vacuumlazy.c 30.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*-------------------------------------------------------------------------
 *
 * vacuumlazy.c
 *	  Concurrent ("lazy") vacuuming.
 *
 *
 * The major space usage for LAZY VACUUM is storage for the array of dead
 * tuple TIDs, with the next biggest need being storage for per-disk-page
 * free space info.  We want to ensure we can vacuum even the very largest
 * relations with finite memory space usage.  To do that, we set upper bounds
 * on the number of tuples and pages we will keep track of at once.
 *
13
 * We are willing to use at most VacuumMem memory space to keep track of
14 15 16 17 18 19 20
 * dead tuples.  We initially allocate an array of TIDs of that size.
 * If the array threatens to overflow, we suspend the heap scan phase
 * and perform a pass of index cleanup and page compaction, then resume
 * the heap scan with an empty TID array.
 *
 * We can limit the storage for page free space to MaxFSMPages entries,
 * since that's the most the free space map will be willing to remember
21 22
 * anyway.	If the relation has fewer than that many pages with free space,
 * life is easy: just build an array of per-page info.	If it has more,
23 24 25 26 27 28
 * we store the free space info as a heap ordered by amount of free space,
 * so that we can discard the pages with least free space to ensure we never
 * have more than MaxFSMPages entries in all.  The surviving page entries
 * are passed to the free space map at conclusion of the scan.
 *
 *
B
Bruce Momjian 已提交
29
 * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
30 31 32 33
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
34
 *	  $Header: /cvsroot/pgsql/src/backend/commands/vacuumlazy.c,v 1.23 2002/11/13 00:39:46 momjian Exp $
35 36 37 38 39 40 41 42 43 44 45 46 47
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "access/genam.h"
#include "access/heapam.h"
#include "access/xlog.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "storage/freespace.h"
#include "storage/sinval.h"
#include "storage/smgr.h"
48
#include "utils/lsyscache.h"
49 50 51 52 53 54


/*
 * Space/time tradeoff parameters: do these need to be user-tunable?
 *
 * A page with less than PAGE_SPACE_THRESHOLD free space will be forgotten
55
 * immediately, and not even passed to the free space map.	Removing the
56
 * uselessly small entries early saves cycles, and in particular reduces
57
 * the amount of time we spend holding the FSM lock when we finally call
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
 * MultiRecordFreeSpace.  Since the FSM will ignore pages below its own
 * runtime threshold anyway, there's no point in making this really small.
 * XXX Is it worth trying to measure average tuple size, and using that to
 * set the threshold?  Problem is we don't know average tuple size very
 * accurately for the first few pages...
 *
 * To consider truncating the relation, we want there to be at least
 * relsize / REL_TRUNCATE_FRACTION potentially-freeable pages.
 */
#define PAGE_SPACE_THRESHOLD	((Size) (BLCKSZ / 32))

#define REL_TRUNCATE_FRACTION	16

/* MAX_TUPLES_PER_PAGE can be a conservative upper limit */
#define MAX_TUPLES_PER_PAGE		((int) (BLCKSZ / sizeof(HeapTupleHeaderData)))


typedef struct LVRelStats
{
	/* Overall statistics about rel */
78
	BlockNumber rel_pages;
79
	double		rel_tuples;
80
	BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
81 82
	/* List of TIDs of tuples we intend to delete */
	/* NB: this list is ordered by TID address */
83 84
	int			num_dead_tuples;	/* current # of entries */
	int			max_dead_tuples;	/* # slots allocated in array */
85
	ItemPointer dead_tuples;	/* array of ItemPointerData */
86 87
	/* Array or heap of per-page info about free space */
	/* We use a simple array until it fills up, then convert to heap */
88 89
	bool		fs_is_heap;		/* are we using heap organization? */
	int			num_free_pages; /* current # of entries */
90 91
	int			max_free_pages; /* # slots allocated in array */
	PageFreeSpaceInfo *free_pages;	/* array or heap of blkno/avail */
92 93 94
} LVRelStats;


B
Bruce Momjian 已提交
95
static int	elevel = -1;
96

97 98
static TransactionId OldestXmin;
static TransactionId FreezeLimit;
99 100 101 102


