vacuumlazy.c 31.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*-------------------------------------------------------------------------
 *
 * vacuumlazy.c
 *	  Concurrent ("lazy") vacuuming.
 *
 *
 * The major space usage for LAZY VACUUM is storage for the array of dead
 * tuple TIDs, with the next biggest need being storage for per-disk-page
 * free space info.  We want to ensure we can vacuum even the very largest
 * relations with finite memory space usage.  To do that, we set upper bounds
 * on the number of tuples and pages we will keep track of at once.
 *
13
 * We are willing to use at most VacuumMem memory space to keep track of
14 15 16 17 18 19 20
 * dead tuples.  We initially allocate an array of TIDs of that size.
 * If the array threatens to overflow, we suspend the heap scan phase
 * and perform a pass of index cleanup and page compaction, then resume
 * the heap scan with an empty TID array.
 *
 * We can limit the storage for page free space to MaxFSMPages entries,
 * since that's the most the free space map will be willing to remember
21 22
 * anyway.	If the relation has fewer than that many pages with free space,
 * life is easy: just build an array of per-page info.	If it has more,
23 24 25 26 27 28
 * we store the free space info as a heap ordered by amount of free space,
 * so that we can discard the pages with least free space to ensure we never
 * have more than MaxFSMPages entries in all.  The surviving page entries
 * are passed to the free space map at conclusion of the scan.
 *
 *
B
Bruce Momjian 已提交
29
 * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
30 31 32 33
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
34
 *	  $Header: /cvsroot/pgsql/src/backend/commands/vacuumlazy.c,v 1.27 2003/03/04 21:51:21 tgl Exp $
35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/heapam.h"
#include "access/xlog.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/freespace.h"
#include "storage/sinval.h"
#include "storage/smgr.h"
48
#include "utils/lsyscache.h"
49 50 51 52 53 54


/*
 * Space/time tradeoff parameters: do these need to be user-tunable?
 *
 * To consider truncating the relation, we want there to be at least
55 56
 * REL_TRUNCATE_MINIMUM or (relsize / REL_TRUNCATE_FRACTION) (whichever
 * is less) potentially-freeable pages.
57
 */
58
#define REL_TRUNCATE_MINIMUM	1000
59 60 61 62 63 64 65 66 67
#define REL_TRUNCATE_FRACTION	16

/* MAX_TUPLES_PER_PAGE can be a conservative upper limit */
#define MAX_TUPLES_PER_PAGE		((int) (BLCKSZ / sizeof(HeapTupleHeaderData)))


typedef struct LVRelStats
{
	/* Overall statistics about rel */
68
	BlockNumber rel_pages;
69
	double		rel_tuples;
70
	BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
71
	Size		threshold;		/* minimum interesting free space */
72 73
	/* List of TIDs of tuples we intend to delete */
	/* NB: this list is ordered by TID address */
74 75
	int			num_dead_tuples;	/* current # of entries */
	int			max_dead_tuples;	/* # slots allocated in array */
76
	ItemPointer dead_tuples;	/* array of ItemPointerData */
77 78
	/* Array or heap of per-page info about free space */
	/* We use a simple array until it fills up, then convert to heap */
79 80
	bool		fs_is_heap;		/* are we using heap organization? */
	int			num_free_pages; /* current # of entries */
81 82
	int			max_free_pages; /* # slots allocated in array */
	PageFreeSpaceInfo *free_pages;	/* array or heap of blkno/avail */
83 84 85
} LVRelStats;


B
Bruce Momjian 已提交
86
static int	elevel = -1;
87

88 89
static TransactionId OldestXmin;
static TransactionId FreezeLimit;
90 91 92 93


/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
94
			   Relation *Irel, int nindexes);
95
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
96
static void lazy_scan_index(Relation indrel, LVRelStats *vacrelstats);
97
static void lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats);
98 99
static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats);
100 101
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
102
						 LVRelStats *vacrelstats);
103 104
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
105
					   ItemPointer itemptr);
106
static void lazy_record_free_space(LVRelStats *vacrelstats,
107
					   BlockNumber page, Size avail);
108
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
109
static bool dummy_tid_reaped(ItemPointer itemptr, void *state);
110 111
static void lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats);
static int	vac_cmp_itemptr(const void *left, const void *right);
112
static int	vac_cmp_page_spaces(const void *left, const void *right);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130


