sparse_api_gen.py 13.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import argparse
import re

20
from api_gen import ForwardAPI
21
from api_base import PREFIX_TENSOR_NAME
22 23


24
class SparseAPI(ForwardAPI):
25

26 27 28 29
    def __init__(self, api_item_yaml):
        super(SparseAPI, self).__init__(api_item_yaml)

    def gene_api_declaration(self):
30 31 32 33
        return f"""
// {", ".join(self.outputs['names'])}
{super(SparseAPI, self).gene_api_declaration()}
"""
34 35

    def gene_output(self,
36 37 38
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
39
                    inplace_flag=False):
40
        kernel_output = []
41 42
        output_names = []
        output_create = ""
43
        return_type = self.get_return_type_with_intermediate(inplace_flag)
44 45 46 47 48
        output_type_map = {
            'dense': 'TensorType::DENSE_TENSOR',
            'sparse_coo': 'TensorType::SPARSE_COO',
            'sparse_csr': 'TensorType::SPARSE_CSR'
        }
49

50
        if len(out_dtype_list) == 1:
51
            kernel_output.append('kernel_out')
52 53 54 55 56
            output_names.append('kernel_out')
            inplace_assign = " = " + self.inplace_map[self.outputs['names'][
                0]] if inplace_flag and self.inplace_map is not None and self.outputs[
                    'names'][0] in self.inplace_map else ""
            output_create = f"""
57
    {return_type} api_output{inplace_assign};
58
    auto* kernel_out = SetSparseKernelOutput(&api_output, {output_type_map[out_dtype_list[0]]});"""
59

60
        elif len(out_dtype_list) > 1:
61
            output_create = f"""
62
    {return_type} api_output;"""
63 64 65

            if inplace_flag:
                output_create = f"""
66
    {return_type} api_output{{"""
67 68 69 70 71 72 73 74

                for out_name in self.outputs['names']:
                    if out_name in self.inplace_map:
                        output_create = output_create + self.inplace_map[
                            out_name] + ', '
                    else:
                        output_create += 'Tensor(), '
                output_create = output_create[:-2] + '};'
75

76
            for i in range(len(out_dtype_list)):
77
                kernel_output.append(f'kernel_out_{i}')
78 79
                output_names.append(f'kernel_out_{i}')
                output_create = output_create + f"""
80
    auto* kernel_out_{i} = SetSparseKernelOutput(&std::get<{i}>(api_output), {output_type_map[out_dtype_list[i]]});"""
81 82 83 84 85 86 87 88 89 90

        else:
            raise ValueError(
                "{} : Output error: the output should not be empty.".format(
                    self.api))

        return kernel_output, output_names, output_create

    def gen_sparse_kernel_context(self, kernel_output_names):
        input_trans_map = {
91 92 93 94
            'const Tensor&':
            'const phi::TenseBase&',
            'const std::vector<Tensor>&':
            'const std::vector<phi::TenseBase>&',
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            'const paddle::optional<Tensor>&':
            'paddle::optional<const phi::TenseBase&>'
        }
        out_trans_map = {
            'Tensor': 'phi::TenseBase*',
            'std::vector<Tensor>': 'std::vector<phi::TenseBase*>'
        }
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        kernel_context_code = ""
        for param in kernel_param:
            if param in input_names:
                if param in self.optional_vars:
114 115
                    kernel_context_code = kernel_context_code + f"""
    kernel_context.EmplaceBackInput({param} ? {param}->impl().get() : nullptr);"""
116 117
                else:
                    kernel_context_code = kernel_context_code + f"""
118
    kernel_context.EmplaceBackInput({param}.impl().get());"""
119 120 121 122

                continue
            if param in attr_names:
                # set attr for kernel_context
123 124
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    param = 'phi::IntArray(' + param + ')'
125 126 127 128 129 130 131
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
                    param = 'phi::Scalar(' + param + ')'
            elif isinstance(param, bool):
                param = str(param).lower()
            else:
                param + str(param) + ", "
            kernel_context_code = kernel_context_code + f"""
132
    kernel_context.EmplaceBackAttr({param});"""
133 134 135

        for out_name in kernel_output_names:
            kernel_context_code = kernel_context_code + f"""
136
    kernel_context.EmplaceBackOutput({out_name});"""
137 138 139

        return kernel_context_code

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
    def prepare_input(self):
        input_names = self.inputs['names']
        input_types = self.inputs['tensor_type']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names

        create_input_var_code = ""
        tensor_type_map = {
            'dense': 'phi::DenseTensor',
            'sparse_coo': 'phi::SparseCooTensor',
            'sparse_csr': 'phi::SparseCsrTensor'
        }
        for param in infer_meta_params:
            if param in input_names:
                var_name = "auto " + PREFIX_TENSOR_NAME + param + " = "
                if self.inputs['input_info'][param] == "const Tensor&":
                    create_input_var_code = create_input_var_code + var_name + param + ".impl();\n"
                elif param in self.optional_vars:
                    tensor_type = 'phi::DenseTensor'
                    for name, input_type in zip(input_names, input_types):
                        if param == name:
                            tensor_type = tensor_type_map[input_type]
                            break
                    optional_var = "paddle::optional<" + tensor_type + ">("
                    create_input_var_code = create_input_var_code + var_name + param + " ? " + optional_var + "*static_cast<" + tensor_type + "*>((*" + param + ").impl().get())) : " + optional_var + "paddle::none);\n"
        return f"""{create_input_var_code}"""