/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
103
			   Relation *Irel, int nindexes);
104
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
105
static void lazy_scan_index(Relation indrel, LVRelStats *vacrelstats);
106
static void lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats);
107 108
static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats);
109 110
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
111
						 LVRelStats *vacrelstats);
112 113
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
114
					   ItemPointer itemptr);
115
static void lazy_record_free_space(LVRelStats *vacrelstats,
116
					   BlockNumber page, Size avail);
117
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
118
static bool dummy_tid_reaped(ItemPointer itemptr, void *state);
119 120
static void lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats);
static int	vac_cmp_itemptr(const void *left, const void *right);
121
static int	vac_cmp_page_spaces(const void *left, const void *right);
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139


/*
 *	lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
 *
 *		This routine vacuums a single heap, cleans out its indexes, and
 *		updates its num_pages and num_tuples statistics.
 *
 *		At entry, we have already established a transaction and opened
 *		and locked the relation.
 */
void
lazy_vacuum_rel(Relation onerel, VacuumStmt *vacstmt)
{
	LVRelStats *vacrelstats;
	Relation   *Irel;
	int			nindexes;
	bool		hasindex;
140
	BlockNumber possibly_freeable;
141 142

	if (vacstmt->verbose)
143
		elevel = INFO;
144
	else
145
		elevel = DEBUG1;
B
Bruce Momjian 已提交
146

147 148
	vacuum_set_xid_limits(vacstmt, onerel->rd_rel->relisshared,
						  &OldestXmin, &FreezeLimit);
149

150
	vacrelstats = (LVRelStats *) palloc0(sizeof(LVRelStats));
151 152 153 154 155 156 157 158 159 160 161 162 163 164

	/* Open all indexes of the relation */
	vac_open_indexes(onerel, &nindexes, &Irel);
	hasindex = (nindexes > 0);

	/* Do the vacuuming */
	lazy_scan_heap(onerel, vacrelstats, Irel, nindexes);

	/* Done with indexes */
	vac_close_indexes(nindexes, Irel);

	/*
	 * Optionally truncate the relation.
	 *
165 166
	 * Don't even think about it unless we have a shot at releasing a goodly
	 * number of pages.  Otherwise, the time taken isn't worth it.
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
	 */
	possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
	if (possibly_freeable > vacrelstats->rel_pages / REL_TRUNCATE_FRACTION)
		lazy_truncate_heap(onerel, vacrelstats);

	/* Update shared free space map with final free space info */
	lazy_update_fsm(onerel, vacrelstats);

	/* Update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(onerel), vacrelstats->rel_pages,
						vacrelstats->rel_tuples, hasindex);
}


/*
 *	lazy_scan_heap() -- scan an open heap relation
 *
 *		This routine sets commit status bits, builds lists of dead tuples
 *		and pages with free space, and calculates statistics on the number
 *		of live tuples in the heap.  When done, or when we run low on space
 *		for dead-tuple TIDs, invoke vacuuming of indexes and heap.
 */
static void
lazy_scan_heap(Relation onerel, LVRelStats *vacrelstats,
			   Relation *Irel, int nindexes)
{
	BlockNumber nblocks,
				blkno;
	HeapTupleData tuple;
	char	   *relname;
197
	BlockNumber empty_pages,
198 199 200 201 202
				changed_pages;
	double		num_tuples,
				tups_vacuumed,
				nkeep,
				nunused;
203
	bool		did_vacuum_index = false;
204 205 206 207 208 209
	int			i;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	relname = RelationGetRelationName(onerel);
210 211 212
	elog(elevel, "--Relation %s.%s--",
		 get_namespace_name(RelationGetNamespace(onerel)),
		 relname);
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233

	empty_pages = changed_pages = 0;
	num_tuples = tups_vacuumed = nkeep = nunused = 0;

	nblocks = RelationGetNumberOfBlocks(onerel);
	vacrelstats->rel_pages = nblocks;
	vacrelstats->nonempty_pages = 0;

	lazy_space_alloc(vacrelstats, nblocks);

	for (blkno = 0; blkno < nblocks; blkno++)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;
		int			prev_dead_count;

234 235
		CHECK_FOR_INTERRUPTS();

236
		/*
237 238 239
		 * If we are close to overrunning the available space for
		 * dead-tuple TIDs, pause and do a cycle of vacuuming before we
		 * tackle this page.
240 241 242 243 244 245 246
		 */
		if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MAX_TUPLES_PER_PAGE &&
			vacrelstats->num_dead_tuples > 0)
		{
			/* Remove index entries */
			for (i = 0; i < nindexes; i++)
				lazy_vacuum_index(Irel[i], vacrelstats);
247
			did_vacuum_index = true;
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
			/* Remove tuples from heap */
			lazy_vacuum_heap(onerel, vacrelstats);
			/* Forget the now-vacuumed tuples, and press on */
			vacrelstats->num_dead_tuples = 0;
		}

