未验证 提交 fd8ec4a1 编写于 作者: Z zhangkaihuo 提交者: GitHub

[Cherry-pick] Sparse add InferMeta (#46235)

cherry-pick : #46016, #46021, #45974

* [Sparse]Sparse add support gpu (#45974)

* [Sparse]Remove unused code (#46021)

* [Sparse] Add infer meta (#46016)
上级 38c0fd02
......@@ -370,12 +370,6 @@ cc_library(
SRCS api_custom_impl.cc
DEPS phi_tensor_raw phi kernel_dispatch api_gen_utils backward_infermeta
phi_data_transform)
cc_library(
sparse_api_custom_impl
SRCS sparse_api_custom_impl.cc
DEPS phi_tensor_raw phi kernel_dispatch api_gen_utils phi_data_transform
tensor_copy)
cc_library(
phi_function_api
SRCS ${api_source_file}
......@@ -389,6 +383,7 @@ cc_library(
kernel_dispatch
api_gen_utils
backward_infermeta
sparse_backward_infermeta
phi_data_transform
phi_function_api
api_custom_impl
......@@ -396,12 +391,12 @@ cc_library(
cc_library(
sparse_api
SRCS ${sparse_api_source_file}
DEPS phi_tensor_raw phi kernel_dispatch api_gen_utils sparse_api_custom_impl)
DEPS phi_tensor_raw phi kernel_dispatch api_gen_utils)
cc_library(
sparse_bw_api
SRCS ${sparse_bw_api_source_file}
DEPS phi_tensor_raw phi kernel_dispatch api_gen_utils sparse_api
sparse_api_custom_impl)
sparse_backward_infermeta)
cc_library(
phi_dygraph_api
SRCS ${dygraph_api_source_file}
......@@ -424,6 +419,7 @@ cc_library(
api_gen_utils
kernel_dispatch
infermeta
sparse_infermeta
sparse_api
strings_api)
cc_library(
......
......@@ -88,6 +88,10 @@ std::shared_ptr<phi::StringTensor> TensorToStringTensor(const Tensor& tensor) {
return std::dynamic_pointer_cast<phi::StringTensor>(tensor.impl());
}
std::shared_ptr<phi::SparseCooTensor> TensorToSparseCooTensor(
const Tensor& tensor) {
return std::static_pointer_cast<phi::SparseCooTensor>(tensor.impl());
}
/* ----------------- for infer_meta --------------------- */
phi::MetaTensor MakeMetaTensor(const phi::TensorBase& tensor) {
......@@ -130,6 +134,22 @@ phi::MetaTensor MakeMetaTensor(
return phi::MetaTensor();
}
phi::MetaTensor MakeMetaTensor(
const paddle::optional<phi::SparseCooTensor>& tensor) {
if (tensor) {
return {phi::MetaTensor(*tensor)};
}
return phi::MetaTensor();
}
phi::MetaTensor MakeMetaTensor(
const paddle::optional<phi::SparseCsrTensor>& tensor) {
if (tensor) {
return {phi::MetaTensor(*tensor)};
}
return phi::MetaTensor();
}
std::vector<phi::MetaTensor> MakeMetaTensor(
const paddle::optional<std::vector<const phi::DenseTensor*>>& tensors) {
std::vector<phi::MetaTensor> meta_tensors;
......
......@@ -52,6 +52,8 @@ paddle::optional<phi::SelectedRows> TensorToSelectedRows(
std::shared_ptr<phi::StringTensor> TensorToStringTensor(const Tensor& tensor);
std::shared_ptr<phi::SparseCooTensor> TensorToSparseCooTensor(
const Tensor& tensor);
/* ----------------- for infer_meta --------------------- */
phi::MetaTensor MakeMetaTensor(const phi::TensorBase& tensor);
......@@ -68,6 +70,12 @@ std::vector<phi::MetaTensor> MakeMetaTensor(
phi::MetaTensor MakeMetaTensor(
const paddle::optional<phi::SelectedRows>& tensor);
phi::MetaTensor MakeMetaTensor(
const paddle::optional<phi::SparseCooTensor>& tensor);
phi::MetaTensor MakeMetaTensor(
const paddle::optional<phi::SparseCsrTensor>& tensor);
std::vector<phi::MetaTensor> MakeMetaTensor(
const paddle::optional<std::vector<const phi::DenseTensor*>>& tensors);
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include <memory>
#include "glog/logging.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/core/kernel_registry.h"
namespace paddle {
namespace experimental {
namespace sparse {
Tensor to_sparse_coo_impl(const Tensor& x, const int64_t sparse_dim) {
if (x.layout() == phi::DataLayout::SPARSE_COO) {
return x;
}
// 1. Get kernel signature and kernel
std::string kernel_name = "dense_to_coo";
if (x.layout() == phi::DataLayout::SPARSE_CSR) {
kernel_name = "csr_to_coo";
}
auto kernel_key_set = ParseKernelKeyByInputArgs(x);
auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
kernel_name, kernel_key);
const auto& kernel = kernel_result.kernel;
VLOG(6) << "add API kernel key: " << kernel_key;
VLOG(6) << "to API kernel: " << kernel;
// 2. Get Device Context
auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
auto kernel_context = phi::KernelContext(dev_ctx);
// 3. Auto data transform
if (x.layout() == phi::DataLayout::SPARSE_CSR) {
auto input = std::dynamic_pointer_cast<phi::SparseCsrTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
} else {
auto input = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
kernel_context.EmplaceBackAttr(sparse_dim);
}
// 4. InferMeta
auto indices_meta =
phi::DenseTensorMeta(phi::DataType::INT64, {1}, phi::DataLayout::NCHW);
auto elements_meta = phi::DenseTensorMeta(x.dtype(), {1}, x.layout());
// 5. Prepare outputs
// create empty SparseCooTensor
phi::DenseTensor non_zero_indices(std::make_shared<phi::Allocation>(),
std::move(indices_meta));
phi::DenseTensor non_zero_elements(std::make_shared<phi::Allocation>(),
std::move(elements_meta));
auto coo = std::make_shared<phi::SparseCooTensor>(
non_zero_indices, non_zero_elements, x.dims());
kernel_context.EmplaceBackOutput(coo.get());
Tensor out;
out.set_impl(coo);
// 6. Call kernel
kernel(&kernel_context);
return out;
}
Tensor to_sparse_csr_impl(const Tensor& x) {
if (x.layout() == phi::DataLayout::SPARSE_CSR) {
return x;
}
// 1. Get kernel signature and kernel
std::string kernel_name = "dense_to_csr";
if (x.layout() == phi::DataLayout::SPARSE_COO) {
kernel_name = "coo_to_csr";
}
auto kernel_key_set = ParseKernelKeyByInputArgs(x);
auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
kernel_name, kernel_key);
const auto& kernel = kernel_result.kernel;
VLOG(6) << "add API kernel key: " << kernel_key;
VLOG(6) << "to API kernel: " << kernel;
// 2. Get Device Context
auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
auto kernel_context = phi::KernelContext(dev_ctx);
// 3. Auto data transform
if (x.layout() == phi::DataLayout::SPARSE_COO) {
auto input = std::dynamic_pointer_cast<phi::SparseCooTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
} else {
auto input = std::dynamic_pointer_cast<phi::DenseTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
}
// 4. InferMeta
auto crows_meta =
phi::DenseTensorMeta(phi::DataType::INT64, {1}, phi::DataLayout::NCHW);
auto cols_meta =
phi::DenseTensorMeta(phi::DataType::INT64, {1}, phi::DataLayout::NCHW);
auto elements_meta = phi::DenseTensorMeta(x.dtype(), {1}, x.layout());
// 5. Prepare outputs
// create empty SparseCooTensor
phi::DenseTensor non_zero_crows(std::make_shared<phi::Allocation>(),
std::move(crows_meta));
