vacuumlazy.c 30.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*-------------------------------------------------------------------------
 *
 * vacuumlazy.c
 *	  Concurrent ("lazy") vacuuming.
 *
 *
 * The major space usage for LAZY VACUUM is storage for the array of dead
 * tuple TIDs, with the next biggest need being storage for per-disk-page
 * free space info.  We want to ensure we can vacuum even the very largest
 * relations with finite memory space usage.  To do that, we set upper bounds
 * on the number of tuples and pages we will keep track of at once.
 *
13
 * We are willing to use at most VacuumMem memory space to keep track of
14 15 16 17 18 19 20
 * dead tuples.  We initially allocate an array of TIDs of that size.
 * If the array threatens to overflow, we suspend the heap scan phase
 * and perform a pass of index cleanup and page compaction, then resume
 * the heap scan with an empty TID array.
 *
 * We can limit the storage for page free space to MaxFSMPages entries,
 * since that's the most the free space map will be willing to remember
21 22
 * anyway.	If the relation has fewer than that many pages with free space,
 * life is easy: just build an array of per-page info.	If it has more,
23 24 25 26 27 28 29 30 31 32 33
 * we store the free space info as a heap ordered by amount of free space,
 * so that we can discard the pages with least free space to ensure we never
 * have more than MaxFSMPages entries in all.  The surviving page entries
 * are passed to the free space map at conclusion of the scan.
 *
 *
 * Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
34
 *	  $Header: /cvsroot/pgsql/src/backend/commands/vacuumlazy.c,v 1.10 2001/10/28 06:25:43 momjian Exp $
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/heapam.h"
#include "access/xlog.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/freespace.h"
#include "storage/sinval.h"
#include "storage/smgr.h"


/*
 * Space/time tradeoff parameters: do these need to be user-tunable?
 *
 * A page with less than PAGE_SPACE_THRESHOLD free space will be forgotten
54
 * immediately, and not even passed to the free space map.	Removing the
55
 * uselessly small entries early saves cycles, and in particular reduces
56
 * the amount of time we spend holding the FSM lock when we finally call
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
 * MultiRecordFreeSpace.  Since the FSM will ignore pages below its own
 * runtime threshold anyway, there's no point in making this really small.
 * XXX Is it worth trying to measure average tuple size, and using that to
 * set the threshold?  Problem is we don't know average tuple size very
 * accurately for the first few pages...
 *
 * To consider truncating the relation, we want there to be at least
 * relsize / REL_TRUNCATE_FRACTION potentially-freeable pages.
 */
#define PAGE_SPACE_THRESHOLD	((Size) (BLCKSZ / 32))

#define REL_TRUNCATE_FRACTION	16

/* MAX_TUPLES_PER_PAGE can be a conservative upper limit */
#define MAX_TUPLES_PER_PAGE		((int) (BLCKSZ / sizeof(HeapTupleHeaderData)))


typedef struct LVRelStats
{
	/* Overall statistics about rel */
77
	BlockNumber rel_pages;
78
	double		rel_tuples;
79
	BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
80 81
	/* List of TIDs of tuples we intend to delete */
	/* NB: this list is ordered by TID address */
82 83
	int			num_dead_tuples;	/* current # of entries */
	int			max_dead_tuples;	/* # slots allocated in array */
84
	ItemPointer dead_tuples;	/* array of ItemPointerData */
85 86
	/* Array or heap of per-page info about free space */
	/* We use a simple array until it fills up, then convert to heap */
87 88 89 90
	bool		fs_is_heap;		/* are we using heap organization? */
	int			num_free_pages; /* current # of entries */
	int			max_free_pages; /* # slots allocated in arrays */
	BlockNumber *free_pages;	/* array or heap of block numbers */
91
	Size	   *free_spaceavail;	/* array or heap of available space */
92 93 94 95 96
} LVRelStats;


static int	MESSAGE_LEVEL;		/* message level */

97 98
static TransactionId OldestXmin;
static TransactionId FreezeLimit;
99 100 101 102


/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
103
			   Relation *Irel, int nindexes);
104
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
105
static void lazy_scan_index(Relation indrel, LVRelStats *vacrelstats);
106
static void lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats);
107 108
static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats);
109 110
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
111
						 LVRelStats *vacrelstats);
112 113
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
114
					   ItemPointer itemptr);
115
static void lazy_record_free_space(LVRelStats *vacrelstats,
116
					   BlockNumber page, Size avail);
117
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
118
static bool dummy_tid_reaped(ItemPointer itemptr, void *state);
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
static void lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats);
static int	vac_cmp_itemptr(const void *left, const void *right);