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page))
		{
			/* Not sure we still need to handle this case, but... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
			if (PageIsNew(page))
			{
B
Bruce Momjian 已提交
268
				elog(WARNING, "Rel %s: Uninitialized page %u - fixing",
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
					 relname, blkno);
				PageInit(page, BufferGetPageSize(buf), 0);
				lazy_record_free_space(vacrelstats, blkno,
									   PageGetFreeSpace(page));
			}
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			WriteBuffer(buf);
			continue;
		}

		if (PageIsEmpty(page))
		{
			empty_pages++;
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		prev_dead_count = vacrelstats->num_dead_tuples;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
			{
				nunused += 1;
				continue;
			}

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

316
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
317 318
			{
				case HEAPTUPLE_DEAD:
319
					tupgone = true;		/* we can delete the tuple */
320 321
					break;
				case HEAPTUPLE_LIVE:
322

323
					/*
324 325
					 * Tuple is good.  Consider whether to replace its
					 * xmin value with FrozenTransactionId.
T
Tom Lane 已提交
326
					 *
327 328 329 330
					 * NB: Since we hold only a shared buffer lock here, we
					 * are assuming that TransactionId read/write is
					 * atomic.	This is not the only place that makes such
					 * an assumption.  It'd be possible to avoid the
T
Tom Lane 已提交
331 332
					 * assumption by momentarily acquiring exclusive lock,
					 * but for the moment I see no need to.
333
					 */
334 335
					if (TransactionIdIsNormal(HeapTupleHeaderGetXmin(tuple.t_data)) &&
						TransactionIdPrecedes(HeapTupleHeaderGetXmin(tuple.t_data),
336 337
											  FreezeLimit))
					{
338
						HeapTupleHeaderSetXmin(tuple.t_data, FrozenTransactionId);
T
Tom Lane 已提交
339 340
						/* infomask should be okay already */
						Assert(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED);
341 342
						pgchanged = true;
					}
343 344
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
345

346
					/*
347 348
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
					 */
					nkeep += 1;
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			/*
			 * Other checks...
			 */
370 371
			if (onerel->rd_rel->relhasoids &&
				!OidIsValid(HeapTupleGetOid(&tuple)))
B
Bruce Momjian 已提交
372
				elog(WARNING, "Rel %s: TID %u/%u: OID IS INVALID. TUPGONE %d.",
373 374 375 376 377 378 379 380 381 382 383 384
					 relname, blkno, offnum, (int) tupgone);

			if (tupgone)
			{
				lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
				tups_vacuumed += 1;
			}
			else
			{
				num_tuples += 1;
				hastup = true;
			}
385
		}						/* scan along page */
386 387

		/*
388 389
		 * If we remembered any tuples for deletion, then the page will be
		 * visited again by lazy_vacuum_heap, which will compute and
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
		 * record its post-compaction free space.  If not, then we're done
		 * with this page, so remember its free space as-is.
		 */
		if (vacrelstats->num_dead_tuples == prev_dead_count)
		{
			lazy_record_free_space(vacrelstats, blkno,
								   PageGetFreeSpace(page));
		}

		/* Remember the location of the last page with nonremovable tuples */
		if (hastup)
			vacrelstats->nonempty_pages = blkno + 1;

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
		{
407
			SetBufferCommitInfoNeedsSave(buf);
408 409
			changed_pages++;
		}
410 411

		ReleaseBuffer(buf);
412 413
	}

414 415 416
	/* save stats for use later */
	vacrelstats->rel_tuples = num_tuples;

417 418 419 420 421 422 423 424 425 426
	/* If any tuples need to be deleted, perform final vacuum cycle */
	/* XXX put a threshold on min nuber of tuples here? */
	if (vacrelstats->num_dead_tuples > 0)
	{
		/* Remove index entries */
		for (i = 0; i < nindexes; i++)
			lazy_vacuum_index(Irel[i], vacrelstats);
		/* Remove tuples from heap */
		lazy_vacuum_heap(onerel, vacrelstats);
	}
427
	else if (!did_vacuum_index)
428 429 430 431 432
	{
		/* Scan indexes just to update pg_class statistics about them */
		for (i = 0; i < nindexes; i++)
			lazy_scan_index(Irel[i], vacrelstats);
	}
433

434
	elog(elevel, "Pages %u: Changed %u, Empty %u; Tup %.0f: Vac %.0f, Keep %.0f, UnUsed %.0f.\n\tTotal %s",
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
		 nblocks, changed_pages, empty_pages,
		 num_tuples, tups_vacuumed, nkeep, nunused,
		 vac_show_rusage(&ru0));
}


