ConvOpTest.cpp 11.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22
enum TestType {
H
hedaoyuan 已提交
23 24 25
  kForwardTest = 0,
  kBackwardInputTest = 1,
  kBackwardFilterTest = 2,
26 27
};

28
template <DeviceType DType1, DeviceType DType2>
29 30 31 32
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
33
                  TestType type,
34
                  bool useGroups = true,
35 36 37 38 39
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
X
xzl 已提交
40
            for (size_t outputChannels : {3, 64}) {
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
              if (inputChannels > outputChannels) break;
              size_t groups;
              if (!useGroups) {
                groups = 1;
              } else {
                if (outputChannels % inputChannels != 0) continue;
                groups = inputChannels;
              }

              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputSize
                          << " inputWidth=" << inputSize
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterSize
                          << " filterWidth=" << filterSize
                          << " outputHeight=" << outputSize
                          << " outputWidth=" << outputSize
                          << " stride=" << stride << " padding=" << padding;

                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", groups)
                          .set("algo", algo));

                  TensorShape input{
                      batchSize, inputChannels, inputSize, inputSize};

                  TensorShape filter;
                  if (groups > 1)
                    filter = TensorShape({groups,
                                          outputChannels / groups,
                                          inputChannels / groups,
                                          filterSize,
                                          filterSize});
                  else
                    filter = TensorShape({outputChannels,
                                          inputChannels,
                                          filterSize,
                                          filterSize});
                  TensorShape output{
                      batchSize, outputChannels, outputSize, outputSize};

                  if (type == kForwardTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == kBackwardInputTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
                    test.run();
                  } else if (type == kBackwardFilterTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
                                    ADD_TO);
                    test.run();
111
                  }
112 113 114 115 116 117 118 119 120 121
                }
              }
            }
          }
        }
      }
    }
  }
};

122 123 124 125 126 127 128 129
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
  ConvolutionTest2(const std::string& conv1,
                   const std::string& conv2,
                   TestType type,
130
                   bool useGroups = true,
131 132 133 134 135 136 137
                   std::string algo = "auto") {
    for (size_t batchSize : {16}) {
      for (size_t inputHeight : {7, 31}) {
        for (size_t inputWidth : {10, 54}) {
          for (size_t filterHeight : {1, 5}) {
            for (size_t filterWidth : {3, 7}) {
              for (size_t inputChannels : {7}) {
X
xzl 已提交
138
                for (size_t outputChannels : {7}) {
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                  size_t groups;
                  if (!useGroups) {
                    groups = 1;
                  } else {
                    if (outputChannels % inputChannels != 0) continue;
                    groups = inputChannels;
                  }

                  size_t stride = 1;
                  size_t padding = 0;
                  size_t outputHeight =
                      (inputHeight - filterHeight + 2 * padding + stride) /
                      stride;
                  size_t outputWidth =
                      (inputWidth - filterWidth + 2 * padding + stride) /
                      stride;
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputHeight
                          << " inputWidth=" << inputWidth
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterHeight
                          << " filterWidth=" << filterWidth
                          << " outputHeight=" << outputHeight
                          << " outputWidth=" << outputWidth
                          << " stride=" << stride << " padding=" << padding;

                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
                          .set("groups", groups)
                          .set("algo", algo));

                  TensorShape input{
                      batchSize, inputChannels, inputHeight, inputWidth};

                  TensorShape filter;
                  if (groups > 1)
                    filter = TensorShape({groups,
                                          outputChannels / groups,
                                          inputChannels / groups,
                                          filterHeight,
                                          filterWidth});
                  else
                    filter = TensorShape({outputChannels,
                                          inputChannels,
                                          filterHeight,
                                          filterWidth});
                  TensorShape output{
                      batchSize, outputChannels, outputHeight, outputWidth};

                  if (type == kForwardTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == kBackwardInputTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
                    test.run();
                  } else if (type == kBackwardFilterTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter),
                                    ADD_TO);
                    test.run();
211 212 213 214 215 216 217 218 219 220 221
                  }
                }
              }
            }
          }
        }
      }
    }
  }
};

222 223
// ======Start Convolution TEST======

224 225
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
226
      "NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
227
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
228
      "NaiveConv-CPU", "GemmConv-CPU", kForwardTest, false);
229 230
}

H
Bug fix  
hedaoyuan 已提交
231
#ifndef PADDLE_ONLY_CPU
232 233
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
234
      "GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
235
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
236
      "GemmConv-CPU", "GemmConv-GPU", kForwardTest, false);
237 238
}

239 240
TEST(BackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
241 242 243 244
      "GemmConvGradInput-CPU",
      "GemmConvGradInput-GPU",
      kBackwardInputTest,
      false);
245
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
246 247 248 249
      "GemmConvGradInput-CPU",
      "GemmConvGradInput-GPU",
      kBackwardInputTest,
      false);
250 251
}

252 253
TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
254 255 256 257
      "GemmConvGradFilter-CPU",
      "GemmConvGradFilter-GPU",
      kBackwardFilterTest,
      false);
X
xzl 已提交
258
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
259 260 261 262
      "GemmConvGradFilter-CPU",
      "GemmConvGradFilter-GPU",
      kBackwardFilterTest,
      false);
263 264
}
#endif
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
// ======End Convolution TEST======

// ======Start DepthwiseConvolution TEST======

// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.

#ifndef PADDLE_ONLY_CPU

TEST(DepthwiseConvForward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConv-CPU", "DepthwiseConv-GPU", kForwardTest);
}

TEST(DepthwiseConvBackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConvGradInput-CPU",
      "DepthwiseConvGradInput-GPU",
      kBackwardInputTest);
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConvGradInput-CPU",
      "DepthwiseConvGradInput-GPU",
      kBackwardInputTest);
}

TEST(DepthwiseConvBackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
      "GemmConvGradFilter-CPU",
      "DepthwiseConvGradFilter-GPU",
      kBackwardFilterTest);
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConvGradFilter-CPU",
      "DepthwiseConvGradFilter-GPU",
      kBackwardFilterTest);
}

#endif
// ======End DepthwiseConvolution TEST======
305 306

}  // namespace paddle