/*
 *	lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
 *
 *		This routine vacuums a single heap, cleans out its indexes, and
 *		updates its num_pages and num_tuples statistics.
 *
 *		At entry, we have already established a transaction and opened
 *		and locked the relation.
 */
void
lazy_vacuum_rel(Relation onerel, VacuumStmt *vacstmt)
{
	LVRelStats *vacrelstats;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
139
	BlockNumber possibly_freeable;
140 141 142 143 144 145 146

	/* initialize */
	if (vacstmt->verbose)
		MESSAGE_LEVEL = NOTICE;
	else
		MESSAGE_LEVEL = DEBUG;

147 148
	vacuum_set_xid_limits(vacstmt, onerel->rd_rel->relisshared,
						  &OldestXmin, &FreezeLimit);
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165

	vacrelstats = (LVRelStats *) palloc(sizeof(LVRelStats));
	MemSet(vacrelstats, 0, sizeof(LVRelStats));

	/* Open all indexes of the relation */
	vac_open_indexes(onerel, &nindexes, &Irel);
	hasindex = (nindexes > 0);

	/* Do the vacuuming */
	lazy_scan_heap(onerel, vacrelstats, Irel, nindexes);

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel);

	/*
	 * Optionally truncate the relation.
	 *
166 167
	 * Don't even think about it unless we have a shot at releasing a goodly
	 * number of pages.  Otherwise, the time taken isn't worth it.
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
	 */
	possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
	if (possibly_freeable > vacrelstats->rel_pages / REL_TRUNCATE_FRACTION)
		lazy_truncate_heap(onerel, vacrelstats);

	/* Update shared free space map with final free space info */
	lazy_update_fsm(onerel, vacrelstats);

	/* Update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(onerel), vacrelstats->rel_pages,
						vacrelstats->rel_tuples, hasindex);
}


/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
198
	BlockNumber empty_pages,
199 200 201 202 203
				changed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
204
	bool		did_vacuum_index = false;
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
	int			i;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	relname = RelationGetRelationName(onerel);
	elog(MESSAGE_LEVEL, "--Relation %s--", relname);

	empty_pages = changed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->nonempty_pages = 0;

	lazy_space_alloc(vacrelstats, nblocks);

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;
		int			prev_dead_count;

		/*
234 235 236
		 * If we are close to overrunning the available space for
		 * dead-tuple TIDs, pause and do a cycle of vacuuming before we
		 * tackle this page.
237 238 239 240 241 242 243
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MAX_TUPLES_PER_PAGE &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i], vacrelstats);
244
			did_vacuum_index = true;
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
		}

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/* Not sure we still need to handle this case, but... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
			if (PageIsNew(page))
			{
				elog(NOTICE, "Rel %s: Uninitialized page %u - fixing",
					 relname, blkno);
				PageInit(page, BufferGetPageSize(buf), 0);
				lazy_record_free_space(vacrelstats, blkno,
									   PageGetFreeSpace(page));
			}
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			WriteBuffer(buf);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

313
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
314 315
			{
				case HEAPTUPLE_DEAD:
316
					tupgone = true;		/* we can delete the tuple */
317 318
					break;
				case HEAPTUPLE_LIVE:
319

320
					/*
321 322
					 * Tuple is good.  Consider whether to replace its
					 * xmin value with FrozenTransactionId.
T
Tom Lane 已提交
323
					 *
324 325 326 327
					 * NB: Since we hold only a shared buffer lock here, we
					 * are assuming that TransactionId read/write is
					 * atomic.	This is not the only place that makes such
					 * an assumption.  It'd be possible to avoid the
T
Tom Lane 已提交
328 329
					 * assumption by momentarily acquiring exclusive lock,
					 * but for the moment I see no need to.
330 331 332 333 334 335
					 */
					if (TransactionIdIsNormal(tuple.t_data->t_xmin) &&
						TransactionIdPrecedes(tuple.t_data->t_xmin,
											  FreezeLimit))
					{
						tuple.t_data->t_xmin = FrozenTransactionId;
T
Tom Lane 已提交
336 337
						/* infomask should be okay already */
						Assert(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED);
338 339
						pgchanged = true;
					}
340 341
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
342