phi::DenseTensor non_zero_cols(std::make_shared<phi::Allocation>(),
std::move(cols_meta));
phi::DenseTensor non_zero_elements(std::make_shared<phi::Allocation>(),
std::move(elements_meta));
auto csr = std::make_shared<phi::SparseCsrTensor>(
non_zero_crows, non_zero_cols, non_zero_elements, x.dims());
kernel_context.EmplaceBackOutput(csr.get());
Tensor out;
out.set_impl(csr);
// 6. Call kernel
kernel(&kernel_context);
return out;
}
Tensor to_dense_impl(const Tensor& x) {
if (x.layout() != phi::DataLayout::SPARSE_CSR &&
x.layout() != phi::DataLayout::SPARSE_COO) {
return x;
}
// 1. Get kernel signature and kernel
std::string kernel_name = "coo_to_dense";
if (x.layout() == phi::DataLayout::SPARSE_CSR) {
kernel_name = "csr_to_dense";
}
auto kernel_key_set = ParseKernelKeyByInputArgs(x);
auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
kernel_name, kernel_key);
const auto& kernel = kernel_result.kernel;
VLOG(6) << "add API kernel key: " << kernel_key;
VLOG(6) << "to API kernel: " << kernel;
// 2. Get Device Context
auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());
auto kernel_context = phi::KernelContext(dev_ctx);
// 3. Auto data transform
if (x.layout() == phi::DataLayout::SPARSE_COO) {
auto input = std::dynamic_pointer_cast<phi::SparseCooTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
} else {
auto input = std::dynamic_pointer_cast<phi::SparseCsrTensor>(x.impl());
kernel_context.EmplaceBackInput(input.get());
}
// 4. InferMeta
auto dense_meta = phi::DenseTensorMeta(x.dtype(), x.dims(), x.layout());
// 5. Prepare outputs
// create empty SparseCooTensor
auto dense_out = std::make_shared<phi::DenseTensor>(
std::make_shared<phi::Allocation>(), std::move(dense_meta));
kernel_context.EmplaceBackOutput(dense_out.get());
Tensor out;
out.set_impl(dense_out);
// 6. Call kernel
kernel(&kernel_context);
return out;
}
} // namespace sparse
} // namespace experimental
} // namespace paddle
......@@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/infermeta/unary.h"
// clang-format off
namespace paddle {
namespace experimental {
......@@ -165,7 +166,11 @@ void Tensor::copy_(const Tensor &src,
static_cast<phi::SelectedRows *>(impl_.get()));
} else if (kernel_type == KernelType::SPARSE_COO_KERNEL) {
SetSparseKernelOutput(this, TensorType::SPARSE_COO);
// TODO(zhangkaihuo) add sparse infer_meta
phi::MetaTensor meta_out(impl_.get());
phi::UnchangedInferMeta(
MakeMetaTensor(
*(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
&meta_out);
phi::Copy(*dev_ctx,
(*(std::static_pointer_cast<phi::SparseCooTensor>(src.impl_))),
target_place,
......@@ -173,7 +178,11 @@ void Tensor::copy_(const Tensor &src,
static_cast<phi::SparseCooTensor *>(impl_.get()));
} else if (kernel_type == KernelType::SPARSE_CSR_KERNEL) {
SetSparseKernelOutput(this, TensorType::SPARSE_CSR);
// TODO(zhangkaihuo) add sparse infer_meta
phi::MetaTensor meta_out(impl_.get());
phi::UnchangedInferMeta(
MakeMetaTensor(
*(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
&meta_out);
phi::Copy(*dev_ctx,
(*(std::static_pointer_cast<phi::SparseCsrTensor>(src.impl_))),
target_place,
......
......@@ -43,7 +43,6 @@ def source_include(header_file_path):
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
......@@ -51,6 +50,10 @@ def source_include(header_file_path):
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/infermeta/sparse/binary.h"
#include "paddle/phi/infermeta/sparse/multiary.h"
#include "paddle/fluid/platform/profiler/event_tracing.h"
#include "paddle/fluid/platform/profiler/supplement_tracing.h"
"""
......
......@@ -18,6 +18,7 @@ import argparse
import re
from api_gen import ForwardAPI
from api_base import PREFIX_TENSOR_NAME
class SparseAPI(ForwardAPI):
......@@ -136,6 +137,36 @@ class SparseAPI(ForwardAPI):
return kernel_context_code
def prepare_input(self):
input_names = self.inputs['names']
input_types = self.inputs['tensor_type']
attr_names = self.attrs['names']
infer_meta = self.infer_meta
infer_meta_params = infer_meta['param'] if infer_meta[
'param'] is not None else input_names + attr_names
create_input_var_code = ""
tensor_type_map = {
'dense': 'phi::DenseTensor',
'sparse_coo': 'phi::SparseCooTensor',
'sparse_csr': 'phi::SparseCsrTensor'
}
for param in infer_meta_params:
if param in input_names:
var_name = "auto " + PREFIX_TENSOR_NAME + param + " = "
if self.inputs['input_info'][param] == "const Tensor&":
create_input_var_code = create_input_var_code + var_name + param + ".impl();\n"
elif param in self.optional_vars:
tensor_type = 'phi::DenseTensor'
for name, input_type in zip(input_names, input_types):
if param == name:
tensor_type = tensor_type_map[input_type]
break
optional_var = "paddle::optional<" + tensor_type + ">("
create_input_var_code = create_input_var_code + var_name + param + " ? " + optional_var + "*static_cast<" + tensor_type + "*>((*" + param + ").impl().get())) : " + optional_var + "paddle::none);\n"
return f"""{create_input_var_code}"""
def gen_sparse_kernel_code(self, kernel_name, inplace_flag=False):
_, kernel_output_names, output_create = self.gene_output(
self.kernel['dispatch'][kernel_name][1], None, '', inplace_flag)
......@@ -154,6 +185,8 @@ class SparseAPI(ForwardAPI):
auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
auto kernel_context = phi::KernelContext(dev_ctx);
{output_create}
{self.prepare_input()}
{self.gene_infer_meta(kernel_output_names, '')}
{kernel_context_code}
phi_kernel(&kernel_context);
{return_code}"""
......@@ -167,6 +200,7 @@ class SparseAPI(ForwardAPI):
'sparse_csr': 'DataLayout::SPARSE_CSR'
}
condition_list = []
tensor_type_list = []
for i, in_type in enumerate(input_types):
if in_type == "dense":
if self.inputs['names'][i] in self.optional_vars:
......@@ -178,9 +212,15 @@ class SparseAPI(ForwardAPI):
f"phi::DenseTensor::classof({self.inputs['names'][i]}.impl().get())"
)
else:
condition_list.append(
f"{self.inputs['names'][i]}.layout() == {sparse_type_map[in_type]}"
)
if in_type == 'sparse_coo':
condition_list.append(
f"{self.inputs['names'][i]}.is_sparse_coo_tensor()")
else:
condition_list.append(
f"{self.inputs['names'][i]}.is_sparse_csr_tensor()")
tensor_type_list.append(in_type)
self.inputs['tensor_type'] = tensor_type_list
return " && ".join(condition_list)
def gene_dispatch_code(self, kernel_name, inplace_flag=False):
......@@ -229,8 +269,16 @@ def source_include(header_file_path):
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/utils/none.h"
#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/infermeta/sparse/binary.h"
#include "paddle/phi/infermeta/sparse/multiary.h"
"""
......