/*
 *	lazy_vacuum_heap() -- second pass over the heap
 *
 *		This routine marks dead tuples as unused and compacts out free
 *		space on their pages.  Pages not having dead tuples recorded from
 *		lazy_scan_heap are not visited at all.
 *
 * Note: the reason for doing this as a second pass is we cannot remove
 * the tuples until we've removed their index entries, and we want to
 * process index entry removal in batches as large as possible.
 */
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
	int			tupindex;
	int			npages;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);
	npages = 0;

	tupindex = 0;
	while (tupindex < vacrelstats->num_dead_tuples)
	{
465
		BlockNumber tblk;
466 467 468
		Buffer		buf;
		Page		page;

469 470
		CHECK_FOR_INTERRUPTS();

471 472 473 474 475 476 477 478 479 480 481 482 483
		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		buf = ReadBuffer(onerel, tblk);
		LockBufferForCleanup(buf);
		tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats);
		/* Now that we've compacted the page, record its available space */
		page = BufferGetPage(buf);
		lazy_record_free_space(vacrelstats, tblk,
							   PageGetFreeSpace(page));
		LockBuffer(buf, BUFFER_LOCK_UNLOCK);
		WriteBuffer(buf);
		npages++;
	}

484
	elog(elevel, "Removed %d tuples in %d pages.\n\t%s", tupindex, npages,
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
		 vac_show_rusage(&ru0));
}

/*
 *	lazy_vacuum_page() -- free dead tuples on a page
 *					 and repair its fragmentation.
 *
 * Caller is expected to handle reading, locking, and writing the buffer.
 *
 * tupindex is the index in vacrelstats->dead_tuples of the first dead
 * tuple for this page.  We assume the rest follow sequentially.
 * The return value is the first tupindex after the tuples of this page.
 */
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
				 int tupindex, LVRelStats *vacrelstats)
{
502
	OffsetNumber unbuf[BLCKSZ / sizeof(OffsetNumber)];
503 504 505 506 507 508 509 510
	OffsetNumber *unused = unbuf;
	int			uncnt;
	Page		page = BufferGetPage(buffer);
	ItemId		itemid;

	START_CRIT_SECTION();
	for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
	{
511 512
		BlockNumber tblk;
		OffsetNumber toff;
513 514 515 516 517 518 519 520 521 522 523

		tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
		if (tblk != blkno)
			break;				/* past end of tuples for this block */
		toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
		itemid = PageGetItemId(page, toff);
		itemid->lp_flags &= ~LP_USED;
	}

	uncnt = PageRepairFragmentation(page, unused);

524 525
	/* XLOG stuff */
	if (!onerel->rd_istemp)
526 527 528 529 530 531 532 533
	{
		XLogRecPtr	recptr;

		recptr = log_heap_clean(onerel, buffer, (char *) unused,
						  (char *) (&(unused[uncnt])) - (char *) unused);
		PageSetLSN(page, recptr);
		PageSetSUI(page, ThisStartUpID);
	}
534 535 536 537 538 539
	else
	{
		/* No XLOG record, but still need to flag that XID exists on disk */
		MyXactMadeTempRelUpdate = true;
	}

540 541 542 543 544
	END_CRIT_SECTION();

	return tupindex;
}

545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 *	lazy_scan_index() -- scan one index relation to update pg_class statistic.
 *
 * We use this when we have no deletions to do.
 */
static void
lazy_scan_index(Relation indrel, LVRelStats *vacrelstats)
{
	IndexBulkDeleteResult *stats;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
559 560
	 * If the index is not partial, skip the scan, and just assume it has
	 * the same number of tuples as the heap.
561
	 */
562
	if (!vac_is_partial_index(indrel))
563 564 565 566 567 568 569 570 571
	{
		vac_update_relstats(RelationGetRelid(indrel),
							RelationGetNumberOfBlocks(indrel),
							vacrelstats->rel_tuples,
							false);
		return;
	}

	/*
572 573
	 * If index is unsafe for concurrent access, must lock it; but a
	 * shared lock should be sufficient.
574
	 */
575
	if (!indrel->rd_am->amconcurrent)
576 577 578 579
		LockRelation(indrel, AccessShareLock);

	/*
	 * Even though we're not planning to delete anything, use the
580 581
	 * ambulkdelete call, so that the scan happens within the index AM for
	 * more speed.
582 583 584 585 586 587
	 */
	stats = index_bulk_delete(indrel, dummy_tid_reaped, NULL);