/*
 *	lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
 *
 *		This routine vacuums a single heap, cleans out its indexes, and
 *		updates its num_pages and num_tuples statistics.
 *
 *		At entry, we have already established a transaction and opened
 *		and locked the relation.
 */
void
lazy_vacuum_rel(Relation onerel, VacuumStmt *vacstmt)
{
	LVRelStats *vacrelstats;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
131
	BlockNumber possibly_freeable;
132 133

	if (vacstmt->verbose)
134
		elevel = INFO;
135
	else
136
		elevel = DEBUG1;
B
Bruce Momjian 已提交
137

138 139
	vacuum_set_xid_limits(vacstmt, onerel->rd_rel->relisshared,
						  &OldestXmin, &FreezeLimit);
140

141
	vacrelstats = (LVRelStats *) palloc0(sizeof(LVRelStats));
142

143 144 145 146
	/* Set threshold for interesting free space = average request size */
	/* XXX should we scale it up or down?  Adjust vacuum.c too, if so */
	vacrelstats->threshold = GetAvgFSMRequestSize(&onerel->rd_node);

147 148 149 150 151 152 153 154 155 156 157 158 159
	/* Open all indexes of the relation */
	vac_open_indexes(onerel, &nindexes, &Irel);
	hasindex = (nindexes > 0);

	/* Do the vacuuming */
	lazy_scan_heap(onerel, vacrelstats, Irel, nindexes);

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel);

	/*
	 * Optionally truncate the relation.
	 *
160 161
	 * Don't even think about it unless we have a shot at releasing a goodly
	 * number of pages.  Otherwise, the time taken isn't worth it.
162 163
	 */
	possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
164 165
	if (possibly_freeable >= REL_TRUNCATE_MINIMUM ||
		possibly_freeable >= vacrelstats->rel_pages / REL_TRUNCATE_FRACTION)
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
		lazy_truncate_heap(onerel, vacrelstats);

	/* Update shared free space map with final free space info */
	lazy_update_fsm(onerel, vacrelstats);

	/* Update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(onerel), vacrelstats->rel_pages,
						vacrelstats->rel_tuples, hasindex);
}


/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
193
	BlockNumber empty_pages,
194 195 196 197 198 199 200 201 202 203 204
				changed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
	int			i;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	relname = RelationGetRelationName(onerel);
205 206 207
	elog(elevel, "--Relation %s.%s--",
		 get_namespace_name(RelationGetNamespace(onerel)),
		 relname);
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228

	empty_pages = changed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->nonempty_pages = 0;

	lazy_space_alloc(vacrelstats, nblocks);

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;
		int			prev_dead_count;

229 230
		CHECK_FOR_INTERRUPTS();

231
		/*
232 233 234
		 * If we are close to overrunning the available space for
		 * dead-tuple TIDs, pause and do a cycle of vacuuming before we
		 * tackle this page.
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MAX_TUPLES_PER_PAGE &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i], vacrelstats);
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
		}

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/* Not sure we still need to handle this case, but... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
			if (PageIsNew(page))
			{
B
Bruce Momjian 已提交
262
				elog(WARNING, "Rel %s: Uninitialized page %u - fixing",
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
					 relname, blkno);
				PageInit(page, BufferGetPageSize(buf), 0);
				lazy_record_free_space(vacrelstats, blkno,
									   PageGetFreeSpace(page));
			}
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			WriteBuffer(buf);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

310
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
311 312
			{
				case HEAPTUPLE_DEAD:
313
					tupgone = true;		/* we can delete the tuple */
314 315
					break;
				case HEAPTUPLE_LIVE:
316

317
					/*
318 319
					 * Tuple is good.  Consider whether to replace its
					 * xmin value with FrozenTransactionId.
T
Tom Lane 已提交
320
					 *
321 322 323 324
					 * NB: Since we hold only a shared buffer lock here, we
					 * are assuming that TransactionId read/write is
					 * atomic.	This is not the only place that makes such
					 * an assumption.  It'd be possible to avoid the
T
Tom Lane 已提交
325 326
					 * assumption by momentarily acquiring exclusive lock,
					 * but for the moment I see no need to.
327
					 */
328 329
					if (TransactionIdIsNormal(HeapTupleHeaderGetXmin(tuple.t_data)) &&
						TransactionIdPrecedes(HeapTupleHeaderGetXmin(tuple.t_data),
330 331
											  FreezeLimit))
					{
332
						HeapTupleHeaderSetXmin(tuple.t_data, FrozenTransactionId);
T
Tom Lane 已提交
333 334
						/* infomask should be okay already */
						Assert(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED);
335 336
						pgchanged = true;
					}
337 338
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
339