......@@ -111,8 +111,15 @@ def source_include(header_file_path):
#include "paddle/phi/api/include/sparse_api.h"
#include "paddle/phi/api/lib/api_gen_utils.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/sparse_api_custom_impl.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/infermeta/sparse/binary.h"
#include "paddle/phi/infermeta/sparse/backward.h"
"""
......
......@@ -2,6 +2,9 @@
forward : tanh(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : abs_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
abs_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -10,6 +13,9 @@
forward : acos(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : acos_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acos_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -18,6 +24,9 @@
forward : acosh(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : acosh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
acosh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -26,6 +35,9 @@
forward : add(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : add_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
add_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
......@@ -34,6 +46,9 @@
forward : addmm(Tensor input, Tensor x, Tensor y, float alpha=1.0, float beta=1.0) -> Tensor(out)
args : (Tensor input, Tensor x, Tensor y, Tensor out_grad, float alpha=1.0, float beta=1.0)
output : Tensor(input_grad), Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralTernaryGradInferMeta
param : [input, x, y]
kernel :
func : addmm_csr_dense_grad {dense, sparse_csr, dense, dense -> dense, sparse_csr, dense},
addmm_csr_csr_grad {sparse_csr, sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr, sparse_csr},
......@@ -44,6 +59,9 @@
forward : asin(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : asin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -52,6 +70,9 @@
forward : asinh(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : asinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
asinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -60,6 +81,9 @@
forward : atan(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : atan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -68,6 +92,9 @@
forward : atanh(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : atanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
atanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -76,6 +103,9 @@
forward : cast(Tensor x, DataType index_dtype, DataType value_dtype) -> Tensor(out)
args : (Tensor x, Tensor out_grad, DataType value_dtype)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : cast_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
cast_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -85,6 +115,9 @@
forward : conv3d_coo (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm, str key) -> Tensor(out), Tensor(rulebook), Tensor(counter)
args : (Tensor x, Tensor kernel, Tensor out, Tensor rulebook, Tensor counter, Tensor out_grad, int[] paddings, int[] dilations, int[] strides, int groups, bool subm, str key)
output : Tensor(x_grad), Tensor(kernel_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, kernel]
kernel :
func : conv3d_coo_grad{sparse_coo, dense, sparse_coo, dense, dense, sparse_coo -> sparse_coo, dense}
......@@ -92,6 +125,9 @@
forward : divide(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : divide_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
divide_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
......@@ -106,6 +142,9 @@
forward : expm1(Tensor x) -> Tensor(out)
args : (Tensor out, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : expm1_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
expm1_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -114,6 +153,9 @@
forward : leaky_relu(Tensor x, float alpha) -> Tensor(out)
args : (Tensor x, Tensor out_grad, float alpha)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : leaky_relu_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
leaky_relu_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -122,6 +164,9 @@
forward : log1p(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : log1p_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
log1p_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -130,6 +175,9 @@
forward : masked_matmul(Tensor x, Tensor y, Tensor mask) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : masked_matmul_csr_grad{dense, dense, sparse_csr -> dense, dense}
......@@ -137,6 +185,9 @@
forward : matmul(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : matmul_csr_dense_grad {sparse_csr, dense, dense -> sparse_csr, dense},
matmul_csr_csr_grad {sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr},
......@@ -147,6 +198,9 @@
forward : maxpool(Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides) -> Tensor(out), Tensor(rulebook), Tensor(counter)
args : (Tensor x, Tensor rulebook, Tensor counter, Tensor out, Tensor out_grad, int[] kernel_sizes)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param: [x]
kernel :
func : maxpool_coo_grad {sparse_coo, dense, dense, sparse_coo, sparse_coo -> sparse_coo}
......@@ -154,6 +208,9 @@
forward : multiply(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : multiply_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
multiply_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
......@@ -162,6 +219,9 @@
forward : mv(Tensor x, Tensor vec) -> Tensor(out)
args : (Tensor x, Tensor vec, Tensor out_grad)
output : Tensor(x_grad), Tensor(vec_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, vec]
kernel :
func : mv_coo_grad{sparse_coo, dense, dense -> sparse_coo, dense},
mv_csr_grad{sparse_csr, dense, dense -> sparse_csr, dense}
......@@ -170,6 +230,9 @@
forward : pow(Tensor x, float factor) -> Tensor(out)
args : (Tensor x, Tensor out_grad, float factor)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : pow_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
pow_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -178,6 +241,9 @@
forward : relu6(Tensor x, float threshold) -> Tensor(out)
args : (Tensor out, Tensor out_grad, float threshold)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : relu6_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
relu6_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -186,6 +252,9 @@
