got flattened into the
		 * main query should be ignored completely.  Any that didn't will get
		 * ROW_MARK_COPY items in the next loop.
2790 2791 2792 2793
		 */
		if (rte->rtekind != RTE_RELATION)
			continue;

2794 2795
		rels = bms_del_member(rels, rc->rti);

2796
		newrc = makeNode(PlanRowMark);
2797
		newrc->rti = newrc->prti = rc->rti;
2798
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2799
		newrc->markType = select_rowmark_type(rte, rc->strength);
2800 2801
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = rc->strength;
2802
		newrc->waitPolicy = rc->waitPolicy;
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	/*
	 * Now, add rowmarks for any non-target, non-locked base relations.
	 */
	i = 0;
	foreach(l, parse->rtable)
	{
		RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
		PlanRowMark *newrc;

		i++;
		if (!bms_is_member(i, rels))
			continue;

		newrc = makeNode(PlanRowMark);
		newrc->rti = newrc->prti = i;
2823
		newrc->rowmarkId = ++(root->glob->lastRowMarkId);
2824
		newrc->markType = select_rowmark_type(rte, LCS_NONE);
2825 2826
		newrc->allMarkTypes = (1 << newrc->markType);
		newrc->strength = LCS_NONE;
2827
		newrc->waitPolicy = LockWaitBlock;		/* doesn't matter */
2828 2829 2830 2831 2832 2833 2834 2835
		newrc->isParent = false;

		prowmarks = lappend(prowmarks, newrc);
	}

	root->rowMarks = prowmarks;
}

2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848
/*
 * Select RowMarkType to use for a given table
 */
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
	if (rte->rtekind != RTE_RELATION)
	{
		/* If it's not a table at all, use ROW_MARK_COPY */
		return ROW_MARK_COPY;
	}
	else if (rte->relkind == RELKIND_FOREIGN_TABLE)
	{
2849 2850 2851 2852 2853 2854
		/* Let the FDW select the rowmark type, if it wants to */
		FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);

		if (fdwroutine->GetForeignRowMarkType != NULL)
			return fdwroutine->GetForeignRowMarkType(rte, strength);
		/* Otherwise, use ROW_MARK_COPY by default */
2855 2856 2857 2858 2859 2860 2861 2862
		return ROW_MARK_COPY;
	}
	else
	{
		/* Regular table, apply the appropriate lock type */
		switch (strength)
		{
			case LCS_NONE:
B
Bruce Momjian 已提交
2863

2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
				/*
				 * We don't need a tuple lock, only the ability to re-fetch
				 * the row.  Regular tables support ROW_MARK_REFERENCE, but if
				 * this RTE has security barrier quals, it will be turned into
				 * a subquery during planning, so use ROW_MARK_COPY.
				 *
				 * This is only necessary for LCS_NONE, since real tuple locks
				 * on an RTE with security barrier quals are supported by
				 * pushing the lock down into the subquery --- see
				 * expand_security_qual.
				 */
				if (rte->securityQuals != NIL)
					return ROW_MARK_COPY;
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
				return ROW_MARK_REFERENCE;
				break;
			case LCS_FORKEYSHARE:
				return ROW_MARK_KEYSHARE;
				break;
			case LCS_FORSHARE:
				return ROW_MARK_SHARE;
				break;
			case LCS_FORNOKEYUPDATE:
				return ROW_MARK_NOKEYEXCLUSIVE;
				break;
			case LCS_FORUPDATE:
				return ROW_MARK_EXCLUSIVE;
				break;
		}
		elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
		return ROW_MARK_EXCLUSIVE;		/* keep compiler quiet */
	}
}

2897
/*
2898
 * preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
2899
 *
2900
 * We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
B
Bruce Momjian 已提交
2901
 * results back in *count_est and *offset_est.  These variables are set to
2902 2903 2904 2905 2906 2907 2908 2909
 * 0 if the corresponding clause is not present, and -1 if it's present
 * but we couldn't estimate the value for it.  (The "0" convention is OK
 * for OFFSET but a little bit bogus for LIMIT: effectively we estimate
 * LIMIT 0 as though it were LIMIT 1.  But this is in line with the planner's
 * usual practice of never estimating less than one row.)  These values will
 * be passed to make_limit, which see if you change this code.
 *
 * The return value is the suitably adjusted tuple_fraction to use for
B
Bruce Momjian 已提交
2910
 * planning the query.  This adjustment is not overridable, since it reflects
2911 2912
 * plan actions that grouping_planner() will certainly take, not assumptions
 * about context.
2913 2914
 */
static double
2915
preprocess_limit(PlannerInfo *root, double tuple_fraction,
B
Bruce Momjian 已提交
2916
				 int64 *offset_est, int64 *count_est)
2917 2918
{
	Query	   *parse = root->parse;
2919 2920
	Node	   *est;
	double		limit_fraction;
2921

2922 2923
	/* Should not be called unless LIMIT or OFFSET */
	Assert(parse->limitCount || parse->limitOffset);
2924 2925

	/*
2926 2927
	 * Try to obtain the clause values.  We use estimate_expression_value
	 * primarily because it can sometimes do something useful with Params.
2928
	 */
2929
	if (parse->limitCount)
2930
	{
2931
		est = estimate_expression_value(root, parse->limitCount);
2932
		if (est && IsA(est, Const))
2933
		{
2934
			if (((Const *) est)->constisnull)
2935
			{
2936
				/* NULL indicates LIMIT ALL, ie, no limit */
B
Bruce Momjian 已提交
2937
				*count_est = 0; /* treat as not present */
2938 2939 2940
			}
			else
			{
B
Bruce Momjian 已提交
2941
				*count_est = DatumGetInt64(((Const *) est)->constvalue);
2942 2943
				if (*count_est <= 0)
					*count_est = 1;		/* force to at least 1 */
2944 2945
			}
		}
2946 2947
		else
			*count_est = -1;	/* can't estimate */
2948 2949
	}
	else
2950 2951 2952
		*count_est = 0;			/* not present */

	if (parse->limitOffset)
2953
	{
2954
		est = estimate_expression_value(root, parse->limitOffset);
2955 2956 2957 2958 2959
		if (est && IsA(est, Const))
		{
			if (((Const *) est)->constisnull)
			{
				/* Treat NULL as no offset; the executor will too */
B
Bruce Momjian 已提交
2960
				*offset_est = 0;	/* treat as not present */
2961 2962 2963
			}
			else
			{
B
Bruce Momjian 已提交
2964
				*offset_est = DatumGetInt64(((Const *) est)->constvalue);
2965
				if (*offset_est < 0)
2966
					*offset_est = 0;	/* treat as not present */
2967 2968 2969 2970
			}
		}
		else
			*offset_est = -1;	/* can't estimate */
2971
	}
2972 2973
	else
		*offset_est = 0;		/* not present */
2974

2975
	if (*count_est != 0)
2976
	{
2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		/*
		 * A LIMIT clause limits the absolute number of tuples returned.
		 * However, if it's not a constant LIMIT then we have to guess; for
		 * lack of a better idea, assume 10% of the plan's result is wanted.
		 */
		if (*count_est < 0 || *offset_est < 0)
		{
			/* LIMIT or OFFSET is an expression ... punt ... */
			limit_fraction = 0.10;
		}
		else
		{
			/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
			limit_fraction = (double) *count_est + (double) *offset_est;
		}

