ConvOpTest.cpp 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gtest/gtest.h>
#include <memory>
#include "Function.h"
#include "FunctionTest.h"

namespace paddle {

22
enum TestType {
H
hedaoyuan 已提交
23 24 25
  kForwardTest = 0,
  kBackwardInputTest = 1,
  kBackwardFilterTest = 2,
26 27
};

X
xzl 已提交
28 29 30 31 32
enum LayerType {
  convolutionType = 0,
  depthwiseConvolutionType = 1,
};

33
template <DeviceType DType1, DeviceType DType2>
34 35 36 37
class ConvolutionTest {
public:
  ConvolutionTest(const std::string& conv1,
                  const std::string& conv2,
X
xzl 已提交
38
                  LayerType layerType,
39
                  TestType type,
40 41 42 43 44 45
                  std::string algo = "auto") {
    for (size_t batchSize : {1, 32}) {
      for (size_t inputSize : {7, 14, 54}) {
        for (size_t filterSize : {1, 3, 5}) {
          for (size_t inputChannels : {3, 64}) {
            for (size_t outputChannels : {3, 64, 128}) {
X
xzl 已提交
46 47 48 49 50 51 52 53 54 55 56
              if (inputChannels > outputChannels) break;
              if (layerType == depthwiseConvolutionType &&
                  outputChannels % inputChannels != 0)
                break;

              size_t groups = 1;

              if (layerType == depthwiseConvolutionType) {
                groups = inputChannels;
              }

57 58 59 60 61
              for (size_t stride : {1, 2}) {
                for (size_t padding : {0, 1}) {
                  if (padding >= filterSize) break;
                  size_t outputSize =
                      (inputSize - filterSize + 2 * padding + stride) / stride;
H
hedaoyuan 已提交
62 63 64 65 66 67 68 69 70 71
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputSize
                          << " inputWidth=" << inputSize
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterSize
                          << " filterWidth=" << filterSize
                          << " outputHeight=" << outputSize
                          << " outputWidth=" << outputSize
                          << " stride=" << stride << " padding=" << padding;
72

73 74
                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
75 76 77 78 79 80
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
X
xzl 已提交
81
                          .set("groups", groups)
82
                          .set("algo", algo));
83

84
                  TensorShape input{
85
                      batchSize, inputChannels, inputSize, inputSize};
X
xzl 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98

                  TensorShape filter;
                  if (layerType == depthwiseConvolutionType)
                    filter = TensorShape({groups,
                                          outputChannels / groups,
                                          (size_t)1,
                                          filterSize,
                                          filterSize});
                  else
                    filter = TensorShape({outputChannels,
                                          inputChannels,
                                          filterSize,
                                          filterSize});
99
                  TensorShape output{
100
                      batchSize, outputChannels, outputSize, outputSize};
101

H
hedaoyuan 已提交
102
                  if (type == kForwardTest) {
103 104 105 106
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
H
hedaoyuan 已提交
107
                  } else if (type == kBackwardInputTest) {
108 109
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
H
hedaoyuan 已提交
110
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
111
                    test.run();
H
hedaoyuan 已提交
112
                  } else if (type == kBackwardFilterTest) {
113 114 115 116 117
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
118 119 120 121 122 123 124 125 126 127
                }
              }
            }
          }
        }
      }
    }
  }
};

128 129 130 131 132 133 134
// Mainly used to test cases where the height and width (input, filter)
// are not equal.
template <DeviceType DType1, DeviceType DType2>
class ConvolutionTest2 {
public:
  ConvolutionTest2(const std::string& conv1,
                   const std::string& conv2,
X
xzl 已提交
135
                   LayerType layerType,
136 137 138 139 140 141 142 143
                   TestType type,
                   std::string algo = "auto") {
    for (size_t batchSize : {16}) {
      for (size_t inputHeight : {7, 31}) {
        for (size_t inputWidth : {10, 54}) {
          for (size_t filterHeight : {1, 5}) {
            for (size_t filterWidth : {3, 7}) {
              for (size_t inputChannels : {7}) {
X
xzl 已提交
144 145 146 147 148 149 150 151 152 153
                for (size_t outputChannels : {7, 32}) {
                  if (layerType == depthwiseConvolutionType &&
                      outputChannels % inputChannels != 0)
                    break;

                  size_t groups = 1;

                  if (layerType == depthwiseConvolutionType) {
                    groups = inputChannels;
                  }
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                  size_t stride = 1;
                  size_t padding = 0;
                  size_t outputHeight =
                      (inputHeight - filterHeight + 2 * padding + stride) /
                      stride;
                  size_t outputWidth =
                      (inputWidth - filterWidth + 2 * padding + stride) /
                      stride;
                  VLOG(3) << " batchSize=" << batchSize
                          << " inputChannels=" << inputChannels
                          << " inputHeight=" << inputHeight
                          << " inputWidth=" << inputWidth
                          << " outputChannels=" << outputChannels
                          << " filterHeight=" << filterHeight
                          << " filterWidth=" << filterWidth
                          << " outputHeight=" << outputHeight
                          << " outputWidth=" << outputWidth
                          << " stride=" << stride << " padding=" << padding;

                  std::vector<size_t> paddings = {padding, padding};
                  std::vector<size_t> strides = {stride, stride};
                  Compare2Function<DType1, DType2> test(
                      conv1,
                      conv2,
                      FuncConfig()
                          .set("paddings", paddings)
                          .set("strides", strides)
X
xzl 已提交
181
                          .set("groups", groups)
182 183 184 185
                          .set("algo", algo));

