Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
1f516fa0
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1f516fa0
编写于
7年前
作者:
X
xzl
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify format, and modify the layer grad test, op test
上级
81998868
develop
2.0.1-rocm-post
Ligoml-patch-1
OliverLPH-patch-1
OliverLPH-patch-2
PaddlePM-patch-1
PaddlePM-patch-2
ZHUI-patch-1
add_default_att
add_model_benchmark_ci
add_some_yaml_config
addfile
all_new_design_exec
ascendrc
ascendrelease
cherry_undefined_var
compile_windows
delete_2.0.1-rocm-post
delete_add_default_att
delete_all_new_design_exec
delete_ascendrc
delete_compile_windows
delete_delete_addfile
delete_disable_iterable_dataset_unittest
delete_fix_dataloader_memory_leak
delete_fix_imperative_dygraph_error
delete_fix_retry_ci
delete_fix_undefined_var
delete_improve_sccache
delete_incubate/lite
delete_paddle_tiny_install
delete_paralleltest
delete_prv-disable-more-cache
delete_revert-31068-fix_conv3d_windows
delete_revert-31562-mean
delete_revert-33630-bug-fix
delete_revert-34159-add_npu_bce_logical_dev
delete_revert-34910-spinlocks_for_allocator
delete_revert-35069-revert-34910-spinlocks_for_allocator
delete_revert-36057-dev/read_flags_in_ut
dingjiaweiww-patch-1
disable_iterable_dataset_unittest
dy2static
enable_eager_model_test
final_state_gen_python_c
final_state_intermediate
fix-numpy-issue
fix_concat_slice
fix_dataloader_memory_leak
fix_imperative_dygraph_error
fix_npu_ci
fix_op_flops
fix_retry_ci
fix_rnn_docs
fix_tensor_type
fix_undefined_var
fixiscan
fixiscan1
fixiscan2
fixiscan3
github/fork/123malin/netifaces
github/fork/123malin/tdm_abacus
github/fork/AshburnLee/dev_unique
github/fork/ForFishes/fix_memory_matmul
github/fork/ForFishes/rm_fluid
github/fork/LielinJiang/move-2.0-api
github/fork/LielinJiang/visual-dl-cb
github/fork/LiuChiachi/add-transformer-generate-square-subsequent-mask-api
github/fork/LiuChiachi/fix-example-code-for-hapi-Model
github/fork/LiuChiachi/remove-input-requirment-in-dygraph-Model
github/fork/MrChengmo/fix_ps_profiler
github/fork/MrChengmo/update_ps_heter
github/fork/PWhiddy/patch-1
github/fork/Shixiaowei02/dev/save_load_upgrade
github/fork/TCChenlong/fix_hapi
github/fork/TCChenlong/fix_inden
github/fork/Thunderbrook/xpu_slice
github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var
github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_2
github/fork/XieYunshen/disable_ut_test_parallel_executor_fetch_isolated_var_3
github/fork/XieYunshen/timeout_20S_ut
github/fork/ZeyuChen/remove-nltk
github/fork/arlesniak/arlesniak/selective__mkldnn_flags
github/fork/baiyfbupt/code_doc_mig
github/fork/chalsliu/set_timeout
github/fork/chen-zhiyu/develop
github/fork/chenwhql/ci/try_to_find_test_buffer_shared_memory_reuse_pass_error
github/fork/chenwhql/dygraph/remove_scale_loss_and_apply_collective_grads
github/fork/chenwhql/saveload/add_get_inference_program
github/fork/chenwhql/saveload/remove_save_load_config
github/fork/cryoco/pass-compatibility-trt
github/fork/danleifeng/isempty_api2.0
github/fork/frankwhzhang/api_transfer