2993 2994
		/*
		 * If we have absolute limits from both caller and LIMIT, use the
2995 2996 2997 2998
		 * smaller value; likewise if they are both fractional.  If one is
		 * fractional and the other absolute, we can't easily determine which
		 * is smaller, but we use the heuristic that the absolute will usually
		 * be smaller.
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute */
				tuple_fraction = Min(tuple_fraction, limit_fraction);
			}
			else
			{
3009
				/* caller absolute, limit fractional; use caller's value */
3010 3011 3012 3013 3014 3015
			}
		}
		else if (tuple_fraction > 0.0)
		{
			if (limit_fraction >= 1.0)
			{
3016 3017
				/* caller fractional, limit absolute; use limit */
				tuple_fraction = limit_fraction;
3018 3019 3020 3021
			}
			else
			{
				/* both fractional */
3022
				tuple_fraction = Min(tuple_fraction, limit_fraction);
3023 3024 3025 3026 3027 3028 3029 3030
			}
		}
		else
		{
			/* no info from caller, just use limit */
			tuple_fraction = limit_fraction;
		}
	}
3031 3032 3033
	else if (*offset_est != 0 && tuple_fraction > 0.0)
	{
		/*
B
Bruce Momjian 已提交
3034
		 * We have an OFFSET but no LIMIT.  This acts entirely differently
B
Bruce Momjian 已提交
3035 3036 3037 3038
		 * from the LIMIT case: here, we need to increase rather than decrease
		 * the caller's tuple_fraction, because the OFFSET acts to cause more
		 * tuples to be fetched instead of fewer.  This only matters if we got
		 * a tuple_fraction > 0, however.
3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		 *
		 * As above, use 10% if OFFSET is present but unestimatable.
		 */
		if (*offset_est < 0)
			limit_fraction = 0.10;
		else
			limit_fraction = (double) *offset_est;

		/*
		 * If we have absolute counts from both caller and OFFSET, add them
B
Bruce Momjian 已提交
3049
		 * together; likewise if they are both fractional.  If one is
B
Bruce Momjian 已提交
3050 3051
		 * fractional and the other absolute, we want to take the larger, and
		 * we heuristically assume that's the fractional one.
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
		 */
		if (tuple_fraction >= 1.0)
		{
			if (limit_fraction >= 1.0)
			{
				/* both absolute, so add them together */
				tuple_fraction += limit_fraction;
			}
			else
			{
				/* caller absolute, limit fractional; use limit */
				tuple_fraction = limit_fraction;
			}
		}
		else
		{
			if (limit_fraction >= 1.0)
			{
				/* caller fractional, limit absolute; use caller's value */
			}
			else
			{
				/* both fractional, so add them together */
				tuple_fraction += limit_fraction;
				if (tuple_fraction >= 1.0)
B
Bruce Momjian 已提交
3077
					tuple_fraction = 0.0;		/* assume fetch all */
3078 3079 3080
			}
		}
	}
3081 3082 3083 3084

	return tuple_fraction;
}

3085 3086 3087 3088 3089
/*
 * limit_needed - do we actually need a Limit plan node?
 *
 * If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
 * a Limit node.  This is worth checking for because "OFFSET 0" is a common
B
Bruce Momjian 已提交
3090
 * locution for an optimization fence.  (Because other places in the planner
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
 * merely check whether parse->limitOffset isn't NULL, it will still work as
 * an optimization fence --- we're just suppressing unnecessary run-time
 * overhead.)
 *
 * This might look like it could be merged into preprocess_limit, but there's
 * a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
 * in preprocess_limit it's good enough to consider estimated values.
 */
static bool
limit_needed(Query *parse)
{
	Node	   *node;

	node = parse->limitCount;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* NULL indicates LIMIT ALL, ie, no limit */
			if (!((Const *) node)->constisnull)
				return true;	/* LIMIT with a constant value */
		}
		else
			return true;		/* non-constant LIMIT */
	}

	node = parse->limitOffset;
	if (node)
	{
		if (IsA(node, Const))
		{
			/* Treat NULL as no offset; the executor would too */
			if (!((Const *) node)->constisnull)
			{
B
Bruce Momjian 已提交
3125
				int64		offset = DatumGetInt64(((Const *) node)->constvalue);
3126

3127 3128
				if (offset != 0)
					return true;	/* OFFSET with a nonzero value */
3129 3130 3131 3132 3133 3134 3135 3136 3137
			}
		}
		else
			return true;		/* non-constant OFFSET */
	}

	return false;				/* don't need a Limit plan node */
}

3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150

/*
 * preprocess_groupclause - do preparatory work on GROUP BY clause
 *
 * The idea here is to adjust the ordering of the GROUP BY elements
 * (which in itself is semantically insignificant) to match ORDER BY,
 * thereby allowing a single sort operation to both implement the ORDER BY
 * requirement and set up for a Unique step that implements GROUP BY.
 *
 * In principle it might be interesting to consider other orderings of the
 * GROUP BY elements, which could match the sort ordering of other
 * possible plans (eg an indexscan) and thereby reduce cost.  We don't
 * bother with that, though.  Hashed grouping will frequently win anyway.
3151 3152 3153
 *
 * Note: we need no comparable processing of the distinctClause because
 * the parser already enforced that that matches ORDER BY.
3154 3155 3156 3157 3158
 *
 * For grouping sets, the order of items is instead forced to agree with that
 * of the grouping set (and items not in the grouping set are skipped). The
 * work of sorting the order of grouping set elements to match the ORDER BY if
 * possible is done elsewhere.
3159
 */
3160 3161
static List *
preprocess_groupclause(PlannerInfo *root, List *force)
3162 3163
{
	Query	   *parse = root->parse;
3164
	List	   *new_groupclause = NIL;
3165 3166 3167 3168
	bool		partial_match;
	ListCell   *sl;
	ListCell   *gl;

3169 3170 3171 3172 3173
	/* For grouping sets, we need to force the ordering */
	if (force)
	{
		foreach(sl, force)
		{
B
Bruce Momjian 已提交
3174
			Index		ref = lfirst_int(sl);
3175 3176 3177 3178 3179 3180 3181 3182
			SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);

			new_groupclause = lappend(new_groupclause, cl);
		}

		return new_groupclause;
	}

3183
	/* If no ORDER BY, nothing useful to do here */
3184
	if (parse->sortClause == NIL)
3185
		return parse->groupClause;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215

	/*
	 * Scan the ORDER BY clause and construct a list of matching GROUP BY
	 * items, but only as far as we can make a matching prefix.
	 *
	 * This code assumes that the sortClause contains no duplicate items.
	 */
	foreach(sl, parse->sortClause)
	{
		SortGroupClause *sc = (SortGroupClause *) lfirst(sl);

		foreach(gl, parse->groupClause)
		{
			SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

			if (equal(gc, sc))
			{
				new_groupclause = lappend(new_groupclause, gc);
				break;
			}
		}
		if (gl == NULL)
			break;				/* no match, so stop scanning */
	}

	/* Did we match all of the ORDER BY list, or just some of it? */
	partial_match = (sl != NULL);

	/* If no match at all, no point in reordering GROUP BY */
	if (new_groupclause == NIL)
3216
		return parse->groupClause;
3217 3218

	/*
3219 3220 3221 3222 3223 3224
	 * Add any remaining GROUP BY items to the new list, but only if we were
	 * able to make a complete match.  In other words, we only rearrange the
	 * GROUP BY list if the result is that one list is a prefix of the other
	 * --- otherwise there's no possibility of a common sort.  Also, give up
	 * if there are any non-sortable GROUP BY items, since then there's no
	 * hope anyway.
3225 3226 3227 3228 3229 3230 3231 3232
	 */
	foreach(gl, parse->groupClause)
	{
		SortGroupClause *gc = (SortGroupClause *) lfirst(gl);

		if (list_member_ptr(new_groupclause, gc))
			continue;			/* it matched an ORDER BY item */
		if (partial_match)
3233
			return parse->groupClause;	/* give up, no common sort possible */
3234
		if (!OidIsValid(gc->sortop))
3235
			return parse->groupClause;	/* give up, GROUP BY can't be sorted */
3236 3237 3238 3239 3240
		new_groupclause = lappend(new_groupclause, gc);
	}

	/* Success --- install the rearranged GROUP BY list */
	Assert(list_length(parse->groupClause) == list_length(new_groupclause));
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267
	return new_groupclause;
}

