tensor.py 64.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function
16
import six
17
from six.moves import reduce
Y
Yu Yang 已提交
18
from ..layer_helper import LayerHelper
19
from ..param_attr import ParamAttr
20
from ..initializer import Initializer
21
from ..framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard
X
xuwei06 已提交
22
from ..framework import Variable
23
from ..initializer import Constant
24
from ..core import VarDesc
25
from .. import core
26
from .layer_function_generator import templatedoc
L
Leo Chen 已提交
27
from . import utils
28
from ..data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
X
xuwei06 已提交
29
import numpy
30
import warnings
Y
Yu Yang 已提交
31 32

__all__ = [
L
li099 已提交
33 34 35
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
Z
zhoukunsheng 已提交
36
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite',
37
    'range', 'linspace', 'zeros_like', 'ones_like', 'diag', 'eye'
Y
Yu Yang 已提交
38 39 40
]


X
xuwei06 已提交
41
def create_tensor(dtype, name=None, persistable=False):
42
    """
W
wangchaochaohu 已提交
43
    Create a variable, which will hold a Tensor with data type dtype.
44 45

    Args:
W
wangchaochaohu 已提交
46 47 48 49
        dtype(string|numpy.dtype): the data type of Tensor to be created, the
            data type is bool, float16, float32, float64, int8, int16, int32 and int64.
        name(string, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
Q
update  
qiaolongfei 已提交
50
        persistable(bool): Set the persistable flag of the create tensor.
W
wangchaochaohu 已提交
51
            default value is False.
52 53

    Returns:
W
wangchaochaohu 已提交
54
        Variable: The tensor to be created according to dtype.
55 56 57 58

    Examples:
        .. code-block:: python

59
          import paddle.fluid as fluid
60 61
          tensor = fluid.layers.create_tensor(dtype='float32')
    """
62 63 64 65
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int32',
        'int64'
    ], 'create_tensor')
Y
Yu Yang 已提交
66
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
67 68
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
69 70


71 72
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
73
                     name=None,
74 75 76 77
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
78
	:api_attr: Static Graph
S
swtkiwi 已提交
79

80
    This function creates a parameter. The parameter is a learnable variable, which can have
Y
yuyang18 已提交
81 82 83 84 85
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

86 87 88 89 90 91 92
    Parameters:
        shape (list of int): Shape of the parameter
        dtype (str): Data type of the parameter
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
        attr (ParamAttr, optional): Attributes of the parameter
        is_bias (bool, optional): This can affect which default initializer is chosen
93 94 95
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
96
        default_initializer (Initializer, optional): Initializer for the parameter
97 98

    Returns:
99
        The created parameter.
Y
yuyang18 已提交
100 101

    Examples:
102 103
        .. code-block:: python

104
            import paddle.fluid as fluid
105 106
            import paddle.fluid.layers as layers
            W = layers.create_parameter(shape=[784, 200], dtype='float32')
107
    """
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_parameter')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_parameter')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_parameter')
    check_type(attr, 'attr', (type(None), ParamAttr), 'create_parameter')
    check_type(default_initializer, 'default_initializer',
               (type(None), Initializer), 'create_parameter')

Q
Qiao Longfei 已提交
127
    helper = LayerHelper("create_parameter", **locals())
128
    if attr is None:
X
xuwei06 已提交
129
        attr = ParamAttr(name=name)
130 131
    return helper.create_parameter(attr, shape,
                                   convert_dtype(dtype), is_bias,
132 133 134
                                   default_initializer)


135 136 137 138 139 140 141
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
142
    This function creates a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
143

144 145 146
    Parameters:
        shape (list of int): Shape of the variable
        value (float): The value of the variable. The new created
F
fengjiayi 已提交
147
                      variable will be filled with it.
148 149
        dtype (str): Data type of the variable
        persistable (bool, optional): If this variable is persistable.
F
fengjiayi 已提交
150
                           Default: False
151
        force_cpu (bool, optional): Force this variable to be on CPU.
F
fengjiayi 已提交
152
                         Default: False
153 154
        name (str, optional): For detailed information, please refer to
           :ref:`api_guide_Name` . Usually name is no need to set and None by default.
155 156

    Returns:
157
        Variable: The created Variable
F
fengjiayi 已提交
158 159 160 161

    Examples:
        .. code-block:: python

162
            import paddle.fluid as fluid
163 164
            import paddle.fluid.layers as layers
            var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
165
                                           persistable=True, force_cpu=True, name='new_var')
166
    """
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    check_type(shape, 'shape', (list, tuple, numpy.ndarray),
               'create_global_var')
    for item in shape:
        if six.PY2:
            check_type(item, 'item of shape',
                       (int, long, numpy.uint8, numpy.int8, numpy.int16,
                        numpy.int32, numpy.int64), 'create_global_var')
        else:
            check_type(item, 'item of shape',
                       (int, numpy.uint8, numpy.int8, numpy.int16, numpy.int32,
                        numpy.int64), 'create_global_var')

    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int16', 'int32',
        'int64', 'uint8'
    ], 'create_global_var')

Q
Qiao Longfei 已提交
184 185
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
M
minqiyang 已提交
186 187 188 189 190
        dtype=dtype,
        shape=shape,
        persistable=persistable,
        name=name,
        stop_gradient=True)
M
minqiyang 已提交
191 192 193
    helper.set_variable_initializer(
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
M
minqiyang 已提交
194

Q
Qiao Longfei 已提交
195 196 197
    return var


198
def cast(x, dtype):
Y
Yu Yang 已提交
199
    """
200 201 202
	:alias_main: paddle.cast
	:alias: paddle.cast,paddle.tensor.cast,paddle.tensor.manipulation.cast
	:old_api: paddle.fluid.layers.cast
S
swtkiwi 已提交
203

204 205 206
    This OP takes in the Variable :attr:`x` with :attr:`x.dtype` and casts it
    to the output with :attr:`dtype`. It's meaningless if the output dtype
    equals the input dtype, but it's fine if you do so.
Y
Yibing Liu 已提交
207 208

    Args:
209 210 211
        x(Variable): An input N-D Tensor with data type bool, float16,
            float32, float64, int32, int64, uint8.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output:
212
            bool, float16, float32, float64, int8, int32, int64, uint8.
Y
Yibing Liu 已提交
213 214

    Returns:
215
        Variable: A Tensor with the same shape as input's.
Y
Yibing Liu 已提交
216 217 218

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
219

220
            import paddle.fluid as fluid
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
            import numpy as np

            place = fluid.core.CPUPlace()

            x_lod = fluid.data(name="x", shape=[2,2], lod_level=0)
            cast_res1 = fluid.layers.cast(x=x_lod, dtype="uint8")
            cast_res2 = fluid.layers.cast(x=x_lod, dtype=np.int32)

            exe = fluid.Executor(place)
            exe.run(fluid.default_startup_program())

            x_i_lod = fluid.core.LoDTensor()
            x_i_lod.set(np.array([[1.3,-2.4],[0,4]]).astype("float32"), place)
            x_i_lod.set_recursive_sequence_lengths([[0,2]])
            res1 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res1], return_numpy=False)
            res2 = exe.run(fluid.default_main_program(), feed={'x':x_i_lod}, fetch_list=[cast_res2], return_numpy=False)
            print(np.array(res1[0]), np.array(res1[0]).dtype)
            # [[  1 254]
            #  [  0   4]] uint8
            print(np.array(res2[0]), np.array(res2[0]).dtype)
            # [[ 1 -2]
            #  [ 0  4]] int32
Y
Yu Yang 已提交
243
    """
244 245
    check_variable_and_dtype(
        x, 'x',
246 247
        ['bool', 'float16', 'float32', 'float64', 'int32', 'int64', 'uint8'],
        'cast')
248 249 250 251 252 253
    check_dtype(dtype, 'dtype', [
        'bool', 'float16', 'float32', 'float64', 'int8', 'int32', 'int64',
        'uint8'
    ], 'cast')