	/*
	 * Release lock acquired above.
	 */
588
	if (!indrel->rd_am->amconcurrent)
589 590 591 592 593 594 595 596 597 598
		UnlockRelation(indrel, AccessShareLock);

	if (!stats)
		return;

	/* now update statistics in pg_class */
	vac_update_relstats(RelationGetRelid(indrel),
						stats->num_pages, stats->num_index_tuples,
						false);

599
	elog(elevel, "Index %s: Pages %u; Tuples %.0f.\n\t%s",
600 601 602 603 604 605 606
		 RelationGetRelationName(indrel),
		 stats->num_pages, stats->num_index_tuples,
		 vac_show_rusage(&ru0));

	pfree(stats);
}

607 608 609 610 611 612 613 614 615 616 617 618
/*
 *	lazy_vacuum_index() -- vacuum one index relation.
 *
 *		Delete all the index entries pointing to tuples listed in
 *		vacrelstats->dead_tuples.
 *
 *		Finally, we arrange to update the index relation's statistics in
 *		pg_class.
 */
static void
lazy_vacuum_index(Relation indrel, LVRelStats *vacrelstats)
{
619
	IndexBulkDeleteResult *stats;
620 621 622 623 624
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
625
	 * If index is unsafe for concurrent access, must lock it.
626
	 */
627
	if (!indrel->rd_am->amconcurrent)
628 629
		LockRelation(indrel, AccessExclusiveLock);

630 631
	/* Do bulk deletion */
	stats = index_bulk_delete(indrel, lazy_tid_reaped, (void *) vacrelstats);
632 633 634 635

	/*
	 * Release lock acquired above.
	 */
636
	if (!indrel->rd_am->amconcurrent)
637 638
		UnlockRelation(indrel, AccessExclusiveLock);

639 640 641 642 643 644 645
	/* now update statistics in pg_class */
	if (stats)
	{
		vac_update_relstats(RelationGetRelid(indrel),
							stats->num_pages, stats->num_index_tuples,
							false);

646
		elog(elevel, "Index %s: Pages %u; Tuples %.0f: Deleted %.0f.\n\t%s",
647 648 649 650 651 652
			 RelationGetRelationName(indrel), stats->num_pages,
			 stats->num_index_tuples, stats->tuples_removed,
			 vac_show_rusage(&ru0));

		pfree(stats);
	}
653 654 655 656 657 658 659 660
}

/*
 * lazy_truncate_heap - try to truncate off any empty pages at the end
 */
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
661 662
	BlockNumber old_rel_pages = vacrelstats->rel_pages;
	BlockNumber new_rel_pages;
663
	PageFreeSpaceInfo *pageSpaces;
664 665 666 667 668 669 670 671
	int			n;
	int			i,
				j;
	VacRUsage	ru0;

	vac_init_rusage(&ru0);

	/*
672 673 674 675 676
	 * We need full exclusive lock on the relation in order to do
	 * truncation. If we can't get it, give up rather than waiting --- we
	 * don't want to block other backends, and we don't want to deadlock
	 * (which is quite possible considering we already hold a lower-grade
	 * lock).
677
	 */
678
	if (!ConditionalLockRelation(onerel, AccessExclusiveLock))
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
		return;

	/*
	 * Now that we have exclusive lock, look to see if the rel has grown
	 * whilst we were vacuuming with non-exclusive lock.  If so, give up;
	 * the newly added pages presumably contain non-deletable tuples.
	 */
	new_rel_pages = RelationGetNumberOfBlocks(onerel);
	if (new_rel_pages != old_rel_pages)
	{
		/* might as well use the latest news when we update pg_class stats */
		vacrelstats->rel_pages = new_rel_pages;
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Scan backwards from the end to verify that the end pages actually
697 698 699
	 * contain nothing we need to keep.  This is *necessary*, not
	 * optional, because other backends could have added tuples to these
	 * pages whilst we were vacuuming.
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
	 */
	new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);

	if (new_rel_pages >= old_rel_pages)
	{
		/* can't do anything after all */
		UnlockRelation(onerel, AccessExclusiveLock);
		return;
	}

	/*
	 * Okay to truncate.
	 *
	 * First, flush any shared buffers for the blocks we intend to delete.
	 * FlushRelationBuffers is a bit more than we need for this, since it
	 * will also write out dirty buffers for blocks we aren't deleting,
	 * but it's the closest thing in bufmgr's API.
	 */
	i = FlushRelationBuffers(onerel, new_rel_pages);
	if (i < 0)
		elog(ERROR, "VACUUM (lazy_truncate_heap): FlushRelationBuffers returned %d",
			 i);