/*
 * Extract lists of grouping sets that can be implemented using a single
 * rollup-type aggregate pass each. Returns a list of lists of grouping sets.
 *
 * Input must be sorted with smallest sets first. Result has each sublist
 * sorted with smallest sets first.
 *
 * We want to produce the absolute minimum possible number of lists here to
 * avoid excess sorts. Fortunately, there is an algorithm for this; the problem
 * of finding the minimal partition of a partially-ordered set into chains
 * (which is what we need, taking the list of grouping sets as a poset ordered
 * by set inclusion) can be mapped to the problem of finding the maximum
 * cardinality matching on a bipartite graph, which is solvable in polynomial
 * time with a worst case of no worse than O(n^2.5) and usually much
 * better. Since our N is at most 4096, we don't need to consider fallbacks to
 * heuristic or approximate methods.  (Planning time for a 12-d cube is under
 * half a second on my modest system even with optimization off and assertions
 * on.)
 */
static List *
extract_rollup_sets(List *groupingSets)
{
	int			num_sets_raw = list_length(groupingSets);
	int			num_empty = 0;
B
Bruce Momjian 已提交
3268
	int			num_sets = 0;	/* distinct sets */
3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	int			num_chains = 0;
	List	   *result = NIL;
	List	  **results;
	List	  **orig_sets;
	Bitmapset **set_masks;
	int		   *chains;
	short	  **adjacency;
	short	   *adjacency_buf;
	BipartiteMatchState *state;
	int			i;
	int			j;
	int			j_size;
	ListCell   *lc1 = list_head(groupingSets);
	ListCell   *lc;

	/*
	 * Start by stripping out empty sets.  The algorithm doesn't require this,
	 * but the planner currently needs all empty sets to be returned in the
	 * first list, so we strip them here and add them back after.
	 */
	while (lc1 && lfirst(lc1) == NIL)
	{
		++num_empty;
		lc1 = lnext(lc1);
	}

	/* bail out now if it turns out that all we had were empty sets. */
	if (!lc1)
		return list_make1(groupingSets);

T
Tom Lane 已提交
3299
	/*----------
B
Bruce Momjian 已提交
3300 3301
	 * We don't strictly need to remove duplicate sets here, but if we don't,
	 * they tend to become scattered through the result, which is a bit
T
Tom Lane 已提交
3302 3303
	 * confusing (and irritating if we ever decide to optimize them out).
	 * So we remove them here and add them back after.
3304 3305 3306
	 *
	 * For each non-duplicate set, we fill in the following:
	 *
T
Tom Lane 已提交
3307 3308 3309
	 * orig_sets[i] = list of the original set lists
	 * set_masks[i] = bitmapset for testing inclusion
	 * adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
3310 3311 3312
	 *
	 * chains[i] will be the result group this set is assigned to.
	 *
T
Tom Lane 已提交
3313 3314 3315
	 * We index all of these from 1 rather than 0 because it is convenient
	 * to leave 0 free for the NIL node in the graph algorithm.
	 *----------
3316
	 */
B
Bruce Momjian 已提交
3317
	orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
	set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
	adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
	adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));

	j_size = 0;
	j = 0;
	i = 1;

	for_each_cell(lc, lc1)
	{
		List	   *candidate = lfirst(lc);
		Bitmapset  *candidate_set = NULL;
		ListCell   *lc2;
		int			dup_of = 0;

		foreach(lc2, candidate)
		{
			candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
		}

		/* we can only be a dup if we're the same length as a previous set */
		if (j_size == list_length(candidate))
		{
B
Bruce Momjian 已提交
3341 3342
			int			k;

3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
			for (k = j; k < i; ++k)
			{
				if (bms_equal(set_masks[k], candidate_set))
				{
					dup_of = k;
					break;
				}
			}
		}
		else if (j_size < list_length(candidate))
		{
			j_size = list_length(candidate);
			j = i;
		}

		if (dup_of > 0)
		{
			orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
			bms_free(candidate_set);
		}
		else
		{
B
Bruce Momjian 已提交
3365 3366
			int			k;
			int			n_adj = 0;
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408

			orig_sets[i] = list_make1(candidate);
			set_masks[i] = candidate_set;

			/* fill in adjacency list; no need to compare equal-size sets */

			for (k = j - 1; k > 0; --k)
			{
				if (bms_is_subset(set_masks[k], candidate_set))
					adjacency_buf[++n_adj] = k;
			}

			if (n_adj > 0)
			{
				adjacency_buf[0] = n_adj;
				adjacency[i] = palloc((n_adj + 1) * sizeof(short));
				memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
			}
			else
				adjacency[i] = NULL;

			++i;
		}
	}

	num_sets = i - 1;

	/*
	 * Apply the graph matching algorithm to do the work.
	 */
	state = BipartiteMatch(num_sets, num_sets, adjacency);

	/*
	 * Now, the state->pair* fields have the info we need to assign sets to
	 * chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
	 * pair_vu[v] = u (both will be true, but we check both so that we can do
	 * it in one pass)
	 */
	chains = palloc0((num_sets + 1) * sizeof(int));

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3409 3410
		int			u = state->pair_vu[i];
		int			v = state->pair_uv[i];
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420

		if (u > 0 && u < i)
			chains[i] = chains[u];
		else if (v > 0 && v < i)
			chains[i] = chains[v];
		else
			chains[i] = ++num_chains;
	}

	/* build result lists. */
B
Bruce Momjian 已提交
3421
	results = palloc0((num_chains + 1) * sizeof(List *));
3422 3423 3424

	for (i = 1; i <= num_sets; ++i)
	{
B
Bruce Momjian 已提交
3425
		int			c = chains[i];
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483

		Assert(c > 0);

		results[c] = list_concat(results[c], orig_sets[i]);
	}

	/* push any empty sets back on the first list. */
	while (num_empty-- > 0)
		results[1] = lcons(NIL, results[1]);

	/* make result list */
	for (i = 1; i <= num_chains; ++i)
		result = lappend(result, results[i]);

	/*
	 * Free all the things.
	 *
	 * (This is over-fussy for small sets but for large sets we could have
	 * tied up a nontrivial amount of memory.)
	 */
	BipartiteMatchFree(state);
	pfree(results);
	pfree(chains);
	for (i = 1; i <= num_sets; ++i)
		if (adjacency[i])
			pfree(adjacency[i]);
	pfree(adjacency);
	pfree(adjacency_buf);
	pfree(orig_sets);
	for (i = 1; i <= num_sets; ++i)
		bms_free(set_masks[i]);
	pfree(set_masks);

	return result;
}

/*
 * Reorder the elements of a list of grouping sets such that they have correct
 * prefix relationships.
 *
 * The input must be ordered with smallest sets first; the result is returned
 * with largest sets first.
 *
 * If we're passed in a sortclause, we follow its order of columns to the
 * extent possible, to minimize the chance that we add unnecessary sorts.
 * (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
 * gets implemented in one pass.)
 */
static List *
reorder_grouping_sets(List *groupingsets, List *sortclause)
{
	ListCell   *lc;
	ListCell   *lc2;
	List	   *previous = NIL;
	List	   *result = NIL;

	foreach(lc, groupingsets)
	{
B
Bruce Momjian 已提交
3484 3485
		List	   *candidate = lfirst(lc);
		List	   *new_elems = list_difference_int(candidate, previous);
3486 3487 3488 3489 3490 3491

		if (list_length(new_elems) > 0)
		{
			while (list_length(sortclause) > list_length(previous))
			{
				SortGroupClause *sc = list_nth(sortclause, list_length(previous));
B
Bruce Momjian 已提交
3492 3493
				int			ref = sc->tleSortGroupRef;

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
				if (list_member_int(new_elems, ref))
				{
					previous = lappend_int(previous, ref);
					new_elems = list_delete_int(new_elems, ref);
				}
				else
				{
					/* diverged from the sortclause; give up on it */
					sortclause = NIL;
					break;
				}
			}

			foreach(lc2, new_elems)
			{
				previous = lappend_int(previous, lfirst_int(lc2));
			}
		}

		result = lcons(list_copy(previous), result);
		list_free(new_elems);
	}

	list_free(previous);

	return result;
3520 3521
}

3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
/*
 * Compute query_pathkeys and other pathkeys during plan generation
 */
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
	Query	   *parse = root->parse;
	standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
	List	   *tlist = qp_extra->tlist;
	List	   *activeWindows = qp_extra->activeWindows;

	/*
	 * Calculate pathkeys that represent grouping/ordering requirements.  The
	 * sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
	 * be, in which case we just leave their pathkeys empty.
	 */
3538 3539
	if (qp_extra->groupClause &&
		grouping_is_sortable(qp_extra->groupClause))
3540 3541
		root->group_pathkeys =
			make_pathkeys_for_sortclauses(root,
3542
										  qp_extra->groupClause,
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603
										  tlist);
	else
		root->group_pathkeys = NIL;