    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
254
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
255 256 257 258 259 260 261 262 263
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


264
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
265
    """
266
    This OP concatenates the input along the axis.
267 268

    Args:
269 270
        input(list|tuple|Tensor): ``input`` can be Tensor, Tensor list or Tensor tuple which is with data type
            bool, float16, float32, float64, int32, int64. All the Tensors in ``input`` must have the same data type. 
271 272
        axis(int|Tensor, optional): Specify the axis to operate on the input Tensors.
            It's a scalar with data type int or a Tensor with shape [1] and data type int32 or int64.
273
            The effective range is [-R, R), where R is Rank(x). When ``axis < 0``, it works the same way
274
            as ``axis+R``. Default is 0.
275 276 277
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
278
    Raises:
279 280
        TypeError: ``input`` must be one of list, tuple or Tensor.
        TypeError: The data type of ``input`` must be one of bool, float16, float32, float64, int32 and int64. 
281
        TypeError: The ``axis`` must be int or Tensor. The dtype of ``axis`` must be int32 or int64 when it's a Tensor.
282
        TypeError: All the Tensors in ``input`` must have the same data type.
283 284

    Returns:
285
        Tensor: A Tensor with the same data type as ``input``.
286 287 288

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
289

290
            import paddle.fluid as fluid
291 292
            import numpy as np

293 294 295 296 297 298
            in1 = np.array([[1, 2, 3],
                            [4, 5, 6]])
            in2 = np.array([[11, 12, 13],
                            [14, 15, 16]])
            in3 = np.array([[21, 22],
                            [23, 24]])
299 300 301 302
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(in1)
                x2 = fluid.dygraph.to_variable(in2)
                x3 = fluid.dygraph.to_variable(in3)
303 304
                # When the axis is negative, the real axis is (axis + Rank(x)).
                # As follows, axis is -1, Rank(x) is 2, the real axis is 1
305 306
                out1 = fluid.layers.concat(input=[x1, x2, x3], axis=-1)
                out2 = fluid.layers.concat(input=[x1, x2], axis=0)
307 308 309 310 311 312 313 314
                print(out1.numpy())
                # [[ 1  2  3 11 12 13 21 22]
                #  [ 4  5  6 14 15 16 23 24]]
                print(out2.numpy())
                # [[ 1  2  3]
                #  [ 4  5  6]
                #  [11 12 13]
                #  [14 15 16]]
Y
Yu Yang 已提交
315
    """
316 317

    if in_dygraph_mode():
S
songyouwei 已提交
318 319 320
        if isinstance(axis, Variable):
            axis = axis.numpy()
            axis = axis[0]
321
        return core.ops.concat(input, 'axis', axis)
322

323 324 325 326 327 328 329 330 331 332 333
    check_type(input, 'input', (list, tuple, Variable), 'concat')
    if not isinstance(input, Variable):
        for id, x in enumerate(input):
            check_variable_and_dtype(
                x, 'input[' + str(id) + ']',
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'concat')
            if x.dtype != input[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type.")
    else:
334
        input = [input]
335
    check_type(axis, 'axis', (int, Variable), 'concat')
336

337 338 339 340 341
    if isinstance(axis, Variable):
        check_dtype(
            axis.dtype, 'axis', ['int32', 'int64'], 'concat',
            "The data type of axis must be int32 or int64 when axis is a Tensor")

342
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
343
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
344 345 346

    if input[0].desc.type() == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        assert len(input) == 1, "If the elements of 'input' in concat are Variable(LoDTensorArray), " \
347
                "number of the elements must be 1, but received %s." % len(input)
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        out_index = helper.create_variable_for_type_inference(dtype="int32")
        helper.append_op(
            type='tensor_array_to_tensor',
            inputs={'X': input[0]},
            outputs={'Out': [out],
                     'OutIndex': [out_index]},
            attrs={'axis': axis,
                   'use_stack': False})
    else:
        inputs = {'X': input}
        attrs = {}
        if isinstance(axis, Variable):
            axis.stop_gradient = True
            inputs['AxisTensor'] = axis
        else:
            attrs['axis'] = axis

        helper.append_op(
            type='concat', inputs=inputs, outputs={'Out': [out]}, attrs=attrs)
Y
Yu Yang 已提交
367 368 369
    return out


G
Guo Sheng 已提交
370
def tensor_array_to_tensor(input, axis=1, name=None, use_stack=False):
L
li099 已提交
371
    """
G
Guo Sheng 已提交
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
    This function concatenates or stacks all tensors in the input LoDTensorArray
    along the axis mentioned and returns that as the output.

    For Example:

    .. code-block:: text

        Case 1:

            Given:

                input.data = {[[0.6, 0.1, 0.3],
                               [0.5, 0.3, 0.2]],
                              [[1.3],
                               [1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = False

            Then:

                output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                               [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

                output_index.data = [3, 1, 2]

        Case 2:

            Given:

                input.data = {[[0.6, 0.1],
                               [0.5, 0.3]],
                              [[0.3, 1.3],
                               [0.2, 1.8]],
                              [[2.3, 2.1],
                               [2.5, 2.4]]}

                axis = 1, use_stack = True

            Then:

                output.data = [[[0.6, 0.1]
                                [0.3, 1.3]
                                [2.3, 2.1],
                               [[0.5, 0.3]
                                [0.2, 1.8]
                                [2.5, 2.4]]]

                output_index.data = [2, 2, 2]
L
li099 已提交
422 423

    Args:
G
Guo Sheng 已提交
424 425 426 427 428 429 430
        input(Variable): A LodTensorArray variable.
        axis(int): The axis along which the tensors in attr::`input` will be
            concatenated or stacked.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
        use_stack(bool): Act as concat_op or stack_op. For stack mode, all
            tensors in the tensor array must have the same shape.
L
li099 已提交
431 432

    Returns:
G
Guo Sheng 已提交
433 434 435
        Variable: The concatenated or stacked tensor variable.
        Variable: A 1-D tensor variable with int32 data type. The data in this \
            tensor contains all input including tensors' sizes along the axis.
L
li099 已提交
436 437 438 439

    Examples:
        .. code-block:: python

440
            import paddle.fluid as fluid
441
            import numpy as np
G
Guo Sheng 已提交
442 443 444 445 446 447 448
            x0 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            x1 = fluid.layers.assign(np.random.rand(2, 2).astype("float32"))
            i = fluid.layers.fill_constant(shape=[1], dtype="int64", value=0)
            array = fluid.layers.create_array(dtype='float32')
            fluid.layers.array_write(x0, i, array)
            fluid.layers.array_write(x1, i + 1, array)
            output, output_index = fluid.layers.tensor_array_to_tensor(input=array)
L
li099 已提交
449
    """
450 451 452 453 454 455 456 457 458 459 460
    if in_dygraph_mode():
        assert isinstance(
            input, list), "The 'input' in tensor_array_to_tensor must be list"
        from .nn import stack, concat
        from ..dygraph import to_variable
        op = stack if use_stack else concat
        res = op(input, axis=axis)
        sizes = to_variable(
            numpy.array(list(map(lambda x: int(x.shape[axis]), input))))
        return res, sizes

461 462 463 464 465
    check_type(input, 'input', (list, Variable), 'tensor_array_to_tensor')
    if isinstance(input, list):
        for i, input_x in enumerate(input):
            check_type(input_x, 'input[' + str(i) + ']', Variable,
                       'tensor_array_to_tensor')
L
li099 已提交
466
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
467 468 469
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
470
        type='tensor_array_to_tensor',
L
li099 已提交
471 472 473
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
G
Guo Sheng 已提交
474 475
        attrs={'axis': axis,
               'use_stack': use_stack})
L
li099 已提交
476 477 478
    return out, out_index


479
def sums(input, out=None):
F
fengjiayi 已提交
480
    """
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
    This function computes the sum of multiple input Tensors elementwisely.