340
					/*
341 342
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
					 */
					nkeep += 1;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			/*
			 * Other checks...
			 */
364 365
			if (onerel->rd_rel->relhasoids &&
				!OidIsValid(HeapTupleGetOid(&tuple)))
B
Bruce Momjian 已提交
366
				elog(WARNING, "Rel %s: TID %u/%u: OID IS INVALID. TUPGONE %d.",
367 368 369 370 371 372 373 374 375 376 377 378
					 relname, blkno, offnum, (int) tupgone);

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				tups_vacuumed += 1;
			}
			else
			{
				num_tuples += 1;
				hastup = true;
			}
379
		}						/* scan along page */
380 381

		/*
382 383
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and
384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
		 * record its post-compaction free space.  If not, then we're done
		 * with this page, so remember its free space as-is.
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
		{
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
		}

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
		{
401
			SetBufferCommitInfoNeedsSave(buf);
402 403
			changed_pages++;
		}
404 405

		ReleaseBuffer(buf);
406 407
	}

408 409 410
	/* save stats for use later */
	vacrelstats->rel_tuples = num_tuples;

411
	/* If any tuples need to be deleted, perform final vacuum cycle */
412
	/* XXX put a threshold on min number of tuples here? */
413 414 415 416 417 418 419 420
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i], vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
	}
421
	else
422
	{
423
		/* Must do post-vacuum cleanup and statistics update anyway */
424 425 426
		for (i = 0; i < nindexes; i++)
			lazy_scan_index(Irel[i], vacrelstats);
	}
427

428
	elog(elevel, "Pages %u: Changed %u, Empty %u; Tup %.0f: Vac %.0f, Keep %.0f, UnUsed %.0f.\n\tTotal %s",
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
		 nblocks, changed_pages, empty_pages,
		 num_tuples, tups_vacuumed, nkeep, nunused,
		 vac_show_rusage(&ru0));
}


/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
459
		BlockNumber tblk;
460 461 462
		Buffer		buf;
		Page		page;

463 464
		CHECK_FOR_INTERRUPTS();

465 466 467 468 469 470 471 472 473 474 475 476 477
		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBuffer(onerel, tblk);
		LockBufferForCleanup(buf);
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);
		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		lazy_record_free_space(vacrelstats, tblk,
							   PageGetFreeSpace(page));
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		WriteBuffer(buf);
		npages++;
	}

478
	elog(elevel, "Removed %d tuples in %d pages.\n\t%s", tupindex, npages,
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
		 vac_show_rusage(&ru0));
}

/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller is expected to handle reading, locking, and writing the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
496
	OffsetNumber unused[BLCKSZ / sizeof(OffsetNumber)];
497 498 499 500 501 502 503
	int			uncnt;
	Page		page = BufferGetPage(buffer);
	ItemId		itemid;

	START_CRIT_SECTION();
	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
504 505
		BlockNumber tblk;
		OffsetNumber toff;
506 507 508 509 510 511 512 513 514 515 516

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		itemid->lp_flags &= ~LP_USED;
	}

	uncnt = PageRepairFragmentation(page, unused);

517 518
	/* XLOG stuff */
	if (!onerel->rd_istemp)
519 520 521
	{
		XLogRecPtr	recptr;

522
		recptr = log_heap_clean(onerel, buffer, unused, uncnt);
523 524 525
		PageSetLSN(page, recptr);
		PageSetSUI(page, ThisStartUpID);
	}
526 527 528 529 530 531
	else
	{
		/* No XLOG record, but still need to flag that XID exists on disk */
		MyXactMadeTempRelUpdate = true;
	}