	/* We consider only the first (bottom) window in pathkeys logic */
	if (activeWindows != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(activeWindows);

		root->window_pathkeys = make_pathkeys_for_window(root,
														 wc,
														 tlist);
	}
	else
		root->window_pathkeys = NIL;

	if (parse->distinctClause &&
		grouping_is_sortable(parse->distinctClause))
		root->distinct_pathkeys =
			make_pathkeys_for_sortclauses(root,
										  parse->distinctClause,
										  tlist);
	else
		root->distinct_pathkeys = NIL;

	root->sort_pathkeys =
		make_pathkeys_for_sortclauses(root,
									  parse->sortClause,
									  tlist);

	/*
	 * Figure out whether we want a sorted result from query_planner.
	 *
	 * If we have a sortable GROUP BY clause, then we want a result sorted
	 * properly for grouping.  Otherwise, if we have window functions to
	 * evaluate, we try to sort for the first window.  Otherwise, if there's a
	 * sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
	 * we try to produce output that's sufficiently well sorted for the
	 * DISTINCT.  Otherwise, if there is an ORDER BY clause, we want to sort
	 * by the ORDER BY clause.
	 *
	 * Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
	 * of GROUP BY, it would be tempting to request sort by ORDER BY --- but
	 * that might just leave us failing to exploit an available sort order at
	 * all.  Needs more thought.  The choice for DISTINCT versus ORDER BY is
	 * much easier, since we know that the parser ensured that one is a
	 * superset of the other.
	 */
	if (root->group_pathkeys)
		root->query_pathkeys = root->group_pathkeys;
	else if (root->window_pathkeys)
		root->query_pathkeys = root->window_pathkeys;
	else if (list_length(root->distinct_pathkeys) >
			 list_length(root->sort_pathkeys))
		root->query_pathkeys = root->distinct_pathkeys;
	else if (root->sort_pathkeys)
		root->query_pathkeys = root->sort_pathkeys;
	else
		root->query_pathkeys = NIL;
}

3604 3605
/*
 * choose_hashed_grouping - should we use hashed grouping?
3606
 *
3607
 * Returns TRUE to select hashing, FALSE to select sorting.
3608 3609
 */
static bool
3610 3611
choose_hashed_grouping(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3612
					   double path_rows, int path_width,
3613
					   Path *cheapest_path, Path *sorted_path,
3614
					   double dNumGroups, AggClauseCosts *agg_costs)
3615
{
3616 3617 3618 3619
	Query	   *parse = root->parse;
	int			numGroupCols = list_length(parse->groupClause);
	bool		can_hash;
	bool		can_sort;
3620
	Size		hashentrysize;
3621
	List	   *target_pathkeys;
3622 3623 3624 3625
	List	   *current_pathkeys;
	Path		hashed_p;
	Path		sorted_p;

3626 3627
	/*
	 * Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
B
Bruce Momjian 已提交
3628
	 * aggregates.  (Doing so would imply storing *all* the input values in
3629
	 * the hash table, and/or running many sorts in parallel, either of which
3630 3631 3632
	 * seems like a certain loser.)  We similarly don't support ordered-set
	 * aggregates in hashed aggregation, but that case is included in the
	 * numOrderedAggs count.
3633
	 */
3634
	can_hash = (agg_costs->numOrderedAggs == 0 &&
3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651
				grouping_is_hashable(parse->groupClause));
	can_sort = grouping_is_sortable(parse->groupClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement GROUP BY"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3652
	/* Prefer sorting when enable_hashagg is off */
3653 3654 3655 3656 3657 3658 3659 3660 3661
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */

	/* Estimate per-hash-entry space at tuple width... */
3662
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3663
	/* plus space for pass-by-ref transition values... */
3664
	hashentrysize += agg_costs->transitionSpace;
3665
	/* plus the per-hash-entry overhead */
3666
	hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
3667 3668 3669 3670

	if (hashentrysize * dNumGroups > work_mem * 1024L)
		return false;

3671 3672
	/*
	 * When we have both GROUP BY and DISTINCT, use the more-rigorous of
3673 3674 3675 3676
	 * DISTINCT and ORDER BY as the assumed required output sort order. This
	 * is an oversimplification because the DISTINCT might get implemented via
	 * hashing, but it's not clear that the case is common enough (or that our
	 * estimates are good enough) to justify trying to solve it exactly.
3677 3678 3679 3680 3681 3682 3683
	 */
	if (list_length(root->distinct_pathkeys) >
		list_length(root->sort_pathkeys))
		target_pathkeys = root->distinct_pathkeys;
	else
		target_pathkeys = root->sort_pathkeys;

3684
	/*
B
Bruce Momjian 已提交
3685 3686 3687 3688
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
3689
	 *
3690 3691 3692
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * either cheapest_path [+ sort] + group or agg [+ final sort] or
	 * presorted_path + group or agg [+ final sort] where brackets indicate a
3693 3694
	 * step that may not be needed.  We assume grouping_planner() will have
	 * passed us a presorted path only if it's a winner compared to
3695
	 * cheapest_path for this purpose.
3696
	 *
3697 3698
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
3699
	 */
3700
	cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
3701 3702
			 numGroupCols, dNumGroups,
			 cheapest_path->startup_cost, cheapest_path->total_cost,
3703
			 path_rows);
3704
	/* Result of hashed agg is always unsorted */
3705 3706
	if (target_pathkeys)
		cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
3707 3708
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721

	if (sorted_path)
	{
		sorted_p.startup_cost = sorted_path->startup_cost;
		sorted_p.total_cost = sorted_path->total_cost;
		current_pathkeys = sorted_path->pathkeys;
	}
	else
	{
		sorted_p.startup_cost = cheapest_path->startup_cost;
		sorted_p.total_cost = cheapest_path->total_cost;
		current_pathkeys = cheapest_path->pathkeys;
	}
3722
	if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
3723
	{
3724
		cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
3725 3726
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3727
		current_pathkeys = root->group_pathkeys;
3728 3729
	}

3730
	if (parse->hasAggs)
3731
		cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
3732 3733
				 numGroupCols, dNumGroups,
				 sorted_p.startup_cost, sorted_p.total_cost,
3734
				 path_rows);
3735
	else
3736
		cost_group(&sorted_p, root, numGroupCols, dNumGroups,
3737
				   sorted_p.startup_cost, sorted_p.total_cost,
3738
				   path_rows);
3739
	/* The Agg or Group node will preserve ordering */
3740 3741 3742
	if (target_pathkeys &&
		!pathkeys_contained_in(target_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
3743 3744
				  dNumGroups, path_width,
				  0.0, work_mem, limit_tuples);
3745 3746

	/*
3747
	 * Now make the decision using the top-level tuple fraction.
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3758 3759 3760 3761 3762
/*
 * choose_hashed_distinct - should we use hashing for DISTINCT?
 *
 * This is fairly similar to choose_hashed_grouping, but there are enough
 * differences that it doesn't seem worth trying to unify the two functions.
3763 3764 3765
 * (One difference is that we sometimes apply this after forming a Plan,
 * so the input alternatives can't be represented as Paths --- instead we
 * pass in the costs as individual variables.)
3766 3767
 *
 * But note that making the two choices independently is a bit bogus in
B
Bruce Momjian 已提交
3768
 * itself.  If the two could be combined into a single choice operation
3769 3770 3771 3772 3773 3774
 * it'd probably be better, but that seems far too unwieldy to be practical,
 * especially considering that the combination of GROUP BY and DISTINCT
 * isn't very common in real queries.  By separating them, we are giving
 * extra preference to using a sorting implementation when a common sort key
 * is available ... and that's not necessarily wrong anyway.
 *
3775
 * Returns TRUE to select hashing, FALSE to select sorting.
3776 3777 3778 3779
 */
static bool
choose_hashed_distinct(PlannerInfo *root,
					   double tuple_fraction, double limit_tuples,
3780 3781 3782 3783
					   double path_rows, int path_width,
					   Cost cheapest_startup_cost, Cost cheapest_total_cost,
					   Cost sorted_startup_cost, Cost sorted_total_cost,
					   List *sorted_pathkeys,
3784 3785
					   double dNumDistinctRows)
{
3786 3787 3788 3789
	Query	   *parse = root->parse;
	int			numDistinctCols = list_length(parse->distinctClause);
	bool		can_sort;
	bool		can_hash;
3790 3791
	Size		hashentrysize;
	List	   *current_pathkeys;
3792
	List	   *needed_pathkeys;
3793 3794 3795
	Path		hashed_p;
	Path		sorted_p;