	/*
	 * Do the physical truncation.
	 */
	new_rel_pages = smgrtruncate(DEFAULT_SMGR, onerel, new_rel_pages);
727
	onerel->rd_nblocks = new_rel_pages; /* update relcache immediately */
728
	onerel->rd_targblock = InvalidBlockNumber;
729 730
	vacrelstats->rel_pages = new_rel_pages;		/* save new number of
												 * blocks */
731 732 733 734 735

	/*
	 * Drop free-space info for removed blocks; these must not get entered
	 * into the FSM!
	 */
736
	pageSpaces = vacrelstats->free_pages;
737 738 739 740
	n = vacrelstats->num_free_pages;
	j = 0;
	for (i = 0; i < n; i++)
	{
741
		if (pageSpaces[i].blkno < new_rel_pages)
742
		{
743
			pageSpaces[j] = pageSpaces[i];
744 745 746 747
			j++;
		}
	}
	vacrelstats->num_free_pages = j;
748 749
	/* We destroyed the heap ordering, so mark array unordered */
	vacrelstats->fs_is_heap = false;
750 751 752 753 754

	/*
	 * We keep the exclusive lock until commit (perhaps not necessary)?
	 */

755
	elog(elevel, "Truncated %u --> %u pages.\n\t%s", old_rel_pages,
B
Bruce Momjian 已提交
756
		 new_rel_pages, vac_show_rusage(&ru0));
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
}

/*
 * Rescan end pages to verify that they are (still) empty of needed tuples.
 *
 * Returns number of nondeletable pages (last nonempty page + 1).
 */
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
	BlockNumber blkno;
	HeapTupleData tuple;

	/* Strange coding of loop control is needed because blkno is unsigned */
	blkno = vacrelstats->rel_pages;
	while (blkno > vacrelstats->nonempty_pages)
	{
		Buffer		buf;
		Page		page;
		OffsetNumber offnum,
					maxoff;
		bool		pgchanged,
					tupgone,
					hastup;

782 783
		CHECK_FOR_INTERRUPTS();

784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
		blkno--;

		buf = ReadBuffer(onerel, blkno);

		/* In this phase we only need shared access to the buffer */
		LockBuffer(buf, BUFFER_LOCK_SHARE);

		page = BufferGetPage(buf);

		if (PageIsNew(page) || PageIsEmpty(page))
		{
			/* PageIsNew robably shouldn't happen... */
			LockBuffer(buf, BUFFER_LOCK_UNLOCK);
			ReleaseBuffer(buf);
			continue;
		}

		pgchanged = false;
		hastup = false;
		maxoff = PageGetMaxOffsetNumber(page);
		for (offnum = FirstOffsetNumber;
			 offnum <= maxoff;
			 offnum = OffsetNumberNext(offnum))
		{
			ItemId		itemid;
			uint16		sv_infomask;

			itemid = PageGetItemId(page, offnum);

			if (!ItemIdIsUsed(itemid))
				continue;

			tuple.t_datamcxt = NULL;
			tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
			tuple.t_len = ItemIdGetLength(itemid);
			ItemPointerSet(&(tuple.t_self), blkno, offnum);

			tupgone = false;
			sv_infomask = tuple.t_data->t_infomask;

824
			switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin))
825 826
			{
				case HEAPTUPLE_DEAD:
827
					tupgone = true;		/* we can delete the tuple */
828 829
					break;
				case HEAPTUPLE_LIVE:
830
					/* Shouldn't be necessary to re-freeze anything */
831 832
					break;
				case HEAPTUPLE_RECENTLY_DEAD:
833

834
					/*
835 836
					 * If tuple is recently deleted then we must not
					 * remove it from relation.
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
					 */
					break;
				case HEAPTUPLE_INSERT_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				case HEAPTUPLE_DELETE_IN_PROGRESS:
					/* This is an expected case during concurrent vacuum */
					break;
				default:
					elog(ERROR, "Unexpected HeapTupleSatisfiesVacuum result");
					break;
			}

			/* check for hint-bit update by HeapTupleSatisfiesVacuum */
			if (sv_infomask != tuple.t_data->t_infomask)
				pgchanged = true;

			if (!tupgone)
			{
				hastup = true;
				break;			/* can stop scanning */
			}
859
		}						/* scan along page */
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874