343
					/*
344 345
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
					 */
					nkeep += 1;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			/*
			 * Other checks...
			 */
367 368
			if (!OidIsValid(tuple.t_data->t_oid) &&
				onerel->rd_rel->relhasoids)
369 370 371 372 373 374 375 376 377 378 379 380 381
				elog(NOTICE, "Rel %s: TID %u/%u: OID IS INVALID. TUPGONE %d.",
					 relname, blkno, offnum, (int) tupgone);

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				tups_vacuumed += 1;
			}
			else
			{
				num_tuples += 1;
				hastup = true;
			}
382
		}						/* scan along page */
383 384

		/*
385 386
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
		 * record its post-compaction free space.  If not, then we're done
		 * with this page, so remember its free space as-is.
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
		{
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
		}

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
		{
404
			SetBufferCommitInfoNeedsSave(buf);
405 406
			changed_pages++;
		}
407 408

		ReleaseBuffer(buf);
409 410
	}

411 412 413
	/* save stats for use later */
	vacrelstats->rel_tuples = num_tuples;

414 415 416 417 418 419 420 421 422 423
	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min nuber of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i], vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
	}
424
	else if (!did_vacuum_index)
425 426 427 428 429
	{
		/* Scan indexes just to update pg_class statistics about them */
		for (i = 0; i < nindexes; i++)
			lazy_scan_index(Irel[i], vacrelstats);
	}
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

	elog(MESSAGE_LEVEL, "Pages %u: Changed %u, Empty %u; \
Tup %.0f: Vac %.0f, Keep %.0f, UnUsed %.0f.\n\tTotal %s",
		 nblocks, changed_pages, empty_pages,
		 num_tuples, tups_vacuumed, nkeep, nunused,
		 vac_show_rusage(&ru0));
}


/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
463
		BlockNumber tblk;
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		Buffer		buf;
		Page		page;

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBuffer(onerel, tblk);
		LockBufferForCleanup(buf);
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);
		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		lazy_record_free_space(vacrelstats, tblk,
							   PageGetFreeSpace(page));
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		WriteBuffer(buf);
		npages++;
	}

	elog(MESSAGE_LEVEL, "Removed %d tuples in %d pages.\n\t%s",
		 tupindex, npages,
		 vac_show_rusage(&ru0));
}

/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller is expected to handle reading, locking, and writing the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
499
	OffsetNumber unbuf[BLCKSZ / sizeof(OffsetNumber)];
500 501 502 503 504 505 506 507
	OffsetNumber *unused = unbuf;
	int			uncnt;
	Page		page = BufferGetPage(buffer);
	ItemId		itemid;

	START_CRIT_SECTION();
	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
508 509
		BlockNumber tblk;
		OffsetNumber toff;
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		itemid->lp_flags &= ~LP_USED;
	}

	uncnt = PageRepairFragmentation(page, unused);

	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer, (char *) unused,
						  (char *) (&(unused[uncnt])) - (char *) unused);
		PageSetLSN(page, recptr);
		PageSetSUI(page, ThisStartUpID);
	}
	END_CRIT_SECTION();

	return tupindex;
}

534 535 536 537 538 539 540 541 542 543 544 545 546 547
/*
 *	lazy_scan_index() -- scan one index relation to update pg_class statistic.
 *
 * We use this when we have no deletions to do.
 */
static void
lazy_scan_index(Relation indrel, LVRelStats *vacrelstats)
{
	IndexBulkDeleteResult *stats;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
548 549
	 * If the index is not partial, skip the scan, and just assume it has
	 * the same number of tuples as the heap.
550
	 */
551
	if (!vac_is_partial_index(indrel))
552 553 554 555 556 557 558 559 560
	{
		vac_update_relstats(RelationGetRelid(indrel),
							RelationGetNumberOfBlocks(indrel),
							vacrelstats->rel_tuples,
							false);
		return;
	}

	/*
561 562
	 * If index is unsafe for concurrent access, must lock it; but a
	 * shared lock should be sufficient.
563
	 */
564
	if (!indrel->rd_am->amconcurrent)
565 566 567 568
		LockRelation(indrel, AccessShareLock);

	/*
	 * Even though we're not planning to delete anything, use the
569 570
	 * ambulkdelete call, so that the scan happens within the index AM for
	 * more speed.
571 572 573 574 575 576
	 */
	stats = index_bulk_delete(indrel, dummy_tid_reaped, NULL);

	/*
	 * Release lock acquired above.
	 */
577
	if (!indrel->rd_am->amconcurrent)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
		UnlockRelation(indrel, AccessShareLock);

	if (!stats)
		return;