3796
	/*
B
Bruce Momjian 已提交
3797 3798
	 * If we have a sortable DISTINCT ON clause, we always use sorting. This
	 * enforces the expected behavior of DISTINCT ON.
3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
	 */
	can_sort = grouping_is_sortable(parse->distinctClause);
	if (can_sort && parse->hasDistinctOn)
		return false;

	can_hash = grouping_is_hashable(parse->distinctClause);

	/* Quick out if only one choice is workable */
	if (!(can_hash && can_sort))
	{
		if (can_hash)
			return true;
		else if (can_sort)
			return false;
		else
			ereport(ERROR,
					(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
					 errmsg("could not implement DISTINCT"),
					 errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
	}

3820 3821 3822 3823 3824 3825 3826 3827
	/* Prefer sorting when enable_hashagg is off */
	if (!enable_hashagg)
		return false;

	/*
	 * Don't do it if it doesn't look like the hashtable will fit into
	 * work_mem.
	 */
3828 3829

	/* Estimate per-hash-entry space at tuple width... */
3830
	hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
3831 3832
	/* plus the per-hash-entry overhead */
	hashentrysize += hash_agg_entry_size(0);
3833 3834 3835 3836 3837 3838 3839 3840 3841 3842

	if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
		return false;

	/*
	 * See if the estimated cost is no more than doing it the other way. While
	 * avoiding the need for sorted input is usually a win, the fact that the
	 * output won't be sorted may be a loss; so we need to do an actual cost
	 * comparison.
	 *
3843 3844
	 * We need to consider cheapest_path + hashagg [+ final sort] versus
	 * sorted_path [+ sort] + group [+ final sort] where brackets indicate a
3845
	 * step that may not be needed.
3846 3847 3848 3849
	 *
	 * These path variables are dummies that just hold cost fields; we don't
	 * make actual Paths for these steps.
	 */
3850
	cost_agg(&hashed_p, root, AGG_HASHED, NULL,
3851
			 numDistinctCols, dNumDistinctRows,
3852 3853
			 cheapest_startup_cost, cheapest_total_cost,
			 path_rows);
3854

3855
	/*
3856 3857
	 * Result of hashed agg is always unsorted, so if ORDER BY is present we
	 * need to charge for the final sort.
3858
	 */
3859
	if (parse->sortClause)
3860
		cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
3861 3862
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3863

3864
	/*
B
Bruce Momjian 已提交
3865
	 * Now for the GROUP case.  See comments in grouping_planner about the
3866 3867
	 * sorting choices here --- this code should match that code.
	 */
3868 3869 3870 3871
	sorted_p.startup_cost = sorted_startup_cost;
	sorted_p.total_cost = sorted_total_cost;
	current_pathkeys = sorted_pathkeys;
	if (parse->hasDistinctOn &&
3872 3873 3874 3875 3876 3877
		list_length(root->distinct_pathkeys) <
		list_length(root->sort_pathkeys))
		needed_pathkeys = root->sort_pathkeys;
	else
		needed_pathkeys = root->distinct_pathkeys;
	if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
3878 3879 3880 3881 3882 3883 3884
	{
		if (list_length(root->distinct_pathkeys) >=
			list_length(root->sort_pathkeys))
			current_pathkeys = root->distinct_pathkeys;
		else
			current_pathkeys = root->sort_pathkeys;
		cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
3885 3886
				  path_rows, path_width,
				  0.0, work_mem, -1.0);
3887 3888 3889
	}
	cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
			   sorted_p.startup_cost, sorted_p.total_cost,
3890 3891
			   path_rows);
	if (parse->sortClause &&
3892 3893
		!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
		cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
3894 3895
				  dNumDistinctRows, path_width,
				  0.0, work_mem, limit_tuples);
3896 3897

	/*
3898
	 * Now make the decision using the top-level tuple fraction.
3899 3900 3901 3902 3903 3904 3905 3906 3907 3908
	 */
	if (compare_fractional_path_costs(&hashed_p, &sorted_p,
									  tuple_fraction) < 0)
	{
		/* Hashed is cheaper, so use it */
		return true;
	}
	return false;
}

3909
/*
3910
 * make_subplanTargetList
3911
 *	  Generate appropriate target list when grouping is required.
3912
 *
3913 3914 3915 3916 3917
 * When grouping_planner inserts grouping or aggregation plan nodes
 * above the scan/join plan constructed by query_planner+create_plan,
 * we typically want the scan/join plan to emit a different target list
 * than the outer plan nodes should have.  This routine generates the
 * correct target list for the scan/join subplan.
3918 3919 3920 3921
 *
 * The initial target list passed from the parser already contains entries
 * for all ORDER BY and GROUP BY expressions, but it will not have entries
 * for variables used only in HAVING clauses; so we need to add those
3922 3923 3924 3925
 * variables to the subplan target list.  Also, we flatten all expressions
 * except GROUP BY items into their component variables; the other expressions
 * will be computed by the inserted nodes rather than by the subplan.
 * For example, given a query like
3926 3927
 *		SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
 * we want to pass this targetlist to the subplan:
3928
 *		a+b,c,d
3929
 * where the a+b target will be used by the Sort/Group steps, and the
3930
 * other targets will be used for computing the final results.
3931
 *
3932 3933 3934
 * If we are grouping or aggregating, *and* there are no non-Var grouping
 * expressions, then the returned tlist is effectively dummy; we do not
 * need to force it to be evaluated, because all the Vars it contains
3935 3936 3937 3938
 * should be present in the "flat" tlist generated by create_plan, though
 * possibly in a different order.  In that case we'll use create_plan's tlist,
 * and the tlist made here is only needed as input to query_planner to tell
 * it which Vars are needed in the output of the scan/join plan.
3939
 *
3940
 * 'tlist' is the query's target list.
3941
 * 'groupColIdx' receives an array of column numbers for the GROUP BY
3942
 *			expressions (if there are any) in the returned target list.
3943
 * 'need_tlist_eval' is set true if we really need to evaluate the
3944 3945
 *			returned tlist as-is.  (Note: locate_grouping_columns assumes
 *			that if this is FALSE, all grouping columns are simple Vars.)
3946
 *
3947
 * The result is the targetlist to be passed to query_planner.
3948 3949
 */
static List *
3950
make_subplanTargetList(PlannerInfo *root,
3951
					   List *tlist,
3952 3953
					   AttrNumber **groupColIdx,
					   bool *need_tlist_eval)
3954
{
3955
	Query	   *parse = root->parse;
3956
	List	   *sub_tlist;
3957 3958
	List	   *non_group_cols;
	List	   *non_group_vars;
3959 3960 3961 3962
	int			numCols;

	*groupColIdx = NULL;

B
Bruce Momjian 已提交
3963
	/*
3964
	 * If we're not grouping or aggregating, there's nothing to do here;
3965 3966
	 * query_planner should receive the unmodified target list.
	 */
3967
	if (!parse->hasAggs && !parse->groupClause && !parse->groupingSets && !root->hasHavingQual &&
T
Tom Lane 已提交
3968
		!parse->hasWindowFuncs)
3969 3970
	{
		*need_tlist_eval = true;
3971
		return tlist;
3972
	}
3973

B
Bruce Momjian 已提交
3974
	/*
3975 3976
	 * Otherwise, we must build a tlist containing all grouping columns, plus
	 * any other Vars mentioned in the targetlist and HAVING qual.
3977
	 */
3978 3979
	sub_tlist = NIL;
	non_group_cols = NIL;
3980
	*need_tlist_eval = false;	/* only eval if not flat tlist */
3981

3982
	numCols = list_length(parse->groupClause);
3983
	if (numCols > 0)
3984
	{
3985 3986 3987 3988 3989 3990 3991
		/*
		 * If grouping, create sub_tlist entries for all GROUP BY columns, and
		 * make an array showing where the group columns are in the sub_tlist.
		 *
		 * Note: with this implementation, the array entries will always be
		 * 1..N, but we don't want callers to assume that.
		 */
3992
		AttrNumber *grpColIdx;
3993
		ListCell   *tl;
3994