github/fork/hbwx24/error_msg/cuda_kernel_error_msg
github/fork/heavengate/cherry_yolo_box
github/fork/heavengate/update_yolo_box
github/fork/iclementine/rnn_fix
github/fork/iducn/testestse
github/fork/jczaja/prv-25537-fix
github/fork/jeff41404/release/1.8
github/fork/jiweibo/api_2.0
github/fork/jiweibo/fix_lite_resnet50_test
github/fork/juncaipeng/fix_doc_1
github/fork/lfchener/sample_code
github/fork/littletomatodonkey/fix_reg_doc
github/fork/liym27/dy2stat_update_assign_to_rc20
github/fork/luotao1/profiler_ut
github/fork/mapingshuo/add_wait
github/fork/mapingshuo/doc_2.0
github/fork/mapingshuo/zero-0.5
github/fork/miraiwk/dev
github/fork/pangyoki/add-Categorical-class-branch
github/fork/pangyoki/add-multinomial-op-branch
github/fork/pangyoki/fix-test_distritbution-CI
github/fork/qjing666/doublegrad
github/fork/qjing666/fix_hdfs_download
github/fork/sandyhouse/add_gather_etc
github/fork/sandyhouse/add_send_recv_alltoall_etc
github/fork/sandyhouse/pipeline_exe_run
github/fork/seiriosPlus/feature/large_scale_kv_save_delta
github/fork/seiriosPlus/fix/paddle_errors_fix
github/fork/seiriosPlus/fix/paddle_op_errors
github/fork/shangzhizhou/fix_test_activation_op_random_bug
github/fork/smallv0221/yxp0924
github/fork/smallv0221/yxp0925
github/fork/swtkiwi/del-matplotlib
github/fork/tianshuo78520a/kunlun_test
github/fork/tianshuo78520a/update_dockerfile
github/fork/wanghaoshuang/bert_fuse
github/fork/wanghaoshuang/label_smooth
github/fork/wanghuancoder/develop_CUDASynchronize
github/fork/wanghuancoder/develop_Layer_doc
github/fork/wanghuancoder/develop_ParameterList_doc
github/fork/wanghuancoder/develop_Sequential_doc
github/fork/wanghuancoder/develop_bilinear_tensor_product
github/fork/wanghuancoder/develop_coverage_build_sh
github/fork/wanghuancoder/develop_in_dynamic_mode_doc
github/fork/wanghuancoder/develop_unique_name_doc
github/fork/wangxicoding/fleet_meta_combine
github/fork/wawltor/error_message_fix_5
github/fork/willthefrog/remove_l2_norm
github/fork/windstamp/momentum_op
github/fork/windstamp/mv_op_5
github/fork/windstamp/normal_api
github/fork/wojtuss/wojtuss/fusion_gru_quantization
github/fork/wojtuss/wojtuss/quantization-with-shift
github/fork/wzzju/fix_err_info
github/fork/wzzju/pure_fp16
github/fork/xiemoyuan/op_error_message
github/fork/xiemoyuan/optimize_error_message
github/fork/yaoxuefeng6/fix_doc
github/fork/yaoxuefeng6/mod_dataset_v2
github/fork/yongqiangma/lod
github/fork/ysh329/fix-clip-by-norm-error
github/fork/ysh329/fix-error-clip-by-value
github/fork/yukavio/error_info
github/fork/zhangting2020/conv_filter_grad
github/fork/zhangting2020/is_compile_with_cuda
github/fork/zhangting2020/place_doc
github/fork/zhangting2020/program
github/fork/zhhsplendid/fix_any
github/fork/zhhsplendid/refine_api2
github/fork/zhhsplendid/refine_api2_test
github/fork/zhhsplendid/refine_api_test_ptb_lm
github/fork/zhhsplendid/refine_api_test_resnet
github/fork/zhhsplendid/refine_api_test_simnet
github/fork/zhiqiu/dev/refine_initializer
github/fork/zhiqiu/dev/remove_inplace_argument
github/fork/zlsh80826/nvinfer_plugin_var_len_cuda11
improve_sccache
incubate/infrt