	/* now update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(indrel),
						stats->num_pages, stats->num_index_tuples,
						false);

	elog(MESSAGE_LEVEL, "Index %s: Pages %u; Tuples %.0f.\n\t%s",
		 RelationGetRelationName(indrel),
		 stats->num_pages, stats->num_index_tuples,
		 vac_show_rusage(&ru0));

	pfree(stats);
}

596 597 598 599 600 601 602 603 604 605 606 607
/*
 *	lazy_vacuum_index() -- vacuum one index relation.
 *
 *		Delete all the index entries pointing to tuples listed in
 *		vacrelstats->dead_tuples.
 *
 *		Finally, we arrange to update the index relation's statistics in
 *		pg_class.
 */
static void
lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats)
{
608
	IndexBulkDeleteResult *stats;
609 610 611 612 613
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
614
	 * If index is unsafe for concurrent access, must lock it.
615
	 */
616
	if (!indrel->rd_am->amconcurrent)
617 618
		LockRelation(indrel, AccessExclusiveLock);

619 620
	/* Do bulk deletion */
	stats = index_bulk_delete(indrel, lazy_tid_reaped, (void *) vacrelstats);
621 622 623 624

	/*
	 * Release lock acquired above.
	 */
625
	if (!indrel->rd_am->amconcurrent)
626 627
		UnlockRelation(indrel, AccessExclusiveLock);

628 629 630 631 632 633 634 635 636 637 638 639 640 641
	/* now update statistics in pg_class */
	if (stats)
	{
		vac_update_relstats(RelationGetRelid(indrel),
							stats->num_pages, stats->num_index_tuples,
							false);

		elog(MESSAGE_LEVEL, "Index %s: Pages %u; Tuples %.0f: Deleted %.0f.\n\t%s",
			 RelationGetRelationName(indrel), stats->num_pages,
			 stats->num_index_tuples, stats->tuples_removed,
			 vac_show_rusage(&ru0));

		pfree(stats);
	}
642 643 644 645 646 647 648 649
}

/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
650 651
	BlockNumber old_rel_pages = vacrelstats->rel_pages;
	BlockNumber new_rel_pages;
652 653 654 655 656 657 658 659 660 661
	BlockNumber *pages;
	Size	   *spaceavail;
	int			n;
	int			i,
				j;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
662 663 664 665 666
	 * We need full exclusive lock on the relation in order to do
	 * truncation. If we can't get it, give up rather than waiting --- we
	 * don't want to block other backends, and we don't want to deadlock
	 * (which is quite possible considering we already hold a lower-grade
	 * lock).
667
	 */
668
	if (!ConditionalLockRelation(onerel, AccessExclusiveLock))
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up;
	 * the newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/* might as well use the latest news when we update pg_class stats */
		vacrelstats->rel_pages = new_rel_pages;
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
687 688 689
	 * contain nothing we need to keep.  This is *necessary*, not
	 * optional, because other backends could have added tuples to these
	 * pages whilst we were vacuuming.
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 *
	 * First, flush any shared buffers for the blocks we intend to delete.
	 * FlushRelationBuffers is a bit more than we need for this, since it
	 * will also write out dirty buffers for blocks we aren't deleting,
	 * but it's the closest thing in bufmgr's API.
	 */
	i = FlushRelationBuffers(onerel, new_rel_pages);
	if (i < 0)
		elog(ERROR, "VACUUM (lazy_truncate_heap): FlushRelationBuffers returned %d",
			 i);

	/*
	 * Do the physical truncation.
	 */
	new_rel_pages = smgrtruncate(DEFAULT_SMGR, onerel, new_rel_pages);
717
	onerel->rd_nblocks = new_rel_pages; /* update relcache immediately */
718
	onerel->rd_targblock = InvalidBlockNumber;
719 720
	vacrelstats->rel_pages = new_rel_pages;		/* save new number of
												 * blocks */
721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	/*
	 * Drop free-space info for removed blocks; these must not get entered
	 * into the FSM!
	 */
	pages = vacrelstats->free_pages;
	spaceavail = vacrelstats->free_spaceavail;
	n = vacrelstats->num_free_pages;
	j = 0;
	for (i = 0; i < n; i++)
	{
		if (pages[i] < new_rel_pages)
		{
			pages[j] = pages[i];
			spaceavail[j] = spaceavail[i];
			j++;
		}
	}
	vacrelstats->num_free_pages = j;