3995
		grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
3996
		*groupColIdx = grpColIdx;
3997

3998
		foreach(tl, tlist)
3999
		{
4000 4001
			TargetEntry *tle = (TargetEntry *) lfirst(tl);
			int			colno;
4002

4003 4004 4005 4006 4007 4008 4009 4010
			colno = get_grouping_column_index(parse, tle);
			if (colno >= 0)
			{
				/*
				 * It's a grouping column, so add it to the result tlist and
				 * remember its resno in grpColIdx[].
				 */
				TargetEntry *newtle;
4011

4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024
				newtle = makeTargetEntry(tle->expr,
										 list_length(sub_tlist) + 1,
										 NULL,
										 false);
				sub_tlist = lappend(sub_tlist, newtle);

				Assert(grpColIdx[colno] == 0);	/* no dups expected */
				grpColIdx[colno] = newtle->resno;

				if (!(newtle->expr && IsA(newtle->expr, Var)))
					*need_tlist_eval = true;	/* tlist contains non Vars */
			}
			else
4025
			{
4026
				/*
4027 4028
				 * Non-grouping column, so just remember the expression for
				 * later call to pull_var_clause.  There's no need for
4029 4030 4031
				 * pull_var_clause to examine the TargetEntry node itself.
				 */
				non_group_cols = lappend(non_group_cols, tle->expr);
4032 4033 4034
			}
		}
	}
4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
	else
	{
		/*
		 * With no grouping columns, just pass whole tlist to pull_var_clause.
		 * Need (shallow) copy to avoid damaging input tlist below.
		 */
		non_group_cols = list_copy(tlist);
	}

	/*
	 * If there's a HAVING clause, we'll need the Vars it uses, too.
	 */
	if (parse->havingQual)
		non_group_cols = lappend(non_group_cols, parse->havingQual);

	/*
	 * Pull out all the Vars mentioned in non-group cols (plus HAVING), and
	 * add them to the result tlist if not already present.  (A Var used
	 * directly as a GROUP BY item will be present already.)  Note this
	 * includes Vars used in resjunk items, so we are covering the needs of
B
Bruce Momjian 已提交
4055
	 * ORDER BY and window specifications.  Vars used within Aggrefs will be
4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
	 * pulled out here, too.
	 */
	non_group_vars = pull_var_clause((Node *) non_group_cols,
									 PVC_RECURSE_AGGREGATES,
									 PVC_INCLUDE_PLACEHOLDERS);
	sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);

	/* clean up cruft */
	list_free(non_group_vars);
	list_free(non_group_cols);
4066 4067 4068 4069

	return sub_tlist;
}

4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
/*
 * get_grouping_column_index
 *		Get the GROUP BY column position, if any, of a targetlist entry.
 *
 * Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
 * if it's not a grouping column.  Note: the result is unique because the
 * parser won't make multiple groupClause entries for the same TLE.
 */
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
	int			colno = 0;
	Index		ressortgroupref = tle->ressortgroupref;
	ListCell   *gl;

	/* No need to search groupClause if TLE hasn't got a sortgroupref */
	if (ressortgroupref == 0)
		return -1;

	foreach(gl, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);

		if (grpcl->tleSortGroupRef == ressortgroupref)
			return colno;
		colno++;
	}

	return -1;
}

4101 4102
/*
 * locate_grouping_columns
4103
 *		Locate grouping columns in the tlist chosen by create_plan.
4104 4105
 *
 * This is only needed if we don't use the sub_tlist chosen by
B
Bruce Momjian 已提交
4106
 * make_subplanTargetList.  We have to forget the column indexes found
T
Tom Lane 已提交
4107
 * by that routine and re-locate the grouping exprs in the real sub_tlist.
4108
 * We assume the grouping exprs are just Vars (see make_subplanTargetList).
4109 4110
 */
static void
4111
locate_grouping_columns(PlannerInfo *root,
4112 4113 4114 4115 4116
						List *tlist,
						List *sub_tlist,
						AttrNumber *groupColIdx)
{
	int			keyno = 0;
4117
	ListCell   *gl;
4118 4119 4120 4121

	/*
	 * No work unless grouping.
	 */
4122
	if (!root->parse->groupClause)
4123 4124 4125 4126 4127 4128
	{
		Assert(groupColIdx == NULL);
		return;
	}
	Assert(groupColIdx != NULL);

4129
	foreach(gl, root->parse->groupClause)
4130
	{
4131
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
4132 4133
		Var		   *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
		TargetEntry *te;
4134

4135 4136
		/*
		 * The grouping column returned by create_plan might not have the same
B
Bruce Momjian 已提交
4137
		 * typmod as the original Var.  (This can happen in cases where a
4138 4139 4140
		 * set-returning function has been inlined, so that we now have more
		 * knowledge about what it returns than we did when the original Var
		 * was created.)  So we can't use tlist_member() to search the tlist;
B
Bruce Momjian 已提交
4141
		 * instead use tlist_member_match_var.  For safety, still check that
4142 4143 4144 4145 4146
		 * the vartype matches.
		 */
		if (!(groupexpr && IsA(groupexpr, Var)))
			elog(ERROR, "grouping column is not a Var as expected");
		te = tlist_member_match_var(groupexpr, sub_tlist);
T
Tom Lane 已提交
4147
		if (!te)
4148
			elog(ERROR, "failed to locate grouping columns");
4149
		Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
4150
		groupColIdx[keyno++] = te->resno;
4151 4152 4153
	}
}

4154 4155 4156 4157 4158 4159 4160
/*
 * postprocess_setop_tlist
 *	  Fix up targetlist returned by plan_set_operations().
 *
 * We need to transpose sort key info from the orig_tlist into new_tlist.
 * NOTE: this would not be good enough if we supported resjunk sort keys
 * for results of set operations --- then, we'd need to project a whole
4161
 * new tlist to evaluate the resjunk columns.  For now, just ereport if we
4162 4163 4164 4165 4166
 * find any resjunk columns in orig_tlist.
 */
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
4167 4168
	ListCell   *l;
	ListCell   *orig_tlist_item = list_head(orig_tlist);
4169 4170 4171 4172 4173 4174 4175

	foreach(l, new_tlist)
	{
		TargetEntry *new_tle = (TargetEntry *) lfirst(l);
		TargetEntry *orig_tle;

		/* ignore resjunk columns in setop result */
4176
		if (new_tle->resjunk)
4177 4178
			continue;

4179 4180 4181
		Assert(orig_tlist_item != NULL);
		orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
		orig_tlist_item = lnext(orig_tlist_item);
B
Bruce Momjian 已提交
4182
		if (orig_tle->resjunk)	/* should not happen */
4183
			elog(ERROR, "resjunk output columns are not implemented");
4184 4185
		Assert(new_tle->resno == orig_tle->resno);
		new_tle->ressortgroupref = orig_tle->ressortgroupref;
4186
	}
4187
	if (orig_tlist_item != NULL)
4188
		elog(ERROR, "resjunk output columns are not implemented");
4189 4190
	return new_tlist;
}
T
Tom Lane 已提交
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222

/*
 * select_active_windows
 *		Create a list of the "active" window clauses (ie, those referenced
 *		by non-deleted WindowFuncs) in the order they are to be executed.
 */
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
	List	   *result;
	List	   *actives;
	ListCell   *lc;

	/* First, make a list of the active windows */
	actives = NIL;
	foreach(lc, root->parse->windowClause)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);

		/* It's only active if wflists shows some related WindowFuncs */
		Assert(wc->winref <= wflists->maxWinRef);
		if (wflists->windowFuncs[wc->winref] != NIL)
			actives = lappend(actives, wc);
	}