    - Case 1, sum of 3 Tensors

    .. code-block:: text

        # Input Tensors
        x0.shape = [2, 3]
        x0.data = [[1., 2., 3.],
                   [4., 5., 6.]]
        x1.shape = [2, 3]
        x1.data = [[10., 20., 30.],
                   [40., 50., 60.]]
        x2.shape = [2, 3]
        x2.data = [[100., 200., 300.],
                   [400., 500., 600.]]

        # Output Tensor
        out.shape = [2, 3]
        out.data = [[111., 222., 333.],
                    [444., 555., 666.]]
K
kavyasrinet 已提交
502 503

    Args:
504 505 506 507
        input (list): A list of Variables which hold input Tensors with the same
            data type and shape. Optional data types are: float32, float64, int32, int64.
        out (Variable, optional): Output Tensor. It can be any existing Variable.
            The default value is None, then a new Variable will be created and returned.
K
kavyasrinet 已提交
508 509

    Returns:
510 511
        Variable: The sum of inputs. The shape and data type is the same with input. \
            If :code:`out` is not None, the returned value is :code:`out` .
K
kavyasrinet 已提交
512 513

    Examples:
F
fengjiayi 已提交
514
        .. code-block:: python
K
kavyasrinet 已提交
515

516 517 518 519 520 521 522 523 524
            import paddle.fluid as fluid

            x0 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=1)
            x1 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=2)
            x2 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=3)
            x3 = fluid.layers.fill_constant(shape=[16, 32], dtype='int64', value=0)

            # Sum of multiple Tensors, the result is stored to a new Variable sum0 (sum0=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum0 = fluid.layers.sums(input=[x0, x1, x2])
525

526 527
            # Sum of multiple Tensors, sum1 and x3 represents the same Variable (x3=x0+x1+x2, the value is [[6, ..., 6], ..., [6, ..., 6]])
            sum1 = fluid.layers.sums(input=[x0, x1, x2], out=x3)
Y
Yu Yang 已提交
528
    """
529 530 531 532 533 534 535 536 537
    check_type(input, 'input', (Variable, tuple, list), 'sums')
    if isinstance(input, list) or isinstance(input, tuple):
        for input_section in input:
            check_variable_and_dtype(input_section, "input", \
                    ['float32', 'float64', 'int32', 'int64'], 'sums')
    else:
        check_variable_and_dtype(input, "input", \
                ['float32', 'float64', 'int32', 'int64'], 'sums')

Y
Yu Yang 已提交
538 539
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
540 541
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
542 543 544 545
    else:
        check_variable_and_dtype(
            out, "out", ['float32', 'float64', 'int32', 'int64'], 'sums')

T
tensor-tang 已提交
546 547 548 549 550
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
551 552 553
    return out


F
fengjiayi 已提交
554
def assign(input, output=None):
555
    """
556 557 558
	:alias_main: paddle.nn.functional.assign
	:alias: paddle.nn.functional.assign,paddle.nn.functional.common.assign
	:old_api: paddle.fluid.layers.assign
S
swtkiwi 已提交
559

560
    The OP copies the :attr:`input` to the :attr:`output`.
561

562 563
    Parameters:
        input (Variable|numpy.ndarray): A tensor or numpy ndarray, its data type supports
564
            float16, float32, float64, int32 and int64.
565 566
        output (Variable, optional): A tensor. If :attr:`output` is None, a new tensor will
            be created as :attr:`output`. Default: None.
567 568

    Returns:
569
        Variable: A tensor with the same shape, data type and value as :attr:`input`.
570 571 572

    Examples:
        .. code-block:: python
573

574
          import paddle.fluid as fluid
575 576 577 578 579 580
          import numpy as np
          data = fluid.layers.fill_constant(shape=[3, 2], value=2.5, dtype='float64') # [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result1 = fluid.layers.create_tensor(dtype='float64')
          fluid.layers.assign(data, result1) # result1 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result2 = fluid.layers.assign(data)  # result2 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
          result3 = fluid.layers.assign(np.array([[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]], dtype='float32')) # result3 = [[2.5, 2.5], [2.5, 2.5], [2.5, 2.5]]
581
    """
Y
Yu Yang 已提交
582
    helper = LayerHelper('assign', **locals())
583
    check_type(input, 'input', (Variable, numpy.ndarray), 'assign')
X
xuwei06 已提交
584
    if isinstance(input, Variable):
585 586 587 588
        check_dtype(
            input.dtype, 'input',
            ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
            'assign', '(When the type of input in assign is Variable.)')
589 590 591
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
592
        helper.append_op(
R
robot 已提交
593
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
594 595
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
596 597 598 599
        if dtype == VarDesc.VarType.BOOL:
            value_name = "bool_values"
            values = [bool(v) for v in input.flat]
        elif dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
600
            value_name = "fp32_values"
601
            values = [float(v) for v in input.flat]
602
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
603
            value_name = "int32_values"
604
            values = [int(v) for v in input.flat]
605 606 607
        elif dtype == VarDesc.VarType.INT64:
            value_name = "int64_values"
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
608
        else:
609 610
            raise TypeError(
                "When the type of 'input' in assign is numpy.ndarray, "
611
                "the data type of 'input' must be bool, float32, int32 or int64, but "
612
                "received %s." % convert_dtype(dtype))
613 614 615
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
616 617 618
        if output is None:
            output = helper.create_variable_for_type_inference(
                dtype=input.dtype)
X
xuwei06 已提交
619 620 621 622 623 624
        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
625
                value_name: values
X
xuwei06 已提交
626 627
            })

Y
Yu Yang 已提交
628 629 630
    return output


631
def fill_constant(shape, dtype, value, force_cpu=False, out=None, name=None):
Y
Yu Yang 已提交
632
    """
633
	:alias_main: paddle.fill_constant
634
	:alias: paddle.tensor.fill_constant, paddle.tensor.creation.fill_constant
S
swtkiwi 已提交
635

W
wangchaochaohu 已提交
636
    This OP creates a Tensor with specified `shape` and `dtype`, and
T
tianshuo78520a 已提交
637
    initializes it with a constant specified by `value`.
K
kavyasrinet 已提交
638

T
tianshuo78520a 已提交
639
    The attribute `stop_gradient` of the created Tensor is set to True.
640 641

    Args:
642 643 644 645
        shape(list|tuple|Tensor): Shape of the output Tensor, the data type of ``shape`` is int32 or int64.
            If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1].
            If ``shape`` is an Tensor, it should be an 1-D Tensor with date type int32 or int64.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Tensor which can
W
wangchaochaohu 已提交
646
            be float16, float32, float64, int32, int64.
647 648 649 650 651 652
        value(bool|float|int|Tensor): The constant value used to initialize 
            the Tensor to be created. If ``value`` is an Tensor, it should be an 1-D Tensor.
        force_cpu(bool, optional): data should be on CPU if it's true, default value is False.
        out(Tensor, optional): Optional output which can be any created 
            Tensor that meets the requirements to store the result of operation.
            if ``out`` is None, a new Tensor will be create to store the result.
653 654
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
655 656