170
    def gen_sparse_kernel_code(self, kernel_name, inplace_flag=False):
171
        _, kernel_output_names, output_create = self.gene_output(
172
            self.kernel['dispatch'][kernel_name][1], None, '', inplace_flag)
173 174 175

        kernel_context_code = self.gen_sparse_kernel_context(
            kernel_output_names)
176 177
        return_code = "" if len(
            self.gene_return_code()) == 0 else "  " + self.gene_return_code()
178
        return f"""
179
    VLOG(6) << "{self.api} api sparse kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
180
    auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
181
        "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}});
182
    const auto& phi_kernel = kernel_result.kernel;
183
    VLOG(6) << "{self.api} api sparse kernel: " << phi_kernel;
184

185
    auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
186
    auto kernel_context = phi::KernelContext(dev_ctx);
187
{output_create}
188 189
{self.prepare_input()}
{self.gene_infer_meta(kernel_output_names, '')}
190
{kernel_context_code}
191 192 193 194 195
    phi_kernel(&kernel_context);
  {return_code}"""

    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
196
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'conv3d' in sparse_ops.yaml."
197 198 199 200 201 202
        input_types = self.kernel['dispatch'][kernel_name][0]
        sparse_type_map = {
            'sparse_coo': 'DataLayout::SPARSE_COO',
            'sparse_csr': 'DataLayout::SPARSE_CSR'
        }
        condition_list = []
203
        tensor_type_list = []
204 205
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
206 207 208 209 210 211 212 213
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || phi::DenseTensor::classof({self.inputs['names'][i]}->impl().get()))"
                    )
                else:
                    condition_list.append(
                        f"phi::DenseTensor::classof({self.inputs['names'][i]}.impl().get())"
                    )
214
            else:
215 216 217 218 219 220 221 222 223
                if in_type == 'sparse_coo':
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_sparse_coo_tensor()")
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_sparse_csr_tensor()")
            tensor_type_list.append(in_type)
        self.inputs['tensor_type'] = tensor_type_list

224 225 226 227 228 229 230 231
        return " && ".join(condition_list)

    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_sparse_kernel_code(kernel_name, inplace_flag)}
  }}
"""
232 233

    def gene_base_api_code(self, inplace_flag=False):
234 235 236
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
237 238
        kernel_dispatch_code = f"{self.gene_kernel_select()}\n"
        for kernel_name in self.kernel['func']:
239 240
            kernel_dispatch_code += self.gene_dispatch_code(
                kernel_name, inplace_flag)
241

242
        return f"""
243
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_define_args()}) {{
244 245 246
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
247 248 249 250 251 252 253 254 255 256
}}
"""


def header_include():
    return """
#include <tuple>

#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/scalar.h"
257
#include "paddle/phi/common/int_array.h"
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
#include "paddle/utils/optional.h"
"""


def source_include(header_file_path):
    return f"""
#include "{header_file_path}"
#include <memory>

#include "glog/logging.h"

#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/core/kernel_registry.h"
273 274 275 276 277 278 279 280 281
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/utils/none.h"

#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/infermeta/sparse/binary.h"
#include "paddle/phi/infermeta/sparse/multiary.h"
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
"""


def api_namespace():
    return ("""
namespace paddle {
namespace experimental {
namespace sparse {

""", """

}  // namespace sparse
}  // namespace experimental
}  // namespace paddle
""")


def generate_api(api_yaml_path, header_file_path, source_file_path):

    with open(api_yaml_path, 'r') as f:
        apis = yaml.load(f, Loader=yaml.FullLoader)
    header_file = open(header_file_path, 'w')
    source_file = open(source_file_path, 'w')

    namespace = api_namespace()

    header_file.write("#pragma once\n")
    header_file.write(header_include())
    header_file.write(namespace[0])

    include_header_file = "paddle/phi/api/include/sparse_api.h"
    source_file.write(source_include(include_header_file))
    source_file.write(namespace[0])

    for api in apis:
        sparse_api = SparseAPI(api)
318 319
        if sparse_api.is_dygraph_api:
            sparse_api.is_dygraph_api = False
320 321 322 323 324 325 326 327 328 329 330 331 332
        header_file.write(sparse_api.gene_api_declaration())
        source_file.write(sparse_api.gene_api_code())

    header_file.write(namespace[1])
    source_file.write(namespace[1])

    header_file.close()
    source_file.close()


def main():
    parser = argparse.ArgumentParser(
        description='Generate PaddlePaddle C++ Sparse API files')
333 334
    parser.add_argument('--api_yaml_path',
                        help='path to sparse api yaml file',
335
                        default='paddle/phi/api/yaml/sparse_ops.yaml')
336 337 338 339 340 341 342 343

    parser.add_argument('--api_header_path',
                        help='output of generated api header code file',
                        default='paddle/phi/api/include/sparse_api.h')

    parser.add_argument('--api_source_path',
                        help='output of generated api source code file',
                        default='paddle/phi/api/lib/sparse_api.cc')
344 345 346 347 348 349 350 351 352 353 354 355

    options = parser.parse_args()

    api_yaml_path = options.api_yaml_path
    header_file_path = options.api_header_path
    source_file_path = options.api_source_path

    generate_api(api_yaml_path, header_file_path, source_file_path)


if __name__ == '__main__':
    main()