	/*
	 * Now, ensure that windows with identical partitioning/ordering clauses
	 * are adjacent in the list.  This is required by the SQL standard, which
	 * says that only one sort is to be used for such windows, even if they
	 * are otherwise distinct (eg, different names or framing clauses).
	 *
	 * There is room to be much smarter here, for example detecting whether
4223 4224 4225 4226
	 * one window's sort keys are a prefix of another's (so that sorting for
	 * the latter would do for the former), or putting windows first that
	 * match a sort order available for the underlying query.  For the moment
	 * we are content with meeting the spec.
T
Tom Lane 已提交
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245
	 */
	result = NIL;
	while (actives != NIL)
	{
		WindowClause *wc = (WindowClause *) linitial(actives);
		ListCell   *prev;
		ListCell   *next;

		/* Move wc from actives to result */
		actives = list_delete_first(actives);
		result = lappend(result, wc);

		/* Now move any matching windows from actives to result */
		prev = NULL;
		for (lc = list_head(actives); lc; lc = next)
		{
			WindowClause *wc2 = (WindowClause *) lfirst(lc);

			next = lnext(lc);
4246
			/* framing options are NOT to be compared here! */
T
Tom Lane 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
			if (equal(wc->partitionClause, wc2->partitionClause) &&
				equal(wc->orderClause, wc2->orderClause))
			{
				actives = list_delete_cell(actives, lc, prev);
				result = lappend(result, wc2);
			}
			else
				prev = lc;
		}
	}

	return result;
}

4261
/*
4262 4263 4264 4265 4266
 * make_windowInputTargetList
 *	  Generate appropriate target list for initial input to WindowAgg nodes.
 *
 * When grouping_planner inserts one or more WindowAgg nodes into the plan,
 * this function computes the initial target list to be computed by the node
B
Bruce Momjian 已提交
4267
 * just below the first WindowAgg.  This list must contain all values needed
4268 4269 4270 4271 4272 4273 4274
 * to evaluate the window functions, compute the final target list, and
 * perform any required final sort step.  If multiple WindowAggs are needed,
 * each intermediate one adds its window function results onto this tlist;
 * only the topmost WindowAgg computes the actual desired target list.
 *
 * This function is much like make_subplanTargetList, though not quite enough
 * like it to share code.  As in that function, we flatten most expressions
B
Bruce Momjian 已提交
4275
 * into their component variables.  But we do not want to flatten window
4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
 * PARTITION BY/ORDER BY clauses, since that might result in multiple
 * evaluations of them, which would be bad (possibly even resulting in
 * inconsistent answers, if they contain volatile functions).  Also, we must
 * not flatten GROUP BY clauses that were left unflattened by
 * make_subplanTargetList, because we may no longer have access to the
 * individual Vars in them.
 *
 * Another key difference from make_subplanTargetList is that we don't flatten
 * Aggref expressions, since those are to be computed below the window
 * functions and just referenced like Vars above that.
 *
 * 'tlist' is the query's final target list.
 * 'activeWindows' is the list of active windows previously identified by
 *			select_active_windows.
 *
 * The result is the targetlist to be computed by the plan node immediately
 * below the first WindowAgg node.
4293 4294
 */
static List *
4295 4296 4297
make_windowInputTargetList(PlannerInfo *root,
						   List *tlist,
						   List *activeWindows)
4298
{
4299 4300 4301 4302 4303
	Query	   *parse = root->parse;
	Bitmapset  *sgrefs;
	List	   *new_tlist;
	List	   *flattenable_cols;
	List	   *flattenable_vars;
4304 4305
	ListCell   *lc;

4306 4307 4308 4309 4310 4311 4312
	Assert(parse->hasWindowFuncs);

	/*
	 * Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
	 * into a bitmapset for convenient reference below.
	 */
	sgrefs = NULL;
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331
	foreach(lc, activeWindows)
	{
		WindowClause *wc = (WindowClause *) lfirst(lc);
		ListCell   *lc2;

		foreach(lc2, wc->partitionClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
		foreach(lc2, wc->orderClause)
		{
			SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);

			sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
		}
	}

4332 4333 4334 4335 4336 4337 4338 4339
	/* Add in sortgroupref numbers of GROUP BY clauses, too */
	foreach(lc, parse->groupClause)
	{
		SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);

		sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
	}

4340
	/*
4341 4342
	 * Construct a tlist containing all the non-flattenable tlist items, and
	 * save aside the others for a moment.
4343
	 */
4344 4345 4346
	new_tlist = NIL;
	flattenable_cols = NIL;

4347 4348 4349 4350
	foreach(lc, tlist)
	{
		TargetEntry *tle = (TargetEntry *) lfirst(lc);

4351 4352 4353 4354 4355
		/*
		 * Don't want to deconstruct window clauses or GROUP BY items.  (Note
		 * that such items can't contain window functions, so it's okay to
		 * compute them below the WindowAgg nodes.)
		 */
4356
		if (tle->ressortgroupref != 0 &&
4357
			bms_is_member(tle->ressortgroupref, sgrefs))
4358
		{
4359
			/* Don't want to deconstruct this value, so add to new_tlist */
4360 4361 4362
			TargetEntry *newtle;

			newtle = makeTargetEntry(tle->expr,
4363
									 list_length(new_tlist) + 1,
4364 4365
									 NULL,
									 false);
4366
			/* Preserve its sortgroupref marking, in case it's volatile */
4367
			newtle->ressortgroupref = tle->ressortgroupref;
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377
			new_tlist = lappend(new_tlist, newtle);
		}
		else
		{
			/*
			 * Column is to be flattened, so just remember the expression for
			 * later call to pull_var_clause.  There's no need for
			 * pull_var_clause to examine the TargetEntry node itself.
			 */
			flattenable_cols = lappend(flattenable_cols, tle->expr);
4378 4379 4380
		}
	}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399
	/*
	 * Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
	 * add them to the result tlist if not already present.  (Some might be
	 * there already because they're used directly as window/group clauses.)
	 *
	 * Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
	 * Aggrefs are placed in the Agg node's tlist and not left to be computed
	 * at higher levels.
	 */
	flattenable_vars = pull_var_clause((Node *) flattenable_cols,
									   PVC_INCLUDE_AGGREGATES,
									   PVC_INCLUDE_PLACEHOLDERS);
	new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);

	/* clean up cruft */
	list_free(flattenable_vars);
	list_free(flattenable_cols);

	return new_tlist;
4400 4401
}

T
Tom Lane 已提交
4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412
/*
 * make_pathkeys_for_window
 *		Create a pathkeys list describing the required input ordering
 *		for the given WindowClause.
 *
 * The required ordering is first the PARTITION keys, then the ORDER keys.
 * In the future we might try to implement windowing using hashing, in which
 * case the ordering could be relaxed, but for now we always sort.
 */
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
4413
						 List *tlist)
T
Tom Lane 已提交
4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427
{
	List	   *window_pathkeys;
	List	   *window_sortclauses;

	/* Throw error if can't sort */
	if (!grouping_is_sortable(wc->partitionClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window PARTITION BY"),
				 errdetail("Window partitioning columns must be of sortable datatypes.")));
	if (!grouping_is_sortable(wc->orderClause))
		ereport(ERROR,
				(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
				 errmsg("could not implement window ORDER BY"),
4428
		errdetail("Window ordering columns must be of sortable datatypes.")));
T
Tom Lane 已提交
4429 4430 4431 4432 4433 4434

	/* Okay, make the combined pathkeys */
	window_sortclauses = list_concat(list_copy(wc->partitionClause),
									 list_copy(wc->orderClause));
	window_pathkeys = make_pathkeys_for_sortclauses(root,
													window_sortclauses,
4435
													tlist);
T
Tom Lane 已提交
4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
	list_free(window_sortclauses);
	return window_pathkeys;
}