forward : relu(Tensor x) -> Tensor(out)
args : (Tensor out, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : relu_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
relu_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -194,12 +263,18 @@
forward : scale(Tensor x, float scale, float bias, bool bias_after_scale) -> Tensor(out)
args : (Tensor out_grad, float scale)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out_grad]
invoke : scale(out_grad, scale, 0.0, true)
- backward_op : sin_grad
forward : sin(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : sin_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sin_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -208,6 +283,9 @@
forward : sinh(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : sinh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sinh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -216,6 +294,9 @@
forward : softmax(Tensor x, int axis=-1) -> Tensor(out)
args : (Tensor out, Tensor out_grad, int axis)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : softmax_csr_grad{sparse_csr, sparse_csr -> sparse_csr}
......@@ -223,6 +304,9 @@
forward : sparse_coo_tensor(Tensor values, Tensor indices, IntArray dense_shape) -> Tensor(out)
args : (Tensor indices, Tensor out_grad)
output : Tensor(values_grad)
infer_meta :
func : UnchangedInferMeta
param: [out_grad]
kernel :
func : sparse_coo_tensor_grad{dense, sparse_coo -> dense}
......@@ -230,6 +314,9 @@
forward : sqrt(Tensor x) -> Tensor(out)
args : (Tensor out, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : sqrt_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
sqrt_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -238,6 +325,9 @@
forward : square(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : square_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
square_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -246,6 +336,9 @@
forward : subtract(Tensor x, Tensor y) -> Tensor(out)
args : (Tensor x, Tensor y, Tensor out_grad)
output : Tensor(x_grad), Tensor(y_grad)
infer_meta :
func : GeneralBinaryGradInferMeta
param : [x, y]
kernel :
func : subtract_coo_coo_grad{sparse_coo, sparse_coo, sparse_coo -> sparse_coo, sparse_coo},
subtract_csr_csr_grad{sparse_csr, sparse_csr, sparse_csr -> sparse_csr, sparse_csr}
......@@ -254,6 +347,9 @@
forward : tan(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : tan_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tan_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -262,6 +358,9 @@
forward : tanh(Tensor x) -> Tensor(out)
args : (Tensor out, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [out]
kernel :
func : tanh_coo_grad {sparse_coo, sparse_coo -> sparse_coo},
tanh_csr_grad {sparse_csr, sparse_csr -> sparse_csr}
......@@ -270,6 +369,9 @@
forward : to_dense(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : coo_to_dense_grad{sparse_coo, dense -> sparse_coo}
......@@ -277,6 +379,8 @@
forward : to_sparse_coo(Tensor x, int64_t sparse_dim) -> Tensor(out)
args : (Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
kernel :
func : coo_to_dense { sparse_coo -> dense }
......@@ -284,6 +388,9 @@
forward : values_coo(Tensor x) -> Tensor(out)
args : (Tensor x, Tensor out_grad)
output : Tensor(x_grad)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : values_coo_grad{sparse_coo, dense-> sparse_coo}
......@@ -291,6 +398,8 @@
forward : fused_attention_csr(Tensor query, Tensor key, Tensor value, Tensor sparse_mask, Tensor key_padding_mask, Tensor attn_mask) -> Tensor(out), Tensor(softmax)
args: (Tensor query, Tensor key, Tensor value, Tensor softmax, Tensor out_grad)
output : Tensor(query_grad), Tensor(key_grad), Tensor(value_grad)
infer_meta :
func : sparse::FusedAttentionGradInferMeta
kernel :
func : fused_attention_csr_grad{dense, dense, dense, sparse_csr, dense -> dense, dense, dense}
layout : softmax
......
- op : abs
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : abs_coo{sparse_coo -> sparse_coo},
abs_csr{sparse_csr -> sparse_csr}
......@@ -10,6 +12,8 @@
- op : acos
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : acos_coo{sparse_coo -> sparse_coo},
acos_csr{sparse_csr -> sparse_csr}
......@@ -19,6 +23,8 @@
- op : acosh
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : acosh_coo{sparse_coo -> sparse_coo},
acosh_csr{sparse_csr -> sparse_csr}
......@@ -28,6 +34,8 @@
- op : add
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : ElementwiseInferMeta
kernel :
func : add_coo_coo{sparse_coo, sparse_coo -> sparse_coo},
add_csr_csr{sparse_csr, sparse_csr -> sparse_csr}
......@@ -37,6 +45,8 @@
- op : asin
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : asin_coo{sparse_coo -> sparse_coo},
asin_csr{sparse_csr -> sparse_csr}
......@@ -46,6 +56,8 @@
- op : asinh
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : asinh_coo{sparse_coo -> sparse_coo},
asinh_csr{sparse_csr -> sparse_csr}
......@@ -55,6 +67,8 @@
- op : atan
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : atan_coo{sparse_coo -> sparse_coo},
atan_csr{sparse_csr -> sparse_csr}
......@@ -64,6 +78,8 @@
- op : atanh
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : atanh_coo{sparse_coo -> sparse_coo},
atanh_csr{sparse_csr -> sparse_csr}
......@@ -73,6 +89,9 @@
- op : cast
args : (Tensor x, DataType index_dtype=DataType::UNDEFINED, DataType value_dtype=DataType::UNDEFINED)
output : Tensor(out)
infer_meta :
func : CastInferMeta
param: [x, value_dtype]
kernel :
func : cast_coo{sparse_coo -> sparse_coo},
cast_csr{sparse_csr -> sparse_csr}
......@@ -83,6 +102,8 @@
- op : conv3d
args : (Tensor x, Tensor kernel, int[] paddings, int[] dilations, int[] strides, int groups, bool subm, str key)
output : Tensor(out), Tensor(rulebook), Tensor(counter)
infer_meta :
func : sparse::Conv3dInferMeta
kernel :
func : conv3d_coo{sparse_coo, dense -> sparse_coo, dense, dense}
layout : x
......@@ -92,6 +113,8 @@
- op : divide
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : ElementwiseInferMeta
kernel :
func : divide_coo_coo{sparse_coo, sparse_coo -> sparse_coo},
divide_csr_csr{sparse_csr, sparse_csr -> sparse_csr}
......@@ -101,6 +124,9 @@
- op : divide_scalar
args : (Tensor x, float scalar)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : divide_coo_scalar{sparse_coo -> sparse_coo},