	/*
	 * We keep the exclusive lock until commit (perhaps not necessary)?
	 */

	elog(MESSAGE_LEVEL, "Truncated %u --> %u pages.\n\t%s",
		 old_rel_pages, new_rel_pages,
		 vac_show_rusage(&ru0));
}

/*
 * Rescan end pages to verify that they are (still) empty of needed tuples.
 *
 * Returns number of nondeletable pages (last nonempty page + 1).
 */
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber blkno;
	HeapTupleData tuple;

	/* Strange coding of loop control is needed because blkno is unsigned */
	blkno = vacrelstats->rel_pages;
	while (blkno > vacrelstats->nonempty_pages)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;

		blkno--;

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			/* PageIsNew robably shouldn't happen... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
				continue;

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

813
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
814 815
			{
				case HEAPTUPLE_DEAD:
816
					tupgone = true;		/* we can delete the tuple */
817 818
					break;
				case HEAPTUPLE_LIVE:
819
					/* Shouldn't be necessary to re-freeze anything */
820 821
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
822

823
					/*
824 825
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
					 */
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			if (!tupgone)
			{
				hastup = true;
				break;			/* can stop scanning */
			}
848
		}						/* scan along page */
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
			WriteBuffer(buf);
		else
			ReleaseBuffer(buf);

		/* Done scanning if we found a tuple here */
		if (hastup)
			return blkno + 1;
	}

	/*
	 * If we fall out of the loop, all the previously-thought-to-be-empty
864 865
	 * pages really are; we need not bother to look at the last
	 * known-nonempty page.
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
	 */
	return vacrelstats->nonempty_pages;
}

/*
 * lazy_space_alloc - space allocation decisions for lazy vacuum
 *
 * See the comments at the head of this file for rationale.
 */
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
	int			maxtuples;
	int			maxpages;

881 882
	maxtuples = (int) ((VacuumMem * 1024L) / sizeof(ItemPointerData));
	/* stay sane if small VacuumMem */
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
	if (maxtuples < MAX_TUPLES_PER_PAGE)
		maxtuples = MAX_TUPLES_PER_PAGE;

	vacrelstats->num_dead_tuples = 0;
	vacrelstats->max_dead_tuples = maxtuples;
	vacrelstats->dead_tuples = (ItemPointer)
		palloc(maxtuples * sizeof(ItemPointerData));

	maxpages = MaxFSMPages;
	/* No need to allocate more pages than the relation has blocks */
	if (relblocks < (BlockNumber) maxpages)
		maxpages = (int) relblocks;
	/* avoid palloc(0) */
	if (maxpages < 1)
		maxpages = 1;

	vacrelstats->fs_is_heap = false;
	vacrelstats->num_free_pages = 0;
	vacrelstats->max_free_pages = maxpages;
	vacrelstats->free_pages = (BlockNumber *)
		palloc(maxpages * sizeof(BlockNumber));
	vacrelstats->free_spaceavail = (Size *)
		palloc(maxpages * sizeof(Size));
}

/*
 * lazy_record_dead_tuple - remember one deletable tuple
 */
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr)
{
	/*
916 917 918
	 * The array shouldn't overflow under normal behavior, but perhaps it
	 * could if we are given a really small VacuumMem. In that case, just
	 * forget the last few tuples.
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
	 */
	if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
	{
		vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
		vacrelstats->num_dead_tuples++;
	}
}

/*
 * lazy_record_free_space - remember free space on one page
 */
static void
lazy_record_free_space(LVRelStats *vacrelstats,
					   BlockNumber page,
					   Size avail)
{
	BlockNumber *pages;
	Size	   *spaceavail;
	int			n;

	/* Ignore pages with little free space */
	if (avail < PAGE_SPACE_THRESHOLD)
		return;

	/* Copy pointers to local variables for notational simplicity */
	pages = vacrelstats->free_pages;
	spaceavail = vacrelstats->free_spaceavail;
	n = vacrelstats->max_free_pages;

	/* If we haven't filled the array yet, just keep adding entries */
	if (vacrelstats->num_free_pages < n)
	{
		pages[vacrelstats->num_free_pages] = page;
		spaceavail[vacrelstats->num_free_pages] = avail;
		vacrelstats->num_free_pages++;
		return;
	}

	/*----------
	 * The rest of this routine works with "heap" organization of the
	 * free space arrays, wherein we maintain the heap property
	 *			spaceavail[(j-1) div 2] <= spaceavail[j]  for 0 < j < n.
	 * In particular, the zero'th element always has the smallest available
	 * space and can be discarded to make room for a new page with more space.
	 * See Knuth's discussion of heap-based priority queues, sec 5.2.3;
	 * but note he uses 1-origin array subscripts, not 0-origin.
	 *----------
	 */