incubate/lite
inplace_addto
make_flag_adding_easier
master
move_embedding_to_phi
move_histogram_to_pten
move_sgd_to_phi
move_slice_to_pten
move_temporal_shift_to_phi
move_yolo_box_to_phi
npu_fix_alloc
numel
paddle_tiny_install
paralleltest
preln_ernie
prv-disable-more-cache
prv-md-even-more
prv-onednn-2.5
pten_tensor_refactor
release/0.11.0
release/0.12.0
release/0.13.0
release/0.14.0
release/0.15.0
release/1.0.0
release/1.1
release/1.2
release/1.3
release/1.4
release/1.5
release/1.6
release/1.7
release/1.8
release/2.0
release/2.0-alpha
release/2.0-beta
release/2.0-rc
release/2.0-rc1
release/2.1
release/2.2
release/2.3
release/2.3-fc-ernie-fix
release/2.4
release/lite-0.1
revert-24981-add_device_attr_for_regulization
revert-26856-strategy_example2
revert-27520-disable_pr
revert-31068-fix_conv3d_windows
revert-31562-mean
revert-32290-develop-hardlabel
revert-33037-forci
revert-33475-fix_cifar_label_dimension
revert-33630-bug-fix
revert-34159-add_npu_bce_logical_dev
revert-34406-add_copy_from_tensor
revert-34910-spinlocks_for_allocator
revert-35069-revert-34910-spinlocks_for_allocator
revert-36057-dev/read_flags_in_ut
revert-36201-refine_fast_threaded_ssa_graph_executor
revert-36985-add_license
revert-37318-refactor_dygraph_to_eager
revert-37926-eager_coreops_500
revert-37956-revert-37727-pylayer_support_tuple
revert-38100-mingdong
revert-38301-allocation_rearrange_pr
revert-38703-numpy_bf16_package_reupload
revert-38732-remove_useless_header_in_elementwise_mul_grad
revert-38959-Reduce_Grad
revert-39143-adjust_empty
revert-39227-move_trace_op_to_pten
revert-39268-dev/remove_concat_fluid_kernel
revert-40170-support_partial_grad
revert-41056-revert-40727-move_some_activaion_to_phi
revert-41065-revert-40993-mv_ele_floordiv_pow
revert-41068-revert-40790-phi_new
revert-41944-smaller_inference_api_test
revert-42149-do-not-reset-default-stream-for-stream-safe-cuda-allocator
revert-43155-fix_ut_tempfile
revert-43882-revert-41944-smaller_inference_api_test
revert-45808-phi/simplify_size_op
revert-46827-deform_comment
rocm_dev_0217
support_weight_transpose
test_benchmark_ci
test_feature_precision_test_c
test_model_benchmark
test_model_benchmark_ci
zhiqiu-patch-1
v2.4.0-rc0
v2.3.2
v2.3.1
v2.3.0
v2.3.0-rc0
v2.2.2
v2.2.1
v2.2.0
v2.2.0-rc0
v2.2.0-bak0
v2.1.3
v2.1.2
v2.1.1
v2.1.0
v2.1.0-rc0
v2.0.2
v2.0.1
v2.0.0
v2.0.0-rc1
v2.0.0-rc0
v2.0.0-beta0
v2.0.0-alpha0
v1.8.5
v1.8.4
v1.8.3
v1.8.2
v1.8.1
v1.8.0
v1.7.2
v1.7.1
v1.7.0
v1.6.3
v1.6.2
v1.6.1
v1.6.0
v1.6.0-rc0
v1.5.2
v1.5.1
v1.5.0
v1.4.1
v1.4.0
v1.3.2
v1.3.1
v1.3.0
v1.2.1
v1.2.0
v1.1.0
v1.0.2
v1.0.1
v1.0.0
v1.0.0-rc0
v0.15.0
v0.15.0-rc0
v0.14.0
v0.13.0
v0.12.0
v0.11.1a2
v0.11.1a1
v0.11.0
lite-v0.1
无相关合并请求
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
168 addition
and
243 deletion
+168
-243
paddle/function/ConvOpTest.cpp
paddle/function/ConvOpTest.cpp
+152
-231
paddle/gserver/layers/ExpandConvLayer.cpp
paddle/gserver/layers/ExpandConvLayer.cpp
+9
-8
paddle/gserver/tests/test_LayerGrad.cpp
paddle/gserver/tests/test_LayerGrad.cpp
+7
-4
未找到文件。
paddle/function/ConvOpTest.cpp
浏览文件 @
1f516fa0
...