divide_csr_scalar{sparse_csr -> sparse_csr}
......@@ -109,6 +135,8 @@
- op : expm1
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : expm1_coo{sparse_coo -> sparse_coo},
expm1_csr{sparse_csr -> sparse_csr}
......@@ -118,6 +146,9 @@
- op : leaky_relu
args : (Tensor x, float alpha)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : leaky_relu_coo{sparse_coo -> sparse_coo},
leaky_relu_csr{sparse_csr -> sparse_csr}
......@@ -127,6 +158,8 @@
- op : log1p
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : log1p_coo{sparse_coo -> sparse_coo},
log1p_csr{sparse_csr -> sparse_csr}
......@@ -136,6 +169,8 @@
- op : multiply
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : ElementwiseInferMeta
kernel :
func : multiply_coo_coo{sparse_coo, sparse_coo -> sparse_coo},
multiply_csr_csr{sparse_csr, sparse_csr -> sparse_csr}
......@@ -145,6 +180,9 @@
- op : pow
args : (Tensor x, float factor)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : pow_coo{sparse_coo -> sparse_coo},
pow_csr{sparse_csr -> sparse_csr}
......@@ -154,6 +192,8 @@
- op : relu
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : relu_coo{sparse_coo -> sparse_coo},
relu_csr{sparse_csr -> sparse_csr}
......@@ -163,6 +203,9 @@
- op : relu6
args : (Tensor x, float threshold)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : relu6_coo{sparse_coo -> sparse_coo},
relu6_csr{sparse_csr -> sparse_csr}
......@@ -172,6 +215,9 @@
- op : scale
args : (Tensor x, float scale, float bias, bool bias_after_scale)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : scale_coo{sparse_coo -> sparse_coo},
scale_csr{sparse_csr -> sparse_csr}
......@@ -180,6 +226,8 @@
- op : sin
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : sin_coo{sparse_coo -> sparse_coo},
sin_csr{sparse_csr -> sparse_csr}
......@@ -189,6 +237,8 @@
- op : sinh
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : sinh_coo{sparse_coo -> sparse_coo},
sinh_csr{sparse_csr -> sparse_csr}
......@@ -198,6 +248,9 @@
- op : softmax
args : (Tensor x, int axis=-1)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : softmax_csr{sparse_csr -> sparse_csr}
layout : x
......@@ -206,6 +259,8 @@
- op : sparse_coo_tensor
args : (Tensor values, Tensor indices, IntArray dense_shape)
output : Tensor(out)
infer_meta :
func : sparse::SparseCooTensorInferMeta
kernel :
func : sparse_coo_tensor{dense, dense -> sparse_coo}
layout : values
......@@ -215,6 +270,8 @@
- op : sqrt
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : sqrt_coo{sparse_coo -> sparse_coo},
sqrt_csr{sparse_csr -> sparse_csr}
......@@ -224,6 +281,8 @@
- op : square
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : square_coo{sparse_coo -> sparse_coo},
square_csr{sparse_csr -> sparse_csr}
......@@ -233,6 +292,8 @@
- op : subtract
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : ElementwiseInferMeta
kernel :
func : subtract_coo_coo{sparse_coo, sparse_coo -> sparse_coo},
subtract_csr_csr{sparse_csr, sparse_csr -> sparse_csr}
......@@ -242,6 +303,8 @@
- op : tan
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : tan_coo{sparse_coo -> sparse_coo},
tan_csr{sparse_csr -> sparse_csr}
......@@ -251,6 +314,8 @@
- op : tanh
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : tanh_coo{sparse_coo -> sparse_coo},
tanh_csr{sparse_csr -> sparse_csr}
......@@ -260,6 +325,8 @@
- op : to_dense
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : coo_to_dense {sparse_coo -> dense},
csr_to_dense {sparse_csr -> dense}
......@@ -268,6 +335,9 @@
- op : to_sparse_coo
args : (Tensor x, int64_t sparse_dim)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
param : [x]
kernel :
func : dense_to_coo { dense -> sparse_coo },
csr_to_coo { sparse_csr -> sparse_coo}
......@@ -276,6 +346,8 @@
- op : to_sparse_csr
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func : dense_to_csr {dense -> sparse_csr},
coo_to_csr {sparse_coo -> sparse_csr}
......@@ -283,6 +355,8 @@
- op : values
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : sparse::ValuesInferMeta
kernel :
func : values_coo{sparse_coo -> dense},
values_csr{sparse_csr -> dense}
......@@ -292,6 +366,8 @@
- op: addmm
args : (Tensor input, Tensor x, Tensor y, float alpha=1.0, float beta=1.0)
output : Tensor(out)
infer_meta :
func : AddmmInferMeta
kernel :
func : addmm_csr_dense {dense, sparse_csr, dense -> dense},
addmm_csr_csr {sparse_csr, sparse_csr, sparse_csr -> sparse_csr},
......@@ -303,6 +379,8 @@
- op: coalesce
args : (Tensor x)
output : Tensor(out)
infer_meta :
func : UnchangedInferMeta
kernel :
func: coalesce{sparse_coo -> sparse_coo}
layout : x
......@@ -310,6 +388,9 @@
- op: full_like
args : (Tensor x, Scalar value, DataType dtype=DataType::UNDEFINED)
output : Tensor(out)
infer_meta :
func : CreateLikeInferMeta
param : [x, dtype]
kernel :
func : coo_full_like{sparse_coo -> sparse_coo},
csr_full_like{sparse_csr -> sparse_csr}
......@@ -319,6 +400,8 @@
- op: fused_attention
args : (Tensor query, Tensor key, Tensor value, Tensor sparse_mask, Tensor key_padding_mask, Tensor attn_mask)
output : Tensor(out), Tensor(softmax)
infer_meta :
func : sparse::FusedAttentionInferMeta
kernel :
func : fused_attention_csr{dense, dense, dense, sparse_csr, dense, dense -> dense, sparse_csr}
layout : sparse_mask
......@@ -330,6 +413,9 @@
- op: masked_matmul
args : (Tensor x, Tensor y, Tensor mask)
output : Tensor(out)
infer_meta :
func : MatmulInferMeta
param : [x, y, false, false]
kernel :
func : masked_matmul_csr{dense, dense, sparse_csr -> sparse_csr}
layout : x
......@@ -338,6 +424,9 @@
- op: matmul
args : (Tensor x, Tensor y)
output : Tensor(out)
infer_meta :
func : MatmulInferMeta
param: [x, y, false, false]
kernel :
func : matmul_csr_dense {sparse_csr, dense -> dense},
matmul_csr_csr {sparse_csr, sparse_csr -> sparse_csr},
......@@ -349,6 +438,8 @@
- op: maxpool
args : (Tensor x, int[] kernel_sizes, int[] paddings, int[] dilations, int[] strides)
output : Tensor(out), Tensor(rulebook), Tensor(counter)
infer_meta :
func : sparse::Pool3dInferMeta
kernel :
func : maxpool_coo{sparse_coo -> sparse_coo, dense, dense}
layout : x
......@@ -358,6 +449,8 @@
- op: mv
args : (Tensor x, Tensor vec)
output : Tensor(out)
infer_meta :
func : MvInferMeta
kernel :
func : mv_coo{sparse_coo, dense -> dense},
mv_csr{sparse_csr, dense -> dense}
......