		LockBuffer(buf, BUFFER_LOCK_UNLOCK);

		if (pgchanged)
			WriteBuffer(buf);
		else
			ReleaseBuffer(buf);

		/* Done scanning if we found a tuple here */
		if (hastup)
			return blkno + 1;
	}

	/*
	 * If we fall out of the loop, all the previously-thought-to-be-empty
875 876
	 * pages really are; we need not bother to look at the last
	 * known-nonempty page.
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
	 */
	return vacrelstats->nonempty_pages;
}

/*
 * lazy_space_alloc - space allocation decisions for lazy vacuum
 *
 * See the comments at the head of this file for rationale.
 */
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
	int			maxtuples;
	int			maxpages;

892 893
	maxtuples = (int) ((VacuumMem * 1024L) / sizeof(ItemPointerData));
	/* stay sane if small VacuumMem */
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
	if (maxtuples < MAX_TUPLES_PER_PAGE)
		maxtuples = MAX_TUPLES_PER_PAGE;

	vacrelstats->num_dead_tuples = 0;
	vacrelstats->max_dead_tuples = maxtuples;
	vacrelstats->dead_tuples = (ItemPointer)
		palloc(maxtuples * sizeof(ItemPointerData));

	maxpages = MaxFSMPages;
	/* No need to allocate more pages than the relation has blocks */
	if (relblocks < (BlockNumber) maxpages)
		maxpages = (int) relblocks;
	/* avoid palloc(0) */
	if (maxpages < 1)
		maxpages = 1;

	vacrelstats->fs_is_heap = false;
	vacrelstats->num_free_pages = 0;
	vacrelstats->max_free_pages = maxpages;
913 914
	vacrelstats->free_pages = (PageFreeSpaceInfo *)
		palloc(maxpages * sizeof(PageFreeSpaceInfo));
915 916 917 918 919 920 921 922 923 924
}

/*
 * lazy_record_dead_tuple - remember one deletable tuple
 */
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
					   ItemPointer itemptr)
{
	/*
925 926 927
	 * The array shouldn't overflow under normal behavior, but perhaps it
	 * could if we are given a really small VacuumMem. In that case, just
	 * forget the last few tuples.
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
	 */
	if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
	{
		vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
		vacrelstats->num_dead_tuples++;
	}
}

/*
 * lazy_record_free_space - remember free space on one page
 */
static void
lazy_record_free_space(LVRelStats *vacrelstats,
					   BlockNumber page,
					   Size avail)
{
944
	PageFreeSpaceInfo *pageSpaces;
945 946 947 948 949 950 951
	int			n;

	/* Ignore pages with little free space */
	if (avail < PAGE_SPACE_THRESHOLD)
		return;

	/* Copy pointers to local variables for notational simplicity */
952
	pageSpaces = vacrelstats->free_pages;
953 954 955 956 957
	n = vacrelstats->max_free_pages;

	/* If we haven't filled the array yet, just keep adding entries */
	if (vacrelstats->num_free_pages < n)
	{
958 959
		pageSpaces[vacrelstats->num_free_pages].blkno = page;
		pageSpaces[vacrelstats->num_free_pages].avail = avail;
960 961 962 963 964 965 966
		vacrelstats->num_free_pages++;
		return;
	}

	/*----------
	 * The rest of this routine works with "heap" organization of the
	 * free space arrays, wherein we maintain the heap property
967
	 *			avail[(j-1) div 2] <= avail[j]  for 0 < j < n.
968 969 970 971 972 973 974 975
	 * In particular, the zero'th element always has the smallest available
	 * space and can be discarded to make room for a new page with more space.
	 * See Knuth's discussion of heap-based priority queues, sec 5.2.3;
	 * but note he uses 1-origin array subscripts, not 0-origin.
	 *----------
	 */

	/* If we haven't yet converted the array to heap organization, do it */
976
	if (!vacrelstats->fs_is_heap)
977 978 979
	{
		/*
		 * Scan backwards through the array, "sift-up" each value into its
980 981
		 * correct position.  We can start the scan at n/2-1 since each
		 * entry above that position has no children to worry about.
982
		 */
983
		int			l = n / 2;
984 985 986

		while (--l >= 0)
		{
987 988
			BlockNumber R = pageSpaces[l].blkno;
			Size		K = pageSpaces[l].avail;
989 990 991 992 993
			int			i;		/* i is where the "hole" is */