...
@@ -25,95 +25,89 @@ enum TestType {
kBackwardFilterTest
=
2
,
};
enum
LayerType
{
convolutionType
=
0
,
depthwiseConvolutionType
=
1
,
};
template
<
DeviceType
DType1
,
DeviceType
DType2
>
class
ConvolutionTest
{
public:
ConvolutionTest
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
1
,
32
})
{
for
(
size_t
inputSize
:
{
7
,
14
,
54
})
{
for
(
size_t
filterSize
:
{
1
,
3
,
5
})
{
for
(
size_t
inputChannels
:
{
3
,
64
})
{
for
(
size_t
outputChannels
:
{
3
,
64
,
128
})
{
if
(
inputChannels
>
outputChannels
)
break
;
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
for
(
size_t
groups
:
{
1
,
3
,
64
})
{
if
(
inputChannels
>
outputChannels
)
break
;
if
(
groups
!=
1
&&
(
inputChannels
!=
groups
||
outputChannels
%
groups
!=
0
))
continue
;
if
(
!
useGroups
)
groups
=
1
;
for
(
size_t
stride
:
{
1
,
2
})
{
for
(
size_t
padding
:
{
0
,
1
})
{
if
(
padding
>=
filterSize
)
break
;
size_t
outputSize
=
(
inputSize
-
filterSize
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputSize
<<
" inputWidth="
<<
inputSize
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterSize
<<
" filterWidth="
<<
filterSize
<<
" outputHeight="
<<
outputSize
<<
" outputWidth="
<<
outputSize
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputSize
,
inputSize
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterSize
,
filterSize
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterSize
,
filterSize
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputSize
,
outputSize
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
();
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
();
}
}
}
}
...
...
@@ -132,8 +126,8 @@ class ConvolutionTest2 {
public:
ConvolutionTest2
(
const
std
::
string
&
conv1
,
const
std
::
string
&
conv2
,
LayerType
layerType
,
TestType
type
,
bool
useGroups
=
true
,
std
::
string
algo
=
"auto"
)
{
for
(
size_t
batchSize
:
{
16
})
{
for
(
size_t
inputHeight
:
{
7
,
31
})
{
...
...
@@ -142,78 +136,78 @@ public:
for
(
size_t
filterWidth
:
{
3
,
7
})
{
for
(
size_t
inputChannels
:
{
7
})
{
for
(
size_t
outputChannels
:
{
7
,
32
})
{
if
(
layerType
==
depthwiseConvolutionType
&&
outputChannels
%
inputChannels
!=
0
)
break
;
size_t
groups
=
1
;
if
(
layerType
==
depthwiseConvolutionType
)
{
groups
=
inputChannels
;
}
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filter
Height
<<
" filterWidth="
<<
filter
Width
<<
" outputHeight="
<<
outputHeight
<<
" outputWidth="
<<
outputWidth
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
(
)
.
set
(
"paddings"
,
padding
s
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
groups
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
}
;
TensorShape
filter
;
if
(
layerType
==
depthwiseConvolutionType
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
(
size_t
)
1
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
})
;
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
};
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
in
put
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
run
(
);
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
();
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
out
put
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
)
);
test
.
run
();
for
(
size_t
groups
:
{
1
,
7
})
{
if
(
!
useGroups
&&
groups
!=
1
&&
(
inputChannels
!=
groups
||
outputChannels
%
groups
!=
0
))
continue
;
if
(
!