    Returns:
657
        Tensor: Tensor which is created according to shape and dtype.
W
wangchaochaohu 已提交
658

659
    Raises:
W
wangchaochaohu 已提交
660
        TypeError: The dtype must be one of bool, float16, float32, float64, int32 and int64
661 662 663
            and the data type of ``out`` must be the same as the ``dtype``. 
        TypeError: The shape must be one of list, tuple and Tensor, the data type of ``shape``
            must be int32 or int64 when ``shape`` is a Tensor
664 665 666 667

    Examples:
        .. code-block:: python

668
          import paddle.fluid as fluid
669
          # attr shape is a list which doesn't contain  Tensor.
670 671
          data1 = fluid.layers.fill_constant(shape=[2,1], value=0, dtype='int64') # data1=[[0],[0]]
          data2 = fluid.layers.fill_constant(shape=[2,1], value=5, dtype='int64', out=data1)
672
          # data1=[[5], [5]] data2=[[5], [5]]
673

674
          # attr shape is a list which contains Tensor.
675
          positive_2 = fluid.layers.fill_constant([1], "int32", 2)
676
          data3 = fluid.layers.fill_constant(shape=[1, positive_2], dtype='float32', value=1.5) # data3=[[1.5, 1.5]]
677

678
          # attr shape is a Tensor.
679
          shape = fluid.layers.fill_constant([2], "int32", 2) # shape=[2,2]
680
          data4 = fluid.layers.fill_constant(shape=shape, dtype='bool', value=True) # data4=[[True,True],[True,True]]
W
wangchaochaohu 已提交
681
          
682
          # attr value is a Tensor.
W
wangchaochaohu 已提交
683 684
          val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0]
          data5 = fluid.layers.fill_constant(shape=[2,1], value=val, dtype='float32') #data5=[[2.0],[2.0]]
Y
Yu Yang 已提交
685
    """
686

W
wangchaochaohu 已提交
687
    attrs = {'force_cpu': force_cpu}
688
    if not isinstance(value, Variable):
W
wangchaochaohu 已提交
689 690 691 692
        if convert_dtype(dtype) in ['int64', 'int32']:
            attrs['str_value'] = str(int(value))
        else:
            attrs['str_value'] = str(float(value))
693 694

    if in_dygraph_mode():
695
        shape = utils._convert_shape_to_list(shape)
696 697
        if out is None:
            out = _varbase_creator(dtype=dtype)
W
wangchaochaohu 已提交
698 699 700 701 702 703 704

        if isinstance(value, Variable):
            if convert_dtype(dtype) in ['int64', 'int32']:
                attrs['str_value'] = str(int(value.numpy()))
            else:
                attrs['str_value'] = str(float(value.numpy()))

705 706
        core.ops.fill_constant(out, 'value',
                               float(value), 'force_cpu', force_cpu, 'dtype',
707 708
                               out.dtype, 'str_value', attrs['str_value'],
                               'shape', shape)
709 710 711
        out.stop_gradient = True
        return out

712 713 714 715 716
    helper = LayerHelper("fill_constant", **locals())
    inputs = {}
    if isinstance(value, Variable):
        inputs['ValueTensor'] = value

717
    check_dtype(dtype, 'dtype',
718 719 720
                ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'],
                'fill_constant')
    check_type(shape, 'shape', (Variable, list, tuple), 'fill_constant')
721

722
    if isinstance(shape, Variable):
723 724
        check_dtype(shape.dtype, 'shape', ['int32', 'int64'], 'fill_constant')

725 726 727 728 729
    if out is not None:
        check_variable_and_dtype(out, 'out', [convert_dtype(dtype)],
                                 'fill_constant')

    helper = LayerHelper("fill_constant", **locals())
730 731
    utils._get_shape_tensor_inputs(
        inputs=inputs, attrs=attrs, shape=shape, op_type='fill_constant')
L
liym27 已提交
732

Y
Yu Yang 已提交
733
    if out is None:
X
Xin Pan 已提交
734
        out = helper.create_variable_for_type_inference(dtype=dtype)
L
liym27 已提交
735
    attrs['dtype'] = out.dtype
Y
Yu Yang 已提交
736 737
    helper.append_op(
        type='fill_constant',
L
liym27 已提交
738
        inputs=inputs,
Y
Yu Yang 已提交
739
        outputs={'Out': [out]},
L
liym27 已提交
740
        attrs=attrs,
M
minqiyang 已提交
741
        stop_gradient=True)
Y
Yu Yang 已提交
742 743 744 745
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
746
@templatedoc()
Y
Yu Yang 已提交
747 748 749 750 751
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
G
Guo Sheng 已提交
752 753
                                  output_dim_idx=0,
                                  force_cpu=False):
754
    """
T
tianshuo78520a 已提交
755
    This OP creates a Tesnor according the shape and dtype, and initializes the
W
wangchaochaohu 已提交
756 757 758 759
    Tensor with the constants provided in ``value``. When the input is LoDTensor
    and the input_dim_idx is 0, the output_dim_idx dimension is set to the value
    of the batch_size input by the input, the Stop_gradient attribute of the created
    Tensor is False by default.
760 761

    Args:
W
wangchaochaohu 已提交
762 763 764 765 766 767 768 769 770 771 772
        input(Variable): Tensor which data type is float32, float64, int32 and int64.
        shape(list): The shape of Tensor to be created, Tensor's shape may be changed
            according the input.
        dtype(np.dtype|core.VarDesc.VarType|str): The data type of created Tensor which
            can be float32, float64, int32, int64.
        value(float|int): The constant value used to initialize the Tensor to be created. 
        input_dim_idx(int): When the value is 0 and the input is LoDTensor, the output_dim_idx
            dimension of the created Tensor is set to the batch_size value of input.
            The default value is 0.
        output_dim_idx(int): Used to specify which dimension of Tensor is created to be set
            the value of batch_size of input Tensor. The default value is 0.
T
tianshuo78520a 已提交
773
        force_cpu(bool): data should be on CPU if it's true, default value is False.
Y
yuyang18 已提交
774 775

    Returns:
W
wangchaochaohu 已提交
776
        Variable: Tensor which will be created according to dtype.
H
haowang101779990 已提交
777 778 779 780 781

    Examples:

        .. code-block:: python

782
             import paddle.fluid as fluid
W
wangchaochaohu 已提交
783
             like = fluid.layers.fill_constant(shape=[1,2], value=10, dtype='int64') #like=[[10, 10]]
W
wangchaochaohu 已提交
784
             data = fluid.layers.fill_constant_batch_size_like(
W
wangchaochaohu 已提交
785
                    input=like, shape=[1], value=0, dtype='int64') #like=[[10, 10]] data=[0]
H
haowang101779990 已提交
786

787
    """
Y
Yu Yang 已提交
788
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
789
    out = helper.create_variable_for_type_inference(dtype=dtype)
790 791 792 793 794 795
    attrs = {
        'shape': shape,
        'dtype': out.dtype,
        'value': float(value),
        'input_dim_idx': input_dim_idx,
        'output_dim_idx': output_dim_idx,
796
        'force_cpu': force_cpu
797 798 799 800 801
    }
    if convert_dtype(dtype) in ['int64', 'int32']:
        attrs['str_value'] = str(int(value))
    else:
        attrs['str_value'] = str(float(value))
Y
Yu Yang 已提交
802 803 804 805
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
806
        attrs=attrs)
Y
Yu Yang 已提交
807 808 809 810
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
811 812
def argmin(x, axis=0):
    """
813 814 815
	:alias_main: paddle.argmin
	:alias: paddle.argmin,paddle.tensor.argmin,paddle.tensor.search.argmin
	:old_api: paddle.fluid.layers.argmin
S
swtkiwi 已提交
816