532 533 534 535 536
	END_CRIT_SECTION();

	return tupindex;
}

537 538 539 540 541 542 543 544 545
/*
 *	lazy_scan_index() -- scan one index relation to update pg_class statistic.
 *
 * We use this when we have no deletions to do.
 */
static void
lazy_scan_index(Relation indrel, LVRelStats *vacrelstats)
{
	IndexBulkDeleteResult *stats;
546
	IndexVacuumCleanupInfo vcinfo;
547 548 549 550 551
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
552
	 * If index is unsafe for concurrent access, must lock it.
553
	 */
554
	if (!indrel->rd_am->amconcurrent)
555
		LockRelation(indrel, AccessExclusiveLock);
556 557

	/*
558 559 560 561
	 * Even though we're not planning to delete anything, we use the
	 * ambulkdelete call, because (a) the scan happens within the index AM
	 * for more speed, and (b) it may want to pass private statistics to
	 * the amvacuumcleanup call.
562 563 564
	 */
	stats = index_bulk_delete(indrel, dummy_tid_reaped, NULL);

565 566 567 568 569 570
	/* Do post-VACUUM cleanup, even though we deleted nothing */
	vcinfo.vacuum_full = false;
	vcinfo.message_level = elevel;

	stats = index_vacuum_cleanup(indrel, &vcinfo, stats);

571 572 573
	/*
	 * Release lock acquired above.
	 */
574
	if (!indrel->rd_am->amconcurrent)
575
		UnlockRelation(indrel, AccessExclusiveLock);
576 577 578 579 580 581 582 583 584

	if (!stats)
		return;

	/* now update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(indrel),
						stats->num_pages, stats->num_index_tuples,
						false);

585
	elog(elevel, "Index %s: Pages %u, %u deleted, %u free; Tuples %.0f.\n\t%s",
586
		 RelationGetRelationName(indrel),
587 588
		 stats->num_pages, stats->pages_deleted, stats->pages_free,
		 stats->num_index_tuples,
589 590 591 592 593
		 vac_show_rusage(&ru0));

	pfree(stats);
}

594 595 596 597 598 599 600 601 602 603 604 605
/*
 *	lazy_vacuum_index() -- vacuum one index relation.
 *
 *		Delete all the index entries pointing to tuples listed in
 *		vacrelstats->dead_tuples.
 *
 *		Finally, we arrange to update the index relation's statistics in
 *		pg_class.
 */
static void
lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats)
{
606
	IndexBulkDeleteResult *stats;
607
	IndexVacuumCleanupInfo vcinfo;
608 609 610 611 612
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
613
	 * If index is unsafe for concurrent access, must lock it.
614
	 */
615
	if (!indrel->rd_am->amconcurrent)
616 617
		LockRelation(indrel, AccessExclusiveLock);

618 619
	/* Do bulk deletion */
	stats = index_bulk_delete(indrel, lazy_tid_reaped, (void *) vacrelstats);
620

621 622 623 624 625 626
	/* Do post-VACUUM cleanup */
	vcinfo.vacuum_full = false;
	vcinfo.message_level = elevel;

	stats = index_vacuum_cleanup(indrel, &vcinfo, stats);

627 628 629
	/*
	 * Release lock acquired above.
	 */
630
	if (!indrel->rd_am->amconcurrent)
631 632
		UnlockRelation(indrel, AccessExclusiveLock);

633 634 635
	if (!stats)
		return;

636
	/* now update statistics in pg_class */
637 638 639
	vac_update_relstats(RelationGetRelid(indrel),
						stats->num_pages, stats->num_index_tuples,
						false);
640

641
	elog(elevel, "Index %s: Pages %u, %u deleted, %u free; Tuples %.0f: Deleted %.0f.\n\t%s",
642
		 RelationGetRelationName(indrel),
643
		 stats->num_pages, stats->pages_deleted, stats->pages_free,
644 645
		 stats->num_index_tuples, stats->tuples_removed,
		 vac_show_rusage(&ru0));
646