......@@ -64,6 +64,12 @@ void MetaTensor::set_dims(const DDim& dims) {
DenseTensorUtils::GetMutableMeta(
static_cast<SelectedRows*>(tensor_)->mutable_value())
->dims = dims;
} else if (phi::SparseCooTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCooTensor*>(tensor_))
->dims = dims;
} else if (phi::SparseCsrTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCsrTensor*>(tensor_))
->dims = dims;
} else {
PADDLE_THROW(phi::errors::Unimplemented(
"Unsupported setting dims for `%s`.", tensor_->type_info().name()));
......@@ -81,6 +87,13 @@ void MetaTensor::set_dtype(DataType dtype) {
DenseTensorUtils::GetMutableMeta(
static_cast<SelectedRows*>(tensor_)->mutable_value())
->dtype = dtype;
} else if (phi::SparseCooTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCooTensor*>(tensor_))
->dtype = dtype;
} else if (phi::SparseCsrTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCsrTensor*>(tensor_))
->dtype = dtype;
// No need to set dtype
} else {
PADDLE_THROW(phi::errors::Unimplemented(
"Unsupported settting dtype for `%s`.", tensor_->type_info().name()));
......@@ -98,6 +111,12 @@ void MetaTensor::set_layout(DataLayout layout) {
DenseTensorUtils::GetMutableMeta(
static_cast<SelectedRows*>(tensor_)->mutable_value())
->layout = layout;
} else if (phi::SparseCooTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCooTensor*>(tensor_))
->layout = layout;
} else if (phi::SparseCsrTensor::classof(tensor_)) {
DenseTensorUtils::GetMutableMeta(static_cast<SparseCsrTensor*>(tensor_))
->layout = layout;
} else {
PADDLE_THROW(phi::errors::Unimplemented(
"Unsupported settting layout for `%s`.", tensor_->type_info().name()));
......@@ -107,6 +126,10 @@ void MetaTensor::set_layout(DataLayout layout) {
void MetaTensor::share_lod(const MetaTensor& meta_tensor) {
ValidCheck(*this);
ValidCheck(meta_tensor);
if (phi::SparseCooTensor::classof(tensor_) ||
phi::SparseCsrTensor::classof(tensor_)) {
return;
}
if (meta_tensor.lod().size() == 0) {
// no need share
return;
......@@ -128,7 +151,9 @@ void MetaTensor::share_lod(const MetaTensor& meta_tensor) {
void MetaTensor::share_meta(const MetaTensor& meta_tensor) {
ValidCheck(*this);
if (phi::DenseTensor::classof(tensor_) ||
phi::SelectedRows::classof(tensor_)) {
phi::SelectedRows::classof(tensor_) ||
phi::SparseCooTensor::classof(tensor_) ||
phi::SparseCsrTensor::classof(tensor_)) {
share_dims(meta_tensor);
set_dtype(meta_tensor.dtype());
set_layout(meta_tensor.layout());
......@@ -143,7 +168,9 @@ void MetaTensor::share_dims(const MetaTensor& meta_tensor) {
ValidCheck(*this);
bool is_dense_tensor = phi::DenseTensor::classof(tensor_);
bool is_selected_rows = phi::SelectedRows::classof(tensor_);
if (is_dense_tensor || is_selected_rows) {
bool is_sparse_coo = phi::SparseCooTensor::classof(tensor_);
bool is_sparse_csr = phi::SparseCsrTensor::classof(tensor_);
if (is_dense_tensor || is_selected_rows || is_sparse_coo || is_sparse_csr) {
set_dims(meta_tensor.dims());
if (is_selected_rows) {
const auto in_tensor_base = meta_tensor.tensor();
......@@ -172,6 +199,10 @@ const LoD& MetaTensor::lod() const {
return static_cast<DenseTensor*>(tensor_)->lod();
} else if (phi::SelectedRows::classof(tensor_)) {
return static_cast<SelectedRows*>(tensor_)->value().lod();
} else if (phi::SparseCooTensor::classof(tensor_)) {
return static_cast<SparseCooTensor*>(tensor_)->non_zero_elements().lod();
} else if (phi::SparseCsrTensor::classof(tensor_)) {
return static_cast<SparseCsrTensor*>(tensor_)->non_zero_elements().lod();
} else {
PADDLE_THROW(phi::errors::Unimplemented("Unsupported getting lod of `%s`.",
tensor_->type_info().name()));
......
......@@ -21,34 +21,47 @@ SparseCooTensor::SparseCooTensor() {
this->SetMember(non_zero_indices, non_zero_elements, {1}, true);
}
SparseCooTensor::SparseCooTensor(SparseCooTensor&& other) {
this->non_zero_elements_ = other.non_zero_elements_;
this->non_zero_indices_ = other.non_zero_indices_;
this->coalesced_ = other.coalesced_;
set_meta(other.meta());
}
SparseCooTensor::SparseCooTensor(const DenseTensor& non_zero_indices,
const DenseTensor& non_zero_elements,
const DDim& dims)
: non_zero_indices_(non_zero_indices),
non_zero_elements_(non_zero_elements),
coalesced_(false),
dims_(dims) {}
coalesced_(false) {
meta_.dims = dims;
meta_.layout = DataLayout::NCHW;
meta_.dtype = non_zero_elements.dtype();
}
SparseCooTensor::SparseCooTensor(DenseTensor&& non_zero_indices,
DenseTensor&& non_zero_elements,
const DDim& dims)
: non_zero_indices_(non_zero_indices),
non_zero_elements_(non_zero_elements),
coalesced_(false),
dims_(dims) {}
coalesced_(false) {
meta_.dims = dims;
meta_.layout = DataLayout::NCHW;
meta_.dtype = non_zero_elements.dtype();
}
SparseCooTensor::SparseCooTensor(const SparseCooTensor& other)
: non_zero_indices_(other.non_zero_indices_),
non_zero_elements_(other.non_zero_elements_),
dims_(other.dims_) {
non_zero_elements_(other.non_zero_elements_) {
this->coalesced_ = other.coalesced_;
set_meta(other.meta());
}
SparseCooTensor SparseCooTensor::operator=(const SparseCooTensor& other) {
this->dims_ = other.dims_;
this->non_zero_indices_ = other.non_zero_indices_;
this->non_zero_elements_ = other.non_zero_elements_;
this->non_zero_indices_ = other.non_zero_indices_;
this->coalesced_ = other.coalesced_;
set_meta(other.meta());
return *this;
}
......@@ -111,8 +124,18 @@ void SparseCooTensor::SetMember(const DenseTensor& non_zero_indices,
const bool coalesced) {
this->non_zero_indices_ = non_zero_indices;
this->non_zero_elements_ = non_zero_elements;
this->dims_ = dims;
this->meta_.dims = dims;
this->coalesced_ = coalesced;
}
void SparseCooTensor::SetMember(const DenseTensor& non_zero_indices,
const DenseTensor& non_zero_elements,
const SparseTensorMeta& meta,
const bool coalesced) {
this->non_zero_indices_ = non_zero_indices;
this->non_zero_elements_ = non_zero_elements;
this->coalesced_ = coalesced;
set_meta(meta);
}
int32_t SparseCooTensor::sparse_dim() const {
......@@ -120,7 +143,25 @@ int32_t SparseCooTensor::sparse_dim() const {
}
int32_t SparseCooTensor::dense_dim() const {
return dims_.size() - sparse_dim();
return meta_.dims.size() - sparse_dim();
}
void SparseCooTensor::set_meta(SparseTensorMeta&& meta) {
PADDLE_ENFORCE(!meta_.valid(),
phi::errors::InvalidArgument(
"Only when the original attribute of Tensor is "
"incomplete, can it be reset."));
meta_ = std::move(meta);
}
void SparseCooTensor::set_meta(const SparseTensorMeta& meta) {
PADDLE_ENFORCE(
meta.valid(),
phi::errors::InvalidArgument(
"Input meta is invalid, please check the meta attribute."));
meta_.dims = meta.dims;
meta_.dtype = meta.dtype;
meta_.layout = meta.layout;
}
} // namespace phi
......@@ -20,6 +20,8 @@ limitations under the License. */
namespace phi {
class DenseTensorUtils;
/// \brief The SparseCooTensor uses two DenseTensors to represent
/// the non zero elements and the indices of non zero elements of
/// original DenseTensor.
......@@ -93,21 +95,19 @@ class SparseCooTensor : public TensorBase,
/// \brief Return the number of elements contained in original dense tensor
/// \return The number of elements contained in original dense tensor
int64_t numel() const override { return product(dims_); }
int64_t numel() const override { return product(meta_.dims); }
/// \brief Returns the dims of the original dense tensor.
/// \return The dims of the original dense tensor.
const DDim& dims() const noexcept override { return dims_; }
const DDim& dims() const noexcept override { return meta_.dims; }
/// \brief Returns the data type of the tensor.