useGroups
)
groups
=
1
;
size_t
stride
=
1
;
size_t
padding
=
0
;
size_t
outputHeight
=
(
inputHeight
-
filterHeight
+
2
*
padding
+
stride
)
/
stride
;
size_t
outputWidth
=
(
inputWidth
-
filterWidth
+
2
*
padding
+
stride
)
/
stride
;
VLOG
(
3
)
<<
" batchSize="
<<
batchSize
<<
" inputChannels="
<<
inputChannels
<<
" inputHeight="
<<
inputHeight
<<
" inputWidth="
<<
inputWidth
<<
" outputChannels="
<<
outputChannels
<<
" filterHeight="
<<
filterHeight
<<
" filterWidth="
<<
filterWidth
<<
" outputHeight="
<<
output
Height
<<
" outputWidth="
<<
output
Width
<<
" stride="
<<
stride
<<
" padding="
<<
padding
;
std
::
vector
<
size_t
>
paddings
=
{
padding
,
padding
}
;
std
::
vector
<
size_t
>
strides
=
{
stride
,
stride
};
Compare2Function
<
DType1
,
DType2
>
test
(
conv1
,
conv2
,
FuncConfig
()
.
set
(
"paddings"
,
paddings
)
.
set
(
"strides"
,
strides
)
.
set
(
"groups"
,
group
s
)
.
set
(
"algo"
,
algo
));
TensorShape
input
{
batchSize
,
inputChannels
,
inputHeight
,
inputWidth
};
TensorShape
filter
;
if
(
groups
>
1
)
filter
=
TensorShape
({
groups
,
outputChannels
/
groups
,
inputChannels
/
groups
,
filterHeight
,
filterWidth
});
else
filter
=
TensorShape
({
outputChannels
,
inputChannels
,
filterHeight
,
filterWidth
});
TensorShape
output
{
batchSize
,
outputChannels
,
outputHeight
,
outputWidth
}
;
if
(
type
==
kForwardTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
out
put
));
test
.
run
(
);
}
else
if
(
type
==
kBackwardInputTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
)
);
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
input
),
ADD_TO
);
test
.
run
(
);
}
else
if
(
type
==
kBackwardFilterTest
)
{
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
output
));
test
.
addInputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
in
put
));
test
.
addOutputs
(
BufferArg
(
VALUE_TYPE_FLOAT
,
filter
));
test
.
run
(
);
}
}
}
}
...
...
@@ -225,107 +219,34 @@ public:
}
};
// ======Start Convolution TEST======
TEST
(
Forward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_CPU
>
test2
(
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
convolutionType
,
kForwardTest
);
"NaiveConv-CPU"
,
"GemmConv-CPU"
,
kForwardTest
,
false
);
}
#ifndef PADDLE_ONLY_CPU
TEST
(
Forward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-CPU"
,
"GemmConv-GPU"
,
convolutionType
,
kForwardTest
);
"GemmConv-CPU"
,
"GemmConv-GPU"
,
kForwardTest
);
}
TEST
(
BackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
convolutionType
,
kBackwardInputTest
);
"GemmConvGradInput-CPU"
,
"GemmConvGradInput-GPU"
,
kBackwardInputTest
);
}
TEST
(
BackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
convolutionType
,
kBackwardFilterTest
);
}
#endif
// ======End Convolution TEST======
// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.
#ifndef PADDLE_ONLY_CPU
TEST
(
DepthwiseConvForward
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"GemmConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvForward
,
GEMM2
)
{
ConvolutionTest
<
DEVICE_TYPE_GPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConv-GPU"
,
"DepthwiseConv-GPU"
,
depthwiseConvolutionType
,
kForwardTest
);
}
TEST
(
DepthwiseConvBackwardInput
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradInput-GPU"
,
"DepthwiseConvGradInput-GPU"
,
depthwiseConvolutionType
,
kBackwardInputTest
);
}
TEST
(
DepthwiseConvBackwardFilter
,
GEMM
)
{
ConvolutionTest
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
ConvolutionTest2
<
DEVICE_TYPE_CPU
,
DEVICE_TYPE_GPU
>
test2
(
"DepthwiseConvGradFilter-GPU"
,
"DepthwiseConvGradFilter-GPU"
,
depthwiseConvolutionType
,
kBackwardFilterTest
);
"GemmConvGradFilter-CPU"
,
"GemmConvGradFilter-GPU"
,
kBackwardFilterTest
);
}
#endif
// ======End DepthwiseConvolution TEST======
}
// namespace paddle
This diff is collapsed.