			i = l;
			for (;;)
			{
994
				int			j = 2 * i + 1;
995 996 997

				if (j >= n)
					break;
998
				if (j + 1 < n && pageSpaces[j].avail > pageSpaces[j + 1].avail)
999
					j++;
1000
				if (K <= pageSpaces[j].avail)
1001
					break;
1002
				pageSpaces[i] = pageSpaces[j];
1003 1004
				i = j;
			}
1005 1006
			pageSpaces[i].blkno = R;
			pageSpaces[i].avail = K;
1007 1008 1009 1010 1011 1012
		}

		vacrelstats->fs_is_heap = true;
	}

	/* If new page has more than zero'th entry, insert it into heap */
1013
	if (avail > pageSpaces[0].avail)
1014 1015
	{
		/*
1016 1017 1018 1019
		 * Notionally, we replace the zero'th entry with the new data, and
		 * then sift-up to maintain the heap property.	Physically, the
		 * new data doesn't get stored into the arrays until we find the
		 * right location for it.
1020
		 */
1021
		int			i = 0;		/* i is where the "hole" is */
1022 1023 1024

		for (;;)
		{
1025
			int			j = 2 * i + 1;
1026 1027 1028

			if (j >= n)
				break;
1029
			if (j + 1 < n && pageSpaces[j].avail > pageSpaces[j + 1].avail)
1030
				j++;
1031
			if (avail <= pageSpaces[j].avail)
1032
				break;
1033
			pageSpaces[i] = pageSpaces[j];
1034 1035
			i = j;
		}
1036 1037
		pageSpaces[i].blkno = page;
		pageSpaces[i].avail = avail;
1038 1039 1040 1041 1042 1043
	}
}

/*
 *	lazy_tid_reaped() -- is a particular tid deletable?
 *
1044 1045
 *		This has the right signature to be an IndexBulkDeleteCallback.
 *
1046 1047 1048
 *		Assumes dead_tuples array is in sorted order.
 */
static bool
1049
lazy_tid_reaped(ItemPointer itemptr, void *state)
1050
{
1051
	LVRelStats *vacrelstats = (LVRelStats *) state;
1052
	ItemPointer res;
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062

	res = (ItemPointer) bsearch((void *) itemptr,
								(void *) vacrelstats->dead_tuples,
								vacrelstats->num_dead_tuples,
								sizeof(ItemPointerData),
								vac_cmp_itemptr);

	return (res != NULL);
}

1063 1064 1065 1066 1067 1068 1069 1070 1071
/*
 * Dummy version for lazy_scan_index.
 */
static bool
dummy_tid_reaped(ItemPointer itemptr, void *state)
{
	return false;
}

1072 1073 1074 1075 1076 1077 1078
/*
 * Update the shared Free Space Map with the info we now have about
 * free space in the relation, discarding any old info the map may have.
 */
static void
lazy_update_fsm(Relation onerel, LVRelStats *vacrelstats)
{
1079 1080 1081
	PageFreeSpaceInfo *pageSpaces = vacrelstats->free_pages;
	int			nPages = vacrelstats->num_free_pages;

1082
	/*
1083
	 * Sort data into order, as required by MultiRecordFreeSpace.
1084
	 */
1085 1086 1087 1088 1089
	if (nPages > 1)
		qsort(pageSpaces, nPages, sizeof(PageFreeSpaceInfo),
			  vac_cmp_page_spaces);

	MultiRecordFreeSpace(&onerel->rd_node, 0, nPages, pageSpaces);
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
}

/*
 * Comparator routines for use with qsort() and bsearch().
 */
static int
vac_cmp_itemptr(const void *left, const void *right)
{
	BlockNumber lblk,
				rblk;
	OffsetNumber loff,
				roff;

	lblk = ItemPointerGetBlockNumber((ItemPointer) left);
	rblk = ItemPointerGetBlockNumber((ItemPointer) right);

	if (lblk < rblk)
		return -1;
	if (lblk > rblk)
		return 1;

	loff = ItemPointerGetOffsetNumber((ItemPointer) left);
	roff = ItemPointerGetOffsetNumber((ItemPointer) right);

	if (loff < roff)
		return -1;
	if (loff > roff)
		return 1;

	return 0;
}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133

static int
vac_cmp_page_spaces(const void *left, const void *right)
{
	PageFreeSpaceInfo *linfo = (PageFreeSpaceInfo *) left;
	PageFreeSpaceInfo *rinfo = (PageFreeSpaceInfo *) right;

	if (linfo->blkno < rinfo->blkno)
		return -1;
	else if (linfo->blkno > rinfo->blkno)
		return 1;
	return 0;
}