	/* If we haven't yet converted the array to heap organization, do it */
969
	if (!vacrelstats->fs_is_heap)
970 971 972
	{
		/*
		 * Scan backwards through the array, "sift-up" each value into its
973 974
		 * correct position.  We can start the scan at n/2-1 since each
		 * entry above that position has no children to worry about.
975
		 */
976
		int			l = n / 2;
977 978 979

		while (--l >= 0)
		{
980
			BlockNumber R = pages[l];
981 982 983 984 985 986
			Size		K = spaceavail[l];
			int			i;		/* i is where the "hole" is */

			i = l;
			for (;;)
			{
987
				int			j = 2 * i + 1;
988 989 990

				if (j >= n)
					break;
991
				if (j + 1 < n && spaceavail[j] > spaceavail[j + 1])
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
					j++;
				if (K <= spaceavail[j])
					break;
				pages[i] = pages[j];
				spaceavail[i] = spaceavail[j];
				i = j;
			}
			pages[i] = R;
			spaceavail[i] = K;
		}

		vacrelstats->fs_is_heap = true;
	}

	/* If new page has more than zero'th entry, insert it into heap */
	if (avail > spaceavail[0])
	{
		/*
1010 1011 1012 1013
		 * Notionally, we replace the zero'th entry with the new data, and
		 * then sift-up to maintain the heap property.	Physically, the
		 * new data doesn't get stored into the arrays until we find the
		 * right location for it.
1014
		 */
1015
		int			i = 0;		/* i is where the "hole" is */
1016 1017 1018

		for (;;)
		{
1019
			int			j = 2 * i + 1;
1020 1021 1022

			if (j >= n)
				break;
1023
			if (j + 1 < n && spaceavail[j] > spaceavail[j + 1])
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
				j++;
			if (avail <= spaceavail[j])
				break;
			pages[i] = pages[j];
			spaceavail[i] = spaceavail[j];
			i = j;
		}
		pages[i] = page;
		spaceavail[i] = avail;
	}
}

/*
 *	lazy_tid_reaped() -- is a particular tid deletable?
 *
1039 1040
 *		This has the right signature to be an IndexBulkDeleteCallback.
 *
1041 1042 1043
 *		Assumes dead_tuples array is in sorted order.
 */
static bool
1044
lazy_tid_reaped(ItemPointer itemptr, void *state)
1045
{
1046
	LVRelStats *vacrelstats = (LVRelStats *) state;
1047
	ItemPointer res;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057

	res = (ItemPointer) bsearch((void *) itemptr,
								(void *) vacrelstats->dead_tuples,
								vacrelstats->num_dead_tuples,
								sizeof(ItemPointerData),
								vac_cmp_itemptr);

	return (res != NULL);
}

1058 1059 1060 1061 1062 1063 1064 1065 1066
/*
 * Dummy version for lazy_scan_index.
 */
static bool
dummy_tid_reaped(ItemPointer itemptr, void *state)
{
	return false;
}

1067 1068 1069 1070 1071 1072 1073 1074
/*
 * Update the shared Free Space Map with the info we now have about
 * free space in the relation, discarding any old info the map may have.
 */
static void
lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats)
{
	/*
1075 1076 1077
	 * Since MultiRecordFreeSpace doesn't currently impose any
	 * restrictions on the ordering of the input, we can just pass it the
	 * arrays as-is, whether they are in heap or linear order.
1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	 */
	MultiRecordFreeSpace(&onerel->rd_node,
						 0, MaxBlockNumber,
						 vacrelstats->num_free_pages,
						 vacrelstats->free_pages,
						 vacrelstats->free_spaceavail);
}

/*
 * Comparator routines for use with qsort() and bsearch().
 */
static int
vac_cmp_itemptr(const void *left, const void *right)
{
	BlockNumber lblk,
				rblk;
	OffsetNumber loff,
				roff;

	lblk = ItemPointerGetBlockNumber((ItemPointer) left);
	rblk = ItemPointerGetBlockNumber((ItemPointer) right);

	if (lblk < rblk)
		return -1;
	if (lblk > rblk)
		return 1;

	loff = ItemPointerGetOffsetNumber((ItemPointer) left);
	roff = ItemPointerGetOffsetNumber((ItemPointer) right);

	if (loff < roff)
		return -1;
	if (loff > roff)
		return 1;

	return 0;
}