647
	pfree(stats);
648 649 650 651 652 653 654 655
}

/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
656 657
	BlockNumber old_rel_pages = vacrelstats->rel_pages;
	BlockNumber new_rel_pages;
658
	PageFreeSpaceInfo *pageSpaces;
659 660 661 662 663 664 665 666
	int			n;
	int			i,
				j;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
667 668 669 670 671
	 * We need full exclusive lock on the relation in order to do
	 * truncation. If we can't get it, give up rather than waiting --- we
	 * don't want to block other backends, and we don't want to deadlock
	 * (which is quite possible considering we already hold a lower-grade
	 * lock).
672
	 */
673
	if (!ConditionalLockRelation(onerel, AccessExclusiveLock))
674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up;
	 * the newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/* might as well use the latest news when we update pg_class stats */
		vacrelstats->rel_pages = new_rel_pages;
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
692 693 694
	 * contain nothing we need to keep.  This is *necessary*, not
	 * optional, because other backends could have added tuples to these
	 * pages whilst we were vacuuming.
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 *
	 * First, flush any shared buffers for the blocks we intend to delete.
	 * FlushRelationBuffers is a bit more than we need for this, since it
	 * will also write out dirty buffers for blocks we aren't deleting,
	 * but it's the closest thing in bufmgr's API.
	 */
	i = FlushRelationBuffers(onerel, new_rel_pages);
	if (i < 0)
		elog(ERROR, "VACUUM (lazy_truncate_heap): FlushRelationBuffers returned %d",
			 i);

	/*
	 * Do the physical truncation.
	 */
	new_rel_pages = smgrtruncate(DEFAULT_SMGR, onerel, new_rel_pages);
722
	onerel->rd_nblocks = new_rel_pages; /* update relcache immediately */
723
	onerel->rd_targblock = InvalidBlockNumber;
724 725
	vacrelstats->rel_pages = new_rel_pages;		/* save new number of
												 * blocks */
726 727 728 729 730

	/*
	 * Drop free-space info for removed blocks; these must not get entered
	 * into the FSM!
	 */
731
	pageSpaces = vacrelstats->free_pages;
732 733 734 735
	n = vacrelstats->num_free_pages;
	j = 0;
	for (i = 0; i < n; i++)
	{
736
		if (pageSpaces[i].blkno < new_rel_pages)
737
		{
738
			pageSpaces[j] = pageSpaces[i];
739 740 741 742
			j++;
		}
	}
	vacrelstats->num_free_pages = j;
743 744
	/* We destroyed the heap ordering, so mark array unordered */
	vacrelstats->fs_is_heap = false;
745 746 747 748 749

	/*
	 * We keep the exclusive lock until commit (perhaps not necessary)?
	 */

750
	elog(elevel, "Truncated %u --> %u pages.\n\t%s", old_rel_pages,
B
Bruce Momjian 已提交
751
		 new_rel_pages, vac_show_rusage(&ru0));
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
}

/*
 * Rescan end pages to verify that they are (still) empty of needed tuples.
 *
 * Returns number of nondeletable pages (last nonempty page + 1).
 */
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber blkno;
	HeapTupleData tuple;

	/* Strange coding of loop control is needed because blkno is unsigned */
	blkno = vacrelstats->rel_pages;
	while (blkno > vacrelstats->nonempty_pages)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;

777 778
		CHECK_FOR_INTERRUPTS();

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
		blkno--;

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			/* PageIsNew robably shouldn't happen... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
				continue;

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

819
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
820 821
			{
				case HEAPTUPLE_DEAD:
822
					tupgone = true;		/* we can delete the tuple */
823 824
					break;
				case HEAPTUPLE_LIVE:
825
					/* Shouldn't be necessary to re-freeze anything */
826 827
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
828

829
					/*
830 831
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
					 */
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			if (!tupgone)
			{
				hastup = true;
				break;			/* can stop scanning */
			}
854
		}						/* scan along page */
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
			WriteBuffer(buf);
		else
			ReleaseBuffer(buf);

		/* Done scanning if we found a tuple here */
		if (hastup)
			return blkno + 1;
	}

	/*
	 * If we fall out of the loop, all the previously-thought-to-be-empty
870 871
	 * pages really are; we need not bother to look at the last
	 * known-nonempty page.
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	 */
	return vacrelstats->nonempty_pages;
}

/*
 * lazy_space_alloc - space allocation decisions for lazy vacuum
 *
 * See the comments at the head of this file for rationale.
 */
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
	int			maxtuples;
	int			maxpages;