S
sneaxiy 已提交
817 818
    **argmin**

819 820
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
821 822

    Args:
823 824 825 826 827
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
828

S
sneaxiy 已提交
829
    Returns:
830
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
831

S
sneaxiy 已提交
832 833
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
834

835
            import paddle.fluid as fluid
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmin(x=x, axis=-1)
                out2 = fluid.layers.argmin(x=x, axis=0)
                out3 = fluid.layers.argmin(x=x, axis=1)
                out4 = fluid.layers.argmin(x=x, axis=2)
                print(out1.numpy())
                # [[0 0 2]
                #  [1 0 2]]
                print(out2.numpy())
                # [[0 1 1 1]
                #  [0 0 0 0]
                #  [1 1 1 0]]
                print(out3.numpy())
                # [[1 1 1 2]
                #  [2 0 2 0]]
                print(out4.numpy())
                # [[0 0 2]
                #  [1 0 2]]
S
sneaxiy 已提交
863
    """
864 865 866
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmin')
S
sneaxiy 已提交
867
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
868
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
869 870 871 872 873
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
874
    out.stop_gradient = True
S
sneaxiy 已提交
875 876 877 878 879 880 881
    return out


def argmax(x, axis=0):
    """
    **argmax**

882 883
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.
S
sneaxiy 已提交
884 885

    Args:
886 887 888 889 890
        x(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
F
fengjiayi 已提交
891

S
sneaxiy 已提交
892
    Returns:
893
        Variable: A Tensor with data type int64.
F
fengjiayi 已提交
894

S
sneaxiy 已提交
895 896
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
897

898
            import paddle.fluid as fluid
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argmax(x=x, axis=-1)
                out2 = fluid.layers.argmax(x=x, axis=0)
                out3 = fluid.layers.argmax(x=x, axis=1)
                out4 = fluid.layers.argmax(x=x, axis=2)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
S
sneaxiy 已提交
926
    """
927 928 929
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'uint8', 'int16', 'int32', 'int64'],
        'argmax')
S
sneaxiy 已提交
930
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
931
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
932 933 934 935 936
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
937
    out.stop_gradient = True
S
sneaxiy 已提交
938 939 940
    return out


941
def argsort(input, axis=-1, descending=False, name=None):
Y
Yibing Liu 已提交
942
    """
943 944 945
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort
	:old_api: paddle.fluid.layers.argsort
S
swtkiwi 已提交
946

947 948 949
    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as
    :attr:`input`.
Y
Yibing Liu 已提交
950 951

    Args:
952 953 954 955 956
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
957 958 959
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
960 961 962
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
Y
Yibing Liu 已提交
963 964

    Returns:
965 966 967
        tuple: A tuple of sorted data Variable(with the same shape and data
        type as input) and the sorted indices(with the same shape as input's
        and with data type int64).
Y
Yibing Liu 已提交
968 969 970 971

    Examples:
        .. code-block:: python

972
            import paddle.fluid as fluid
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = fluid.layers.argsort(input=x, axis=-1)
                out2 = fluid.layers.argsort(input=x, axis=0)
                out3 = fluid.layers.argsort(input=x, axis=1)
                print(out1[0].numpy())
                # [[[5. 5. 8. 9.]
                #   [0. 0. 1. 7.]
                #   [2. 4. 6. 9.]]
                #  [[2. 2. 4. 5.]
                #   [4. 7. 7. 9.]
                #   [0. 1. 6. 7.]]]
                print(out1[1].numpy())
                # [[[0 3 1 2]
                #   [0 1 2 3]
                #   [2 3 0 1]]
                #  [[1 3 2 0]
                #   [0 1 2 3]
                #   [2 0 3 1]]]
                print(out2[0].numpy())
                # [[[5. 2. 4. 2.]
                #   [0. 0. 1. 7.]
                #   [1. 7. 0. 4.]]
                #  [[5. 8. 9. 5.]
                #   [4. 7. 7. 9.]
                #   [6. 9. 2. 6.]]]
                print(out3[0].numpy())
                # [[[0. 0. 1. 4.]
                #   [5. 8. 2. 5.]
                #   [6. 9. 9. 7.]]
                #  [[1. 2. 0. 2.]
                #   [4. 7. 4. 6.]
                #   [5. 7. 7. 9.]]]
Y
Yibing Liu 已提交
1014
    """
1015 1016 1017
    check_variable_and_dtype(
        input, 'input',
        ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'], 'argsort')
Y
Yibing Liu 已提交
1018
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
1019 1020 1021 1022
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
1023 1024 1025 1026
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
1027
                 'Indices': ids},
1028 1029
        attrs={'axis': axis,
               'descending': descending})
Y
Yibing Liu 已提交
1030 1031 1032
    return out, ids


Y
Yang Yu 已提交
1033
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
1034
    """
1035 1036
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1037

1038
    Parameters:
1039 1040
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of shape is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1041
            bool, float16, float32, float64, int32 and int64.
1042 1043
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1044
            Default: False.
1045 1046

    Returns:
1047 1048
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1.
    Raises:
1049
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1050 1051
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1052 1053 1054 1055

    Examples:
        .. code-block:: python

1056
          import paddle.fluid as fluid
1057 1058 1059 1060 1061
          data0 = fluid.layers.ones(shape=[2, 4], dtype='float32') # [[1., 1., 1., 1.], [1., 1., 1., 1.]]
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.ones(shape=shape, dtype='int32') #[[1, 1], [1, 1]]
Y
Yu Yang 已提交
1062 1063 1064 1065
    """
    return fill_constant(value=1.0, **locals())


1066
def zeros(shape, dtype, force_cpu=False, name=None):
Y
Yu Yang 已提交
1067
    """
1068 1069
    The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0.
    Its :attr:`stop_gradient` will be set to True to stop gradient computation.
1070

1071
    Parameters:
1072 1073
        shape(tuple|list|Tensor): Shape of output Tensor, the data type of ``shape`` is int32 or int64.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of output Tensor, it supports
1074
            bool, float16, float32, float64, int32 and int64.
1075 1076
        force_cpu (bool, optional): Whether force to store the output Tensor in CPU memory.
            If :attr:`force_cpu` is False, the output Tensor will be stored in running device memory.
1077
            Default: False.
1078 1079
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.
1080 1081

    Returns:
1082
        Tensor: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0.
1083

1084
    Raises:
1085
        TypeError: The ``dtype`` must be one of bool, float16, float32, float64, int32, int64.
1086 1087
        TypeError: The ``shape`` must be one of list, tuple and Tensor. The data type of ``shape`` must
            be int32 or int64 when it's a Tensor.
1088 1089 1090
    Examples:
        .. code-block:: python

1091
          import paddle.fluid as fluid
1092
          data = fluid.layers.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]]
1093 1094 1095 1096
          
          # shape is a Tensor
          shape = fluid.layers.fill_constant(shape=[2], dtype='int32', value=2)
          data1 = fluid.layers.zeros(shape=shape, dtype='int32') #[[0, 0], [0, 0]]
Y
Yu Yang 已提交
1097 1098
    """
    return fill_constant(value=0.0, **locals())
1099 1100