Click to expand it.
paddle/gserver/layers/ExpandConvLayer.cpp
浏览文件 @
1f516fa0
...
...
@@ -39,21 +39,22 @@ bool ExpandConvLayer::init(const LayerMap &layerMap,
filterShape_
.
resize
(
numInputs
);
outputShape_
.
resize
(
numInputs
);
string
convType
;
string
convGradInputType
;
string
convGradFilterType
;
st
d
::
st
ring
convType
;
st
d
::
st
ring
convGradInputType
;
st
d
::
st
ring
convGradFilterType
;
for
(
int
i
=
0
;
i
<
config_
.
inputs_size
();
i
++
)
{
std
::
vector
<
size_t
>
paddings
=
{(
size_t
)
paddingY_
[
i
],
(
size_t
)
padding_
[
i
]};
std
::
vector
<
size_t
>
strides
=
{(
size_t
)
strideY_
[
i
],
(
size_t
)
stride_
[
i
]};
if
(
useGpu_
&&
(
size_t
)
groups_
[
i
]
==
(
size_t
)
channels_
[
i
]
&&
!
isDeconv_
)
{
convType
=
"DepthwiseConv"
convGradInputType
=
"DepthwiseConvGradInput"
convGradFilterType
=
"DepthwiseConvGradFilter"
convType
=
"DepthwiseConv"
;
convGradInputType
=
"DepthwiseConvGradInput"
;
convGradFilterType
=
"DepthwiseConvGradFilter"
;
}
else
{
convType
=
"GemmConv"
convGradInputType
=
"GemmConvGradInput"
convGradFilterType
=
"GemmConvGradFilter"
convType
=
"GemmConv"
;
convGradInputType
=
"GemmConvGradInput"
;
convGradFilterType
=
"GemmConvGradFilter"
;
}
if
(
FLAGS_use_nnpack
)
{
...
...
This diff is collapsed.
Click to expand it.
paddle/gserver/tests/test_LayerGrad.cpp
浏览文件 @
1f516fa0
...
...
@@ -349,13 +349,13 @@ TEST(Layer, CosSimVecMatLayer) {
void
testDepthwiseConvLayer
(
const
string
&
type
,
bool
useGpu
)
{
TestConfig
config
;
config
.
biasSize
=
16
;
config
.
biasSize
=
32
;
config
.
layerConfig
.
set_type
(
type
);
config
.
layerConfig
.
set_num_filters
(
16
);
config
.
layerConfig
.
set_num_filters
(
32
);
config
.
layerConfig
.
set_partial_sum
(
1
);
config
.
layerConfig
.
set_shared_biases
(
true
);
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
192
/
2
});
config
.
inputDefs
.
push_back
({
INPUT_DATA
,
"layer_0"
,
2048
,
192
});
LayerInputConfig
*
input
=
config
.
layerConfig
.
add_inputs
();
ConvConfig
*
conv
=
input
->
mutable_conv_conf
();
conv
->
set_filter_size
(
2
);
...
...
@@ -388,8 +388,11 @@ void testDepthwiseConvLayer(const string& type, bool useGpu) {
}
TEST
(
Layer
,
depthwiseConvLayer
)
{
// 'depthwise_conv' is a sepecial case of 'exconv' whose
// groups size equals to the input channels size.
testDepthwiseConvLayer
(
"exconv"
,
/* useGpu= */
false
);
#ifndef PADDLE_ONLY_CPU
testDepthwiseConvLayer
(
"
depthwise_
conv"
,
/* useGpu= */
true
);
testDepthwiseConvLayer
(
"
ex
conv"
,
/* useGpu= */
true
);
#endif
}
...
...
This diff is collapsed.
Click to expand it.
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录
反馈
建议
客服
返回
顶部