/// \return The data type of the tensor.
DataType dtype() const noexcept override {
return non_zero_elements_.dtype();
}
DataType dtype() const noexcept override { return meta_.dtype; }
/// \brief Returns the data layout of the tensor.
/// \return The data layout of the tensor.
DataLayout layout() const noexcept override { return DataLayout::SPARSE_COO; }
DataLayout layout() const noexcept override { return meta_.layout; }
/// \brief Returns the data place of the tensor.
/// \return The data place of the tensor.
......@@ -140,6 +140,17 @@ class SparseCooTensor : public TensorBase,
const DDim& dims,
const bool coalesced = false);
/// \brief set the member of sparse coo tensor.
/// \param non_zero_indices The indices of non zero elements in original dense
/// tensor.
/// \param non_zero_elements The non zero elements of original dense tensor.
/// \param meta The meta of original dense tensor.
/// \param coalesced whether the indices has coalesced.
void SetMember(const DenseTensor& non_zero_indices,
const DenseTensor& non_zero_elements,
const SparseTensorMeta& meta,
const bool coalesced = false);
/// \brief Get a mutable pointer of non_zero_indices_.
/// return a mutable pointer of non_zero_indices_.
DenseTensor* mutable_indices() { return &non_zero_indices_; }
......@@ -161,15 +172,22 @@ class SparseCooTensor : public TensorBase,
DataType dtype,
size_t requested_size = 0) override;
/// \brief set the dims of original dense tensor
void set_dims(const DDim& dims) { this->dims_ = dims; }
/// \brief get the sparse dim
int32_t sparse_dim() const;
/// \brief get the dnese dim
int32_t dense_dim() const;
/// \brief Returns the meta information of the tensor.
/// \return The meta information of the tensor.
const SparseTensorMeta& meta() const noexcept { return meta_; }
void set_meta(SparseTensorMeta&& meta);
void set_meta(const SparseTensorMeta& meta);
void set_dims(const DDim& dims) { meta_.dims = dims; }
/// \brief query table according to key
const std::pair<DenseTensor, DenseTensor>* IndicesPairs(
const std::string& key) const {
......@@ -213,6 +231,10 @@ class SparseCooTensor : public TensorBase,
}
private:
friend class DenseTensorUtils;
SparseTensorMeta meta_;
// save the indices of non zero elements in original dense tensor
DenseTensor non_zero_indices_;
// save the non zero elements of original dense tensor
......
......@@ -21,7 +21,6 @@ SparseCsrTensor::SparseCsrTensor() {
this->non_zero_crows_ = crows;
this->non_zero_cols_ = cols;
this->non_zero_elements_ = values;
this->dims_ = phi::make_ddim({1, 1});
}
inline void check_shape(const DDim& dims) {
......@@ -54,27 +53,30 @@ SparseCsrTensor::SparseCsrTensor(const DenseTensor& non_zero_crows,
const DDim& dims)
: non_zero_crows_(non_zero_crows),
non_zero_cols_(non_zero_cols),
non_zero_elements_(non_zero_elements),
dims_(dims) {
non_zero_elements_(non_zero_elements) {
if (non_zero_crows.initialized()) {
Check(non_zero_crows_, non_zero_cols_, non_zero_elements_, dims_);
Check(non_zero_crows_, non_zero_cols_, non_zero_elements_, dims);
} else {
// create a empty tensor
check_shape(dims);
}
meta_.dims = dims;
meta_.layout = DataLayout::NCHW;
meta_.dtype = non_zero_elements.dtype();
}
SparseCsrTensor::SparseCsrTensor(const SparseCsrTensor& other)
: non_zero_crows_(other.non_zero_crows_),
non_zero_cols_(other.non_zero_cols_),
non_zero_elements_(other.non_zero_elements_),
dims_(other.dims_) {}
non_zero_elements_(other.non_zero_elements_) {
set_meta(other.meta());
}
SparseCsrTensor& SparseCsrTensor::operator=(const SparseCsrTensor& other) {
this->dims_ = other.dims();
this->non_zero_crows_ = other.crows();
this->non_zero_cols_ = other.cols();
this->non_zero_elements_ = other.values();
this->non_zero_crows_ = other.non_zero_crows();
this->non_zero_cols_ = other.non_zero_cols();
this->non_zero_elements_ = other.non_zero_elements();
set_meta(other.meta());
return *this;
}
......@@ -114,7 +116,35 @@ void SparseCsrTensor::SetMember(const DenseTensor& non_zero_crows,
this->non_zero_crows_ = non_zero_crows;
this->non_zero_cols_ = non_zero_cols;
this->non_zero_elements_ = non_zero_elements;
this->dims_ = dims;
meta_.dims = dims;
}
void SparseCsrTensor::SetMember(const DenseTensor& non_zero_crows,
const DenseTensor& non_zero_cols,
const DenseTensor& non_zero_elements,
const SparseTensorMeta& meta) {
Check(non_zero_crows, non_zero_cols, non_zero_elements, meta.dims);
this->non_zero_crows_ = non_zero_crows;
this->non_zero_cols_ = non_zero_cols;
this->non_zero_elements_ = non_zero_elements;
set_meta(meta);
}
void SparseCsrTensor::set_meta(SparseTensorMeta&& meta) {
PADDLE_ENFORCE(!meta_.valid(),
phi::errors::InvalidArgument(
"Only when the original attribute of Tensor is "
"incomplete, can it be reset."));
meta_ = std::move(meta);
}
void SparseCsrTensor::set_meta(const SparseTensorMeta& meta) {
PADDLE_ENFORCE(
meta.valid(),
phi::errors::InvalidArgument(
"Input meta is invalid, please check the meta attribute."));
meta_.dims = meta.dims;
meta_.dtype = meta.dtype;
meta_.layout = meta.layout;
}
} // namespace phi
......@@ -14,14 +14,13 @@ limitations under the License. */
#pragma once
#include "paddle/phi/core/allocator.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
namespace phi {
class CompatibleDenseTensorUtils;
class DenseTensorUtils;
/// \brief The SparseCsrTensor uses three 1-D DenseTensors to represent
/// the row index , column index and non zero elements of the original
......@@ -100,21 +99,19 @@ class SparseCsrTensor : public TensorBase,
/// \brief Return the number of elements contained in original dense tensor
/// \return The number of elements contained in original dense tensor
int64_t numel() const override { return product(dims_); }
int64_t numel() const override { return product(meta_.dims); }
/// \brief Returns the dims of the original dense tensor.
/// \return The dims of the original dense tensor.
const DDim& dims() const noexcept override { return dims_; }
const DDim& dims() const noexcept override { return meta_.dims; }
/// \brief Returns the data type of the tensor.
/// \return The data type of the tensor.
DataType dtype() const noexcept override {
return non_zero_elements_.dtype();
}
DataType dtype() const noexcept override { return meta_.dtype; }
/// \brief Returns the data layout of the tensor.
/// \return The data layout of the tensor.