887 888
	maxtuples = (int) ((VacuumMem * 1024L) / sizeof(ItemPointerData));
	/* stay sane if small VacuumMem */
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
	if (maxtuples < MAX_TUPLES_PER_PAGE)
		maxtuples = MAX_TUPLES_PER_PAGE;

	vacrelstats->num_dead_tuples = 0;
	vacrelstats->max_dead_tuples = maxtuples;
	vacrelstats->dead_tuples = (ItemPointer)
		palloc(maxtuples * sizeof(ItemPointerData));

	maxpages = MaxFSMPages;
	/* No need to allocate more pages than the relation has blocks */
	if (relblocks < (BlockNumber) maxpages)
		maxpages = (int) relblocks;
	/* avoid palloc(0) */
	if (maxpages < 1)
		maxpages = 1;

	vacrelstats->fs_is_heap = false;
	vacrelstats->num_free_pages = 0;
	vacrelstats->max_free_pages = maxpages;
908 909
	vacrelstats->free_pages = (PageFreeSpaceInfo *)
		palloc(maxpages * sizeof(PageFreeSpaceInfo));
910 911 912 913 914 915 916 917 918 919
}

/*
 * lazy_record_dead_tuple - remember one deletable tuple
 */
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr)
{
	/*
920 921 922
	 * The array shouldn't overflow under normal behavior, but perhaps it
	 * could if we are given a really small VacuumMem. In that case, just
	 * forget the last few tuples.
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
	 */
	if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
	{
		vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
		vacrelstats->num_dead_tuples++;
	}
}

/*
 * lazy_record_free_space - remember free space on one page
 */
static void
lazy_record_free_space(LVRelStats *vacrelstats,
					   BlockNumber page,
					   Size avail)
{
939
	PageFreeSpaceInfo *pageSpaces;
940 941
	int			n;

942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
	/*
	 * A page with less than stats->threshold free space will be forgotten
	 * immediately, and never passed to the free space map.  Removing the
	 * uselessly small entries early saves cycles, and in particular reduces
	 * the amount of time we spend holding the FSM lock when we finally call
	 * RecordRelationFreeSpace.  Since the FSM will probably drop pages with
	 * little free space anyway, there's no point in making this really small.
	 *
	 * XXX Is it worth trying to measure average tuple size, and using that to
	 * adjust the threshold?  Would be worthwhile if FSM has no stats yet
	 * for this relation.  But changing the threshold as we scan the rel
	 * might lead to bizarre behavior, too.  Also, it's probably better if
	 * vacuum.c has the same thresholding behavior as we do here.
	 */
	if (avail < vacrelstats->threshold)
957 958 959
		return;

	/* Copy pointers to local variables for notational simplicity */
960
	pageSpaces = vacrelstats->free_pages;
961 962 963 964 965
	n = vacrelstats->max_free_pages;

	/* If we haven't filled the array yet, just keep adding entries */
	if (vacrelstats->num_free_pages < n)
	{
966 967
		pageSpaces[vacrelstats->num_free_pages].blkno = page;
		pageSpaces[vacrelstats->num_free_pages].avail = avail;
968 969 970 971 972 973 974
		vacrelstats->num_free_pages++;
		return;
	}

	/*----------
	 * The rest of this routine works with "heap" organization of the
	 * free space arrays, wherein we maintain the heap property
975
	 *			avail[(j-1) div 2] <= avail[j]  for 0 < j < n.
976 977 978 979 980 981 982 983
	 * In particular, the zero'th element always has the smallest available
	 * space and can be discarded to make room for a new page with more space.
	 * See Knuth's discussion of heap-based priority queues, sec 5.2.3;
	 * but note he uses 1-origin array subscripts, not 0-origin.
	 *----------
	 */

	/* If we haven't yet converted the array to heap organization, do it */
984
	if (!vacrelstats->fs_is_heap)
985 986 987
	{
		/*
		 * Scan backwards through the array, "sift-up" each value into its
988 989
		 * correct position.  We can start the scan at n/2-1 since each
		 * entry above that position has no children to worry about.
990
		 */
991
		int			l = n / 2;
992 993 994

		while (--l >= 0)
		{
995 996
			BlockNumber R = pageSpaces[l].blkno;
			Size		K = pageSpaces[l].avail;
997 998 999 1000 1001
			int			i;		/* i is where the "hole" is */