F
fengjiayi 已提交
1101 1102
def reverse(x, axis):
    """
1103 1104 1105
	:alias_main: paddle.reverse
	:alias: paddle.reverse,paddle.tensor.reverse,paddle.tensor.manipulation.reverse
	:old_api: paddle.fluid.layers.reverse
S
swtkiwi 已提交
1106

1107
    The OP reverses the tensor :attr:`x` along the given :attr:`axis`.
F
fengjiayi 已提交
1108

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
    .. code-block:: text

        Case 1:

            Given a LoDTensor:
                x = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
                axis = [0, 1]

            Then:
                output = [[8, 7, 6], [5, 4, 3], [2, 1, 0]]

        Case 2:

            Given a LoDTensorArray:
                x = {[[0, 1], [2, 3]],
                     [[4, 5, 6]],
                     [[7],[8], [9]]}
                axis = 0

            Then:
                output = {[[7],[8], [9]],
                          [[4, 5, 6]],
                          [[0, 1], [2, 3]]}

1133
    Parameters:
1134 1135
        x (Variable): A tensor or LoDTensorArray to be reversed, its data type supports bool, float32, float64, int32, int64 and uint8.
                      If input is a LoDTensorArray, returns a new reversed LoDTensorArray without changing the internal order of each inner tensor.
1136 1137
        axis (int|tuple|list): A dimension or a set of dimensions of :attr:`x` to reverse. Must be
            in the range [-rank( :attr:`x` ), rank( :attr:`x` )). If it is a tuple or a list, reversing
1138 1139
            will be apply on each axis in the tuple or list. If input is a LoDTensorArray, the value of axis shall be 0, or a
            list [0] or tuple (0, ) with shape [1].
F
fengjiayi 已提交
1140 1141

    Returns:
1142
        Variable: The reversed tensor with the same shape and data type as :attr:`x`.
F
fengjiayi 已提交
1143 1144 1145 1146

    Examples:
        .. code-block:: python

1147
          import paddle.fluid as fluid
1148 1149 1150 1151
          import numpy as np
          data = fluid.layers.assign(np.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]], dtype='float32')) # [[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]
          result1 = fluid.layers.reverse(data, 0) # [[6., 7., 8.], [3., 4., 5.], [0., 1., 2.]]
          result2 = fluid.layers.reverse(data, [0, 1]) # [[8., 7., 6.], [5., 4., 3.], [2., 1., 0.]]
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161

          # example of LoDTensorArray
          data1 = fluid.layers.assign(np.array([[0, 1, 2]], dtype='float32'))
          data2 = fluid.layers.assign(np.array([[3, 4, 5]], dtype='float32'))
          tensor_array = fluid.layers.create_array(dtype='float32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
          fluid.layers.array_write(data1, i, tensor_array)
          fluid.layers.array_write(data2, i+1, tensor_array)

          reversed_tensor_array = fluid.layers.reverse(tensor_array, 0) # {[[3, 4, 5]], [[0, 1, 2]]}
F
fengjiayi 已提交
1162
    """
1163 1164 1165
    check_variable_and_dtype(
        x, 'x', ('float32', 'float64', 'int32', 'int64', 'uint8'), 'reverse')
    check_type(axis, 'axis', (int, tuple, list), 'reverse')
F
fengjiayi 已提交
1166 1167 1168
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
1169
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
1170 1171
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
1172
        inputs={'X': x},
F
fengjiayi 已提交
1173 1174 1175 1176 1177
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


1178 1179 1180 1181 1182 1183 1184
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
1185 1186 1187
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
1203 1204
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
1205
        file_path(str): The file path where variables will be saved.
1206
        overwrite(bool): Whether or not cover the given file when it has already
1207 1208
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
1209 1210 1211 1212 1213 1214 1215 1216

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

1217
            import paddle.fluid as fluid
1218 1219 1220 1221 1222 1223 1224
            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
T
tianshuo78520a 已提交
1237
    Loads a list of variable from a single file.
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
1249 1250 1251 1252


def has_inf(x):
    """
1253 1254 1255
	:alias_main: paddle.has_inf
	:alias: paddle.has_inf,paddle.tensor.has_inf,paddle.tensor.search.has_inf
	:old_api: paddle.fluid.layers.has_inf
S
swtkiwi 已提交
1256

1257 1258 1259
    Test if any of x contains an infinity number

    Args:
L
liu zhengxi 已提交
1260
       x (Variable): The Tensor/LoDTensor to be checked.
1261 1262

    Returns:
L
liu zhengxi 已提交
1263
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is infinity number in x or not.
1264 1265 1266 1267 1268 1269 1270 1271
    
    Examples:
        .. code-block:: python
          
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_inf(data)

1272
    """
1273
    check_type(x, 'x', (Variable), 'has_inf')
1274
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
1275
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1276 1277 1278 1279 1280 1281
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
1282 1283 1284
	:alias_main: paddle.has_nan
	:alias: paddle.has_nan,paddle.tensor.has_nan,paddle.tensor.search.has_nan
	:old_api: paddle.fluid.layers.has_nan
S
swtkiwi 已提交
1285

1286 1287 1288
    Test if any of x contains a NAN

    Args:
L
liu zhengxi 已提交
1289
       x (Variable): The Tensor/LoDTensor to be checked.
1290 1291

    Returns:
L
liu zhengxi 已提交
1292
       Variable: The tensor variable storing the output, only a bool value, indicating that whether there is NAN in x or not.
1293 1294 1295 1296 1297 1298 1299 1300
    
    Examples:
        .. code-block:: python
    
          import paddle.fluid as fluid
          data = fluid.layers.data(name="input", shape=[4, 32, 32], dtype="float32")
          res = fluid.layers.has_nan(data)

1301
    """
1302
    check_type(x, 'x', (Variable), 'has_nan')
1303
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
1304
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1305 1306 1307 1308 1309 1310
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
1311 1312 1313
	:alias_main: paddle.isfinite
	:alias: paddle.isfinite,paddle.tensor.isfinite,paddle.tensor.logic.isfinite
	:old_api: paddle.fluid.layers.isfinite
S
swtkiwi 已提交
1314

1315 1316 1317 1318 1319 1320 1321 1322
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
1323 1324 1325 1326 1327

    Examples:

        .. code-block:: python

1328
            import paddle.fluid as fluid
1329 1330 1331
            var = fluid.layers.data(name="data",
                                    shape=(4, 6),
                                    dtype="float32")
石晓伟 已提交
1332
            out = fluid.layers.isfinite(var)
1333
    """
1334 1335
    check_variable_and_dtype(x, "x", ["float32", "float64", "int32", "int64"],
                             "isfinite")
1336
    helper = LayerHelper("isfinite", **locals())
1337

1338
    out = helper.create_variable_for_type_inference(dtype='bool')
1339 1340
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out
W
whs 已提交
1341 1342


1343
def range(start, end, step, dtype, name=None):
W
whs 已提交
1344
    """
1345
    This OP returns a 1-D Tensor with spaced values within a given interval.
W
whs 已提交
1346

1347 1348
    Values are generated into the half-open interval [``start``, ``end``) with
    the ``step``. (the interval including ``start`` but excluding ``end``).
1349

1350 1351
    If ``dtype`` is float32 or float64, we advise adding a small epsilon to
    ``end`` to avoid floating point rounding errors when comparing against ``end``.
W
whs 已提交
1352

L
Liufang Sang 已提交
1353
    Parameters:
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
        start(float|int|Tensor): Start of interval. The interval includes this
            value. If ``start`` is a Tensor, it is a 1-D Tensor with shape [1],
            with data type int32, int64, float32, float64.
        end(float|int|Tensor): End of interval. The interval does not include
            this value. If ``end`` is a Tensor, it is a 1-D Tensor with shape
            [1], with data type int32, int64, float32, float64.
        step(float|int|Tensor): Spacing between values. For any out, it is
            the istance between two adjacent values, out[i+1] - out[i]. If
            ``step`` is a Tensor, it is a 1-D Tensor with shape [1], with data
            type int32, int64, float32, float64.
        dtype(str|np.dtype|core.VarDesc.VarType, optional): The data type of the
            output tensor. Supported data types: int32, int64, float32, float64.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: 
        Tensor: A 1-D Tensor with values from the interval [``start``, ``end``)
            taken with common difference ``step`` beginning from ``start``. Its
            data type is set by ``dtype``.