/*----------
 * get_column_info_for_window
 *		Get the partitioning/ordering column numbers and equality operators
 *		for a WindowAgg node.
 *
 * This depends on the behavior of make_pathkeys_for_window()!
 *
 * We are given the target WindowClause and an array of the input column
B
Bruce Momjian 已提交
4448
 * numbers associated with the resulting pathkeys.  In the easy case, there
T
Tom Lane 已提交
4449 4450 4451 4452 4453 4454 4455
 * are the same number of pathkey columns as partitioning + ordering columns
 * and we just have to copy some data around.  However, it's possible that
 * some of the original partitioning + ordering columns were eliminated as
 * redundant during the transformation to pathkeys.  (This can happen even
 * though the parser gets rid of obvious duplicates.  A typical scenario is a
 * window specification "PARTITION BY x ORDER BY y" coupled with a clause
 * "WHERE x = y" that causes the two sort columns to be recognized as
4456
 * redundant.)	In that unusual case, we have to work a lot harder to
T
Tom Lane 已提交
4457 4458 4459
 * determine which keys are significant.
 *
 * The method used here is a bit brute-force: add the sort columns to a list
B
Bruce Momjian 已提交
4460
 * one at a time and note when the resulting pathkey list gets longer.  But
T
Tom Lane 已提交
4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
 * it's a sufficiently uncommon case that a faster way doesn't seem worth
 * the amount of code refactoring that'd be needed.
 *----------
 */
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
						   int numSortCols, AttrNumber *sortColIdx,
						   int *partNumCols,
						   AttrNumber **partColIdx,
						   Oid **partOperators,
						   int *ordNumCols,
						   AttrNumber **ordColIdx,
						   Oid **ordOperators)
{
	int			numPart = list_length(wc->partitionClause);
	int			numOrder = list_length(wc->orderClause);

	if (numSortCols == numPart + numOrder)
	{
		/* easy case */
		*partNumCols = numPart;
		*partColIdx = sortColIdx;
		*partOperators = extract_grouping_ops(wc->partitionClause);
		*ordNumCols = numOrder;
		*ordColIdx = sortColIdx + numPart;
		*ordOperators = extract_grouping_ops(wc->orderClause);
	}
	else
	{
		List	   *sortclauses;
		List	   *pathkeys;
		int			scidx;
		ListCell   *lc;

		/* first, allocate what's certainly enough space for the arrays */
		*partNumCols = 0;
		*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
		*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
		*ordNumCols = 0;
		*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
		*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
		sortclauses = NIL;
		pathkeys = NIL;
		scidx = 0;
		foreach(lc, wc->partitionClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4513
														 tlist);
T
Tom Lane 已提交
4514 4515 4516
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4517 4518
				(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
				(*partOperators)[*partNumCols] = sgc->eqop;
T
Tom Lane 已提交
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
				(*partNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		foreach(lc, wc->orderClause)
		{
			SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
			List	   *new_pathkeys;

			sortclauses = lappend(sortclauses, sgc);
			new_pathkeys = make_pathkeys_for_sortclauses(root,
														 sortclauses,
4531
														 tlist);
T
Tom Lane 已提交
4532 4533 4534
			if (list_length(new_pathkeys) > list_length(pathkeys))
			{
				/* this sort clause is actually significant */
4535 4536
				(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
				(*ordOperators)[*ordNumCols] = sgc->eqop;
T
Tom Lane 已提交
4537 4538 4539 4540 4541 4542 4543 4544 4545
				(*ordNumCols)++;
				pathkeys = new_pathkeys;
			}
		}
		/* complain if we didn't eat exactly the right number of sort cols */
		if (scidx != numSortCols)
			elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
	}
}
4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559


/*
 * expression_planner
 *		Perform planner's transformations on a standalone expression.
 *
 * Various utility commands need to evaluate expressions that are not part
 * of a plannable query.  They can do so using the executor's regular
 * expression-execution machinery, but first the expression has to be fed
 * through here to transform it from parser output to something executable.
 *
 * Currently, we disallow sublinks in standalone expressions, so there's no
 * real "planning" involved here.  (That might not always be true though.)
 * What we must do is run eval_const_expressions to ensure that any function
4560 4561 4562 4563
 * calls are converted to positional notation and function default arguments
 * get inserted.  The fact that constant subexpressions get simplified is a
 * side-effect that is useful when the expression will get evaluated more than
 * once.  Also, we must fix operator function IDs.
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
 *
 * Note: this must not make any damaging changes to the passed-in expression
 * tree.  (It would actually be okay to apply fix_opfuncids to it, but since
 * we first do an expression_tree_mutator-based walk, what is returned will
 * be a new node tree.)
 */
Expr *
expression_planner(Expr *expr)
{
	Node	   *result;

4575 4576 4577 4578
	/*
	 * Convert named-argument function calls, insert default arguments and
	 * simplify constant subexprs
	 */
4579 4580 4581 4582 4583 4584 4585
	result = eval_const_expressions(NULL, (Node *) expr);

	/* Fill in opfuncid values if missing */
	fix_opfuncids(result);

	return (Expr *) result;
}
4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631


/*
 * plan_cluster_use_sort
 *		Use the planner to decide how CLUSTER should implement sorting
 *
 * tableOid is the OID of a table to be clustered on its index indexOid
 * (which is already known to be a btree index).  Decide whether it's
 * cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
 * Return TRUE to use sorting, FALSE to use an indexscan.
 *
 * Note: caller had better already hold some type of lock on the table.
 */
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
	PlannerInfo *root;
	Query	   *query;
	PlannerGlobal *glob;
	RangeTblEntry *rte;
	RelOptInfo *rel;
	IndexOptInfo *indexInfo;
	QualCost	indexExprCost;
	Cost		comparisonCost;
	Path	   *seqScanPath;
	Path		seqScanAndSortPath;
	IndexPath  *indexScanPath;
	ListCell   *lc;

	/* Set up mostly-dummy planner state */
	query = makeNode(Query);
	query->commandType = CMD_SELECT;

	glob = makeNode(PlannerGlobal);

	root = makeNode(PlannerInfo);
	root->parse = query;
	root->glob = glob;
	root->query_level = 1;
	root->planner_cxt = CurrentMemoryContext;
	root->wt_param_id = -1;

	/* Build a minimal RTE for the rel */
	rte = makeNode(RangeTblEntry);
	rte->rtekind = RTE_RELATION;
	rte->relid = tableOid;
B
Bruce Momjian 已提交
4632
	rte->relkind = RELKIND_RELATION;	/* Don't be too picky. */
4633
	rte->lateral = false;
4634 4635 4636 4637
	rte->inh = false;
	rte->inFromCl = true;
	query->rtable = list_make1(rte);

4638 4639
	/* Set up RTE/RelOptInfo arrays */
	setup_simple_rel_arrays(root);
4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651

	/* Build RelOptInfo */
	rel = build_simple_rel(root, 1, RELOPT_BASEREL);

	/* Locate IndexOptInfo for the target index */
	indexInfo = NULL;
	foreach(lc, rel->indexlist)
	{
		indexInfo = (IndexOptInfo *) lfirst(lc);
		if (indexInfo->indexoid == indexOid)
			break;
	}
4652 4653 4654 4655 4656 4657 4658 4659

	/*
	 * It's possible that get_relation_info did not generate an IndexOptInfo
	 * for the desired index; this could happen if it's not yet reached its
	 * indcheckxmin usability horizon, or if it's a system index and we're
	 * ignoring system indexes.  In such cases we should tell CLUSTER to not
	 * trust the index contents but use seqscan-and-sort.
	 */
4660
	if (lc == NULL)				/* not in the list? */
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
		return true;			/* use sort */

	/*
	 * Rather than doing all the pushups that would be needed to use
	 * set_baserel_size_estimates, just do a quick hack for rows and width.
	 */
	rel->rows = rel->tuples;
	rel->width = get_relation_data_width(tableOid, NULL);

	root->total_table_pages = rel->pages;
4671 4672 4673

	/*
	 * Determine eval cost of the index expressions, if any.  We need to
4674 4675 4676
	 * charge twice that amount for each tuple comparison that happens during
	 * the sort, since tuplesort.c will have to re-evaluate the index
	 * expressions each time.  (XXX that's pretty inefficient...)
4677 4678 4679 4680 4681
	 */
	cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
	comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);

	/* Estimate the cost of seq scan + sort */
4682
	seqScanPath = create_seqscan_path(root, rel, NULL);
4683 4684 4685 4686 4687 4688
	cost_sort(&seqScanAndSortPath, root, NIL,
			  seqScanPath->total_cost, rel->tuples, rel->width,
			  comparisonCost, maintenance_work_mem, -1.0);

	/* Estimate the cost of index scan */
	indexScanPath = create_index_path(root, indexInfo,
4689
									  NIL, NIL, NIL, NIL, NIL,
4690 4691
									  ForwardScanDirection, false,
									  NULL, 1.0);
4692 4693 4694

	return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}