                  TensorShape input{
                      batchSize, inputChannels, inputHeight, inputWidth};
X
xzl 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198

                  TensorShape filter;
                  if (layerType == depthwiseConvolutionType)
                    filter = TensorShape({groups,
                                          outputChannels / groups,
                                          (size_t)1,
                                          filterHeight,
                                          filterWidth});
                  else
                    filter = TensorShape({outputChannels,
                                          inputChannels,
                                          filterHeight,
                                          filterWidth});
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
                  TensorShape output{
                      batchSize, outputChannels, outputHeight, outputWidth};

                  if (type == kForwardTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.run();
                  } else if (type == kBackwardInputTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, input), ADD_TO);
                    test.run();
                  } else if (type == kBackwardFilterTest) {
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, output));
                    test.addInputs(BufferArg(VALUE_TYPE_FLOAT, input));
                    test.addOutputs(BufferArg(VALUE_TYPE_FLOAT, filter));
                    test.run();
                  }
                }
              }
            }
          }
        }
      }
    }
  }
};

228
// ======Start Convolution TEST======
229 230
TEST(Forward, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test(
X
xzl 已提交
231
      "NaiveConv-CPU", "GemmConv-CPU", convolutionType, kForwardTest);
232
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_CPU> test2(
X
xzl 已提交
233
      "NaiveConv-CPU", "GemmConv-CPU", convolutionType, kForwardTest);
234 235
}

H
Bug fix  
hedaoyuan 已提交
236
#ifndef PADDLE_ONLY_CPU
237 238
TEST(Forward, GEMM2) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
X
xzl 已提交
239
      "GemmConv-CPU", "GemmConv-GPU", convolutionType, kForwardTest);
240
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
X
xzl 已提交
241
      "GemmConv-CPU", "GemmConv-GPU", convolutionType, kForwardTest);
242 243
}

244 245
TEST(BackwardInput, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
X
xzl 已提交
246 247 248 249
      "GemmConvGradInput-CPU",
      "GemmConvGradInput-GPU",
      convolutionType,
      kBackwardInputTest);
250
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
X
xzl 已提交
251 252 253 254
      "GemmConvGradInput-CPU",
      "GemmConvGradInput-GPU",
      convolutionType,
      kBackwardInputTest);
255 256
}

257 258
TEST(BackwardFilter, GEMM) {
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
X
xzl 已提交
259 260 261 262
      "GemmConvGradFilter-CPU",
      "GemmConvGradFilter-GPU",
      convolutionType,
      kBackwardFilterTest);
263
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
X
xzl 已提交
264 265 266 267
      "GemmConvGradFilter-CPU",
      "GemmConvGradFilter-GPU",
      convolutionType,
      kBackwardFilterTest);
268
}
H
Bug fix  
hedaoyuan 已提交
269
#endif
270 271 272 273 274 275 276 277
// ======End Convolution TEST======

// ======Start DepthwiseConvolution TEST======
// TODO(zhaolong) The depthwise convolution cpu test will be added when the cpu
// version of depthwiseConv is implemented.

#ifndef PADDLE_ONLY_CPU
TEST(DepthwiseConvForward, GEMM) {
X
xzl 已提交
278 279 280 281 282 283 284 285 286 287
  ConvolutionTest<DEVICE_TYPE_GPU, DEVICE_TYPE_GPU> test(
      "GemmConv-GPU",
      "DepthwiseConv-GPU",
      depthwiseConvolutionType,
      kForwardTest);
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "GemmConv-GPU",
      "DepthwiseConv-GPU",
      depthwiseConvolutionType,
      kForwardTest);
288 289 290
}

TEST(DepthwiseConvForward, GEMM2) {
X
xzl 已提交
291 292 293 294 295 296 297 298 299 300
  ConvolutionTest<DEVICE_TYPE_GPU, DEVICE_TYPE_GPU> test(
      "DepthwiseConv-GPU",
      "DepthwiseConv-GPU",
      depthwiseConvolutionType,
      kForwardTest);
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
      "DepthwiseConv-GPU",
      "DepthwiseConv-GPU",
      depthwiseConvolutionType,
      kForwardTest);
301 302 303
}

TEST(DepthwiseConvBackwardInput, GEMM) {
X
xzl 已提交
304
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
305 306
      "DepthwiseConvGradInput-GPU",
      "DepthwiseConvGradInput-GPU",
X
xzl 已提交
307
      depthwiseConvolutionType,
308
      kBackwardInputTest);
X
xzl 已提交
309
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
310 311
      "DepthwiseConvGradInput-GPU",
      "DepthwiseConvGradInput-GPU",
X
xzl 已提交
312
      depthwiseConvolutionType,
313 314 315 316
      kBackwardInputTest);
}

TEST(DepthwiseConvBackwardFilter, GEMM) {
X
xzl 已提交
317
  ConvolutionTest<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test(
318 319
      "DepthwiseConvGradFilter-GPU",
      "DepthwiseConvGradFilter-GPU",
X
xzl 已提交
320
      depthwiseConvolutionType,
321
      kBackwardFilterTest);
X
xzl 已提交
322
  ConvolutionTest2<DEVICE_TYPE_CPU, DEVICE_TYPE_GPU> test2(
323 324
      "DepthwiseConvGradFilter-GPU",
      "DepthwiseConvGradFilter-GPU",
X
xzl 已提交
325
      depthwiseConvolutionType,
326 327 328 329
      kBackwardFilterTest);
}
#endif
// ======End DepthwiseConvolution TEST======
330 331

}  // namespace paddle