			i = l;
			for (;;)
			{
1002
				int			j = 2 * i + 1;
1003 1004 1005

				if (j >= n)
					break;
1006
				if (j + 1 < n && pageSpaces[j].avail > pageSpaces[j + 1].avail)
1007
					j++;
1008
				if (K <= pageSpaces[j].avail)
1009
					break;
1010
				pageSpaces[i] = pageSpaces[j];
1011 1012
				i = j;
			}
1013 1014
			pageSpaces[i].blkno = R;
			pageSpaces[i].avail = K;
1015 1016 1017 1018 1019 1020
		}

		vacrelstats->fs_is_heap = true;
	}

	/* If new page has more than zero'th entry, insert it into heap */
1021
	if (avail > pageSpaces[0].avail)
1022 1023
	{
		/*
1024 1025 1026 1027
		 * Notionally, we replace the zero'th entry with the new data, and
		 * then sift-up to maintain the heap property.	Physically, the
		 * new data doesn't get stored into the arrays until we find the
		 * right location for it.
1028
		 */
1029
		int			i = 0;		/* i is where the "hole" is */
1030 1031 1032

		for (;;)
		{
1033
			int			j = 2 * i + 1;
1034 1035 1036

			if (j >= n)
				break;
1037
			if (j + 1 < n && pageSpaces[j].avail > pageSpaces[j + 1].avail)
1038
				j++;
1039
			if (avail <= pageSpaces[j].avail)
1040
				break;
1041
			pageSpaces[i] = pageSpaces[j];
1042 1043
			i = j;
		}
1044 1045
		pageSpaces[i].blkno = page;
		pageSpaces[i].avail = avail;
1046 1047 1048 1049 1050 1051
	}
}

/*
 *	lazy_tid_reaped() -- is a particular tid deletable?
 *
1052 1053
 *		This has the right signature to be an IndexBulkDeleteCallback.
 *
1054 1055 1056
 *		Assumes dead_tuples array is in sorted order.
 */
static bool
1057
lazy_tid_reaped(ItemPointer itemptr, void *state)
1058
{
1059
	LVRelStats *vacrelstats = (LVRelStats *) state;
1060
	ItemPointer res;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070

	res = (ItemPointer) bsearch((void *) itemptr,
								(void *) vacrelstats->dead_tuples,
								vacrelstats->num_dead_tuples,
								sizeof(ItemPointerData),
								vac_cmp_itemptr);

	return (res != NULL);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/*
 * Dummy version for lazy_scan_index.
 */
static bool
dummy_tid_reaped(ItemPointer itemptr, void *state)
{
	return false;
}

1080 1081 1082 1083 1084 1085 1086
/*
 * Update the shared Free Space Map with the info we now have about
 * free space in the relation, discarding any old info the map may have.
 */
static void
lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats)
{
1087 1088 1089
	PageFreeSpaceInfo *pageSpaces = vacrelstats->free_pages;
	int			nPages = vacrelstats->num_free_pages;

1090
	/*
1091
	 * Sort data into order, as required by RecordRelationFreeSpace.
1092
	 */
1093 1094 1095 1096
	if (nPages > 1)
		qsort(pageSpaces, nPages, sizeof(PageFreeSpaceInfo),
			  vac_cmp_page_spaces);

1097
	RecordRelationFreeSpace(&onerel->rd_node, nPages, pageSpaces);
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
}

/*
 * Comparator routines for use with qsort() and bsearch().
 */
static int
vac_cmp_itemptr(const void *left, const void *right)
{
	BlockNumber lblk,
				rblk;
	OffsetNumber loff,
				roff;

	lblk = ItemPointerGetBlockNumber((ItemPointer) left);
	rblk = ItemPointerGetBlockNumber((ItemPointer) right);

	if (lblk < rblk)
		return -1;
	if (lblk > rblk)
		return 1;

	loff = ItemPointerGetOffsetNumber((ItemPointer) left);
	roff = ItemPointerGetOffsetNumber((ItemPointer) right);

	if (loff < roff)
		return -1;
	if (loff > roff)
		return 1;

	return 0;
}
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

static int
vac_cmp_page_spaces(const void *left, const void *right)
{
	PageFreeSpaceInfo *linfo = (PageFreeSpaceInfo *) left;
	PageFreeSpaceInfo *rinfo = (PageFreeSpaceInfo *) right;

	if (linfo->blkno < rinfo->blkno)
		return -1;
	else if (linfo->blkno > rinfo->blkno)
		return 1;
	return 0;
}