DataLayout layout() const noexcept override { return DataLayout::SPARSE_CSR; }
DataLayout layout() const noexcept override { return meta_.layout; }
/// \brief Returns the data place of the tensor.
/// \return The data place of the tensor.
......@@ -145,6 +142,18 @@ class SparseCsrTensor : public TensorBase,
const DenseTensor& non_zero_elements,
const DDim& dims);
/// \brief set the member of sparse csr tensor.
/// \param non_zero_crows The compresessed row index of non zero elements in
/// original dense tensor.
/// \param non_zero_cols The column index of non zero elements in original
/// dense tensor.
/// \param non_zero_elements The non zero elements of original dense tensor.
/// \param meta The meta of original dense tensor.
void SetMember(const DenseTensor& non_zero_crows,
const DenseTensor& non_zero_cols,
const DenseTensor& non_zero_elements,
const SparseTensorMeta& meta);
/// \brief Get a mutable pointer of non_zero_crows.
/// return a mutable pointer of non_zero_crows.
DenseTensor* mutable_crows() { return &non_zero_crows_; }
......@@ -169,18 +178,28 @@ class SparseCsrTensor : public TensorBase,
/// mutable_values()
DenseTensor* mutable_non_zero_elements() { return &non_zero_elements_; }
/// \brief Returns the meta information of the tensor.
/// \return The meta information of the tensor.
const SparseTensorMeta& meta() const noexcept { return meta_; }
void set_meta(SparseTensorMeta&& meta);
void set_meta(const SparseTensorMeta& meta);
/// \brief set the dims of original dense tensor
void set_dims(const DDim& dims) { this->dims_ = dims; }
void set_dims(const DDim& dims) { meta_.dims = dims; }
protected:
SparseTensorMeta meta_;
private:
friend class DenseTensorUtils;
// save the compressed rows information of non zero elements
DenseTensor non_zero_crows_;
// save the columns information of non zero elements
DenseTensor non_zero_cols_;
// save the non zero elements
DenseTensor non_zero_elements_;
// save the number of non zero elements in each batch
DDim dims_;
/* --------------------------- */
/* example: 2-D Tensor */
/* --------------------------- */
......
......@@ -48,4 +48,16 @@ bool StringTensorMeta::valid() const noexcept {
return valid;
}
SparseTensorMeta::SparseTensorMeta(const DDim& dims) : dims(dims) {}
SparseTensorMeta::SparseTensorMeta(const DDim& dims, const DataLayout& layout)
: dims(dims), layout(layout) {}
bool SparseTensorMeta::valid() const noexcept {
bool valid{true};
valid = valid && (layout != DataLayout::UNDEFINED);
valid = valid && (product(dims) >= 0);
return valid;
}
} // namespace phi
......@@ -99,4 +99,24 @@ inline bool operator==(const StringTensorMeta& lhs,
(lhs.offset == rhs.offset);
}
struct SparseTensorMeta {
using DataLayout = paddle::experimental::DataLayout;
SparseTensorMeta() = default;
explicit SparseTensorMeta(const DDim& dims);
explicit SparseTensorMeta(const DDim& dims, const DataLayout& layout);
/// \brief Test whether the metadata is valid. Does not throw exceptions.
/// \return Whether the metadata is valid.
bool valid() const noexcept;
DDim dims;
DataType dtype;
DataLayout layout{DataLayout::NCHW};
};
inline bool operator==(const SparseTensorMeta& lhs,
const SparseTensorMeta& rhs) {
return (lhs.dims == rhs.dims) && (lhs.layout == rhs.layout);
}
} // namespace phi
......@@ -296,7 +296,7 @@ void Copy(const Context& dev_ctx,
dst_place,
blocking,
dst->mutable_non_zero_elements());
dst->set_dims(src.dims());
dst->set_meta(src.meta());
dst->SetCoalesced(src.coalesced());
}
......
......@@ -28,6 +28,14 @@ class DenseTensorUtils {
return &(tensor->meta_);
}
static SparseTensorMeta* GetMutableMeta(SparseCooTensor* tensor) {
return &(tensor->meta_);
}
static SparseTensorMeta* GetMutableMeta(SparseCsrTensor* tensor) {
return &(tensor->meta_);
}
static const std::shared_ptr<phi::Allocation>& GetHolder(
const DenseTensor& tensor) {
return tensor.holder_;
......
......@@ -7,3 +7,4 @@ cc_library(
SRCS backward.cc
DEPS meta_tensor convert_utils)
add_subdirectory(strings)
add_subdirectory(sparse)
cc_library(
sparse_infermeta
SRCS unary.cc binary.cc multiary.cc
DEPS convert_utils infermeta_utils)
cc_library(
sparse_backward_infermeta
SRCS backward.cc
DEPS meta_tensor convert_utils)
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/infermeta/sparse/backward.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/core/infermeta_utils.h"
namespace phi {
namespace sparse {
void FusedAttentionGradInferMeta(const MetaTensor& query,
const MetaTensor& key,
const MetaTensor& value,
const MetaTensor& softmax,
const MetaTensor& out_grad,
MetaTensor* query_grad,
MetaTensor* key_grad,
MetaTensor* value_grad) {
// TODO(zhouwei, zhangkaihuo) add correct infer meta
}
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
namespace phi {
namespace sparse {
void FusedAttentionGradInferMeta(const MetaTensor& query,
const MetaTensor& key,
const MetaTensor& value,
const MetaTensor& softmax,
const MetaTensor& out_grad,
MetaTensor* query_grad,
MetaTensor* key_grad,
MetaTensor* value_grad);
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/infermeta/sparse/binary.h"
namespace phi {
namespace sparse {
inline void GetOutShape(const DDim& x_dims,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
DDim* out_dims) {
PADDLE_ENFORCE_EQ(
x_dims.size(),
5,
phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)"));
PADDLE_ENFORCE_EQ(kernel_sizes.size(),
5,
phi::errors::InvalidArgument(
"the shape of kernel should be (D, H, W, C, OC)"));
// infer out shape
(*out_dims)[0] = x_dims[0];
(*out_dims)[4] = kernel_sizes[4];
for (int i = 1; i < 4; i++) {
(*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] -
dilations[i - 1] * (kernel_sizes[i - 1] - 1) - 1) /
strides[i - 1] +
1;
}
}
inline void ResetSubmKernelSizeAndStrides(const DDim& kernel_dims,
std::vector<int>* paddings,
std::vector<int>* strides) {
for (uint64_t i = 0; i < paddings->size(); i++) {
(*paddings)[i] = kernel_dims[i] / 2;
(*strides)[i] = 1;
}
}
void Conv3dInferMeta(const MetaTensor& x,
const MetaTensor& kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const int groups,
const bool subm,
const std::string& key,
MetaTensor* out,
MetaTensor* rulebook,
MetaTensor* counter) {
const auto& x_dims = x.dims();
const auto& kernel_dims = kernel.dims();
DDim out_dims = {1, 1, 1, 1, 1};
std::vector<int> kernel_sizes(kernel_dims.size());
for (int i = 0; i < kernel_dims.size(); i++) {
kernel_sizes[i] = kernel_dims[i];
}
std