    Raises:
        TypeError: If ``dtype`` is not int32, int64, float32, float64.
W
whs 已提交
1377 1378 1379 1380 1381

    examples:

        .. code-block:: python

1382
            import paddle.fluid as fluid
W
whs 已提交
1383

1384 1385
            out1 = fluid.layers.range(0, 10, 2, 'int32')
            # [0, 2, 4, 6, 8]
W
whs 已提交
1386

1387 1388 1389 1390 1391 1392 1393
            start_var = fluid.layers.fill_constant([1], 'int64', 3)
            out2 = fluid.layers.range(start_var, 7, 1, 'int64')
            # [3, 4, 5, 6]

    """
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1394

W
whs 已提交
1395
    if not isinstance(start, Variable):
1396 1397
        with device_guard("cpu"):
            start = fill_constant([1], dtype, start)
1398 1399
    elif start.dtype != dtype:
        start = cast(start, dtype)
1400

W
whs 已提交
1401
    if not isinstance(end, Variable):
1402 1403
        with device_guard("cpu"):
            end = fill_constant([1], dtype, end)
1404 1405
    elif end.dtype != dtype:
        end = cast(end, dtype)
1406

W
whs 已提交
1407
    if not isinstance(step, Variable):
1408 1409
        with device_guard("cpu"):
            step = fill_constant([1], dtype, step)
1410 1411
    elif step.dtype != dtype:
        step = cast(step, dtype)
W
whs 已提交
1412

1413 1414
    if in_dygraph_mode():
        return core.ops.range(start, end, step)
W
whs 已提交
1415

1416 1417 1418 1419
    check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'],
                'range/arange')
    helper = LayerHelper('range', **locals())
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1420 1421 1422 1423 1424
    helper.append_op(
        type='range',
        inputs={'Start': start,
                'End': end,
                'Step': step},
1425
        outputs={'Out': out})
1426
    out.stop_gradient = True
W
whs 已提交
1427
    return out
Z
zhoukunsheng 已提交
1428 1429


1430
def linspace(start, stop, num, dtype=None, name=None):
Z
zhoukunsheng 已提交
1431
    """
1432
    This OP return fixed number of evenly spaced values within a given interval.
Z
zhoukunsheng 已提交
1433 1434

    Args:
1435 1436 1437 1438 1439 1440 1441 1442
        start(float|Tensor): The input :attr:`start` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        stop(float|Tensor): The input :attr:`stop` is start variable of range. It is a float scalar, \
            or a Tensor of shape [1] with input data type float32, float64.
        num(int|Tensor): The input :attr:`num` is given num of the sequence. It is an int scalar, \
            or a Tensor of shape [1] with data type int32.
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output tensor, it could be 'float32' and 'float64'.
            Default: if None, the data type is float32.
1443 1444
        name(str, optional): Normally there is no need for user to set this property. 
            For more information, please refer to :ref:`api_guide_Name`.Default: None.
Z
zhoukunsheng 已提交
1445 1446

    Returns:
1447
        Tensor: the output data type will be float32, float64. The 1-D tensor with fixed number of evenly spaced values, \
1448 1449
        the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \
        the value with input :attr:`start`. 
Z
zhoukunsheng 已提交
1450

1451
    Raises:
1452 1453 1454
        TypeError: The ``dtype`` must be one of float32 and float64.
        TypeError: The data type of ``start`` and ``stop``  must be one of float32 and float64.
        TypeError: The data type of ``num`` must be one of int32 and int64.
1455 1456


Z
zhoukunsheng 已提交
1457
    Examples:
Z
zhoukunsheng 已提交
1458 1459
        .. code-block:: python

1460
             import paddle.fluid as fluid
Z
zhoukunsheng 已提交
1461 1462
             data = fluid.layers.linspace(0, 10, 5, 'float32') # [0.0,  2.5,  5.0,  7.5, 10.0]
             data = fluid.layers.linspace(0, 10, 1, 'float32') # [0.0]
Z
zhoukunsheng 已提交
1463 1464

    """
1465 1466
    if dtype is None:
        dtype = 'float32'
Z
zhoukunsheng 已提交
1467 1468 1469 1470 1471 1472
    if not isinstance(start, Variable):
        start = fill_constant([1], dtype, start)
    if not isinstance(stop, Variable):
        stop = fill_constant([1], dtype, stop)
    if not isinstance(num, Variable):
        num = fill_constant([1], 'int32', num)
1473 1474 1475 1476 1477 1478 1479 1480 1481
    if in_dygraph_mode():
        return core.ops.linspace(start, stop, num)

    helper = LayerHelper("linspace", **locals())

    check_dtype(start.dtype, 'start', ['float32', 'float64'], 'linspace')
    check_dtype(stop.dtype, 'stop', ['float32', 'float64'], 'linspace')
    check_dtype(num.dtype, 'num', ['int32', 'int64'], 'linspace')
    check_dtype(dtype, 'dtype', ['float32', 'float64'], 'linspace')
Z
zhoukunsheng 已提交
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    out = helper.create_variable_for_type_inference(dtype=start.dtype)

    helper.append_op(
        type='linspace',
        inputs={'Start': start,
                'Stop': stop,
                'Num': num},
        outputs={'Out': [out]})
    return out
1492 1493


Z
zhoukunsheng 已提交
1494 1495
def zeros_like(x, out=None):
    """
1496
    This OP creates a zeros tensor which has identical shape and dtype 
Z
zhoukunsheng 已提交
1497 1498 1499
    with `x`.

    Args:
1500 1501 1502 1503 1504 1505
        x(Variable): The input tensor which specifies shape and dtype, the
            input data dtype could be bool, float32, float64, int32, int64.
        out(Variable, optional): If is :attr:`None` , the op will create the
            variable as output, the data type and shape of this variable will
            be same as input :attr:`x`. If is a tensor, the data type and shape
            need to be same as input :attr:`x`. The default value is :attr:`None` .
Z
zhoukunsheng 已提交
1506 1507

    Returns:
1508 1509 1510
        Variable: The N-D tensor, the element in tensor is related to input
            data type, if the input data type is bool, the output value is
            False, otherwise is zero. The output shape is the same as the input.
Z
zhoukunsheng 已提交
1511 1512 1513 1514

    Examples:
        .. code-block:: python

1515
          import paddle.fluid as fluid
1516
          x = fluid.data(name='x', dtype='float32', shape=[3])
Z
zhoukunsheng 已提交
1517 1518
          data = fluid.layers.zeros_like(x) # [0.0, 0.0, 0.0]

Z
zhoukunsheng 已提交
1519 1520
    """

1521 1522
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1523 1524 1525
    helper = LayerHelper("zeros_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1526 1527 1528
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
1529
            'zeros_like')
1530

Z
zhoukunsheng 已提交
1531 1532 1533 1534
    helper.append_op(
        type='fill_zeros_like', inputs={'X': [x]}, outputs={'Out': [out]})
    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1535 1536 1537 1538


def diag(diagonal):
    """
1539 1540 1541
	:alias_main: paddle.diag
	:alias: paddle.diag,paddle.tensor.diag,paddle.tensor.creation.diag
	:old_api: paddle.fluid.layers.diag
S
swtkiwi 已提交
1542

1543
    This OP creates a square matrix which has diagonal values specified by input :attr:`diagonal`.
Z
zhoukunsheng 已提交
1544 1545

    Args:
1546 1547
        diagonal(Variable|numpy.ndarray): The input tensor should be 1D tensor, the input shape is :math:`[ N]` , \
            specifying diagonal values by this input tensor. The input data type should be float32, float64, int32, int64.
Z
zhoukunsheng 已提交
1548 1549

    Returns:
1550 1551
        Variable, the output data type is the same as input data type.: The tensor variable storing the square matrix, \
            the diagonal values specified by input :attr:`diagonal`. the output shape is :math:`[N, N]` with two dims.
Z
zhoukunsheng 已提交
1552 1553 1554 1555 1556 1557 1558

    Examples:
        .. code-block:: python

          # [[3, 0, 0]
          #  [0, 4, 0]
          #  [0, 0, 5] 
1559 1560 1561

          import paddle.fluid as fluid
          import numpy as np
1562 1563 1564
          diagonal = np.arange(3, 6, dtype='int32')
          data = fluid.layers.diag(diagonal)
          # diagonal.shape=(3,) data.shape=(3, 3)
Z
zhoukunsheng 已提交
1565 1566

    """
1567 1568 1569
    check_type(diagonal, 'diagonal', (Variable, numpy.ndarray), 'diag')
    check_dtype(diagonal.dtype, 'diagonal',
                ['float32', 'float64', 'int32', 'int64'], 'diag')
Z
zhoukunsheng 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
    helper = LayerHelper("diag", **locals())

    if not isinstance(diagonal, Variable):
        diagonal = assign(diagonal)

    out = helper.create_variable_for_type_inference(dtype=diagonal.dtype)

    helper.append_op(
        type='diag', inputs={'Diagonal': [diagonal]}, outputs={'Out': [out]})

    out.stop_gradient = True
    return out
Z
zhoukunsheng 已提交
1582 1583


1584 1585 1586 1587 1588
def eye(num_rows,
        num_columns=None,
        batch_shape=None,
        dtype='float32',
        name=None):
1589
    """
1590
    This function constructs a or a batch of 2-D tensor with ones on the diagonal and zeros elsewhere. 
1591 1592 1593

    Args:
        num_rows(int): the number of rows in each batch tensor.
1594 1595
        num_columns(int, optional): the number of columns in each batch tensor.
            If None, default: num_rows.
1596 1597
        batch_shape(list, optional): If provided, the returned tensor will have a leading
            batch size of this shape, the data type of ``batch_shape`` is int. Default is None.
1598 1599 1600 1601 1602
        dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of the returned tensor.
            It should be int32, int64, float16, float32, float64, default is 'float32'.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
1603 1604

    Returns:
1605
        Tensor: An identity Tensor or LoDTensor of shape batch_shape + [num_rows, num_columns].
1606 1607 1608
    Raises:
        TypeError: The `dtype` must be one of float16, float32, float64, int32 and int64.
        TypeError: The `num_columns` must be non-negative int.
1609 1610 1611 1612 1613

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
1614 1615
          data = fluid.layers.eye(3, dtype='int32')
          # [[1, 0, 0]
1616
          #  [0, 1, 0]
1617 1618
          #  [0, 0, 1]]

1619
          data = fluid.layers.eye(2, 3, dtype='int32')
1620
          # [[1, 0, 0]
1621
          #  [0, 1, 0]]
1622 1623

          data = fluid.layers.eye(2, batch_shape=[3])
1624 1625 1626 1627 1628
          # Construct a batch of 3 identity tensors, each 2 x 2.
          # data[i, :, :] is a 2 x 2 identity tensor, i = 0, 1, 2.

    """

1629 1630
    if not isinstance(dtype, core.VarDesc.VarType):
        dtype = convert_np_dtype_to_dtype_(dtype)
1631 1632 1633 1634 1635
    if num_columns is not None:
        if not isinstance(num_columns, int) or num_columns < 0:
            raise TypeError("num_columns should be a non-negative int")
    else:
        num_columns = num_rows
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

    if in_dygraph_mode():
        out = core.ops.eye('dtype', dtype, 'num_rows', num_rows, 'num_columns',
                           num_columns)

    else:
        helper = LayerHelper("eye", **locals())
        check_dtype(dtype, 'dtype',
                    ['float16', 'float32', 'float64', 'int32', 'int64'], 'eye')
        if not isinstance(num_rows, int) or num_rows < 0:
            raise TypeError("num_rows should be a non-negative int")
        out = helper.create_variable_for_type_inference(dtype=dtype)
        helper.append_op(
            type='eye',
            inputs={},
            outputs={'Out': [out]},
            attrs={
                'num_rows': num_rows,
                'num_columns': num_columns,
                'dtype': dtype
            },
            stop_gradient=True)
1658 1659

    if batch_shape is not None:
1660 1661 1662 1663 1664 1665 1666
        re_shape = [1] * len(batch_shape)
        re_shape = re_shape + [num_rows, num_columns]
        expand_times = batch_shape + [1, 1]
        if in_dygraph_mode():
            out = core.ops.reshape(out, 'shape', re_shape)
            return core.ops.expand(out, 'expand_times', expand_times)

1667 1668
        if not isinstance(batch_shape, list):
            raise TypeError("batch_shape should be a list")
1669
        for batch_val in (batch_shape):
1670 1671
            if batch_val <= 0:
                raise TypeError("batch_shape should be a positive int list")
1672 1673 1674 1675 1676 1677

        from .nn import reshape, expand
        out = reshape(x=out, shape=re_shape)
        out = expand(x=out, expand_times=expand_times)

    out.stop_gradient = True
1678 1679 1680
    return out


Z
zhoukunsheng 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
def ones_like(x, out=None):
    """
    **ones_like**

    This function creates a ones tensor which has identical shape and dtype 
    with `x`.

    Args:
        x(Variable): The input tensor which specifies shape and dtype.
        out(Variable): The output tensor.

    Returns:
1693
        out(Variable): The tensor variable storing the output.
Z
zhoukunsheng 已提交
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.layers.data(name='x', dtype='float32', shape=[3], append_batch_size=False)
          data = fluid.layers.ones_like(x) # [1.0, 1.0, 1.0]

    """
1704 1705
    check_variable_and_dtype(
        x, "x", ['bool', 'float32', 'float64', 'int32', 'int64'], 'ones_like')
Z
zhoukunsheng 已提交
1706 1707 1708 1709

    helper = LayerHelper("ones_like", **locals())
    if out is None:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
1710 1711 1712 1713
    else:
        check_variable_and_dtype(
            out, "out", ['bool', 'float32', 'float64', 'int32', 'int64'],
            'ones_like')
Z
zhoukunsheng 已提交
1714 1715 1716 1717 1718 1719
    helper.append_op(
        type='fill_any_like',
        inputs={'X': [x]},
        attrs={'value': 1.0},
        outputs={'Out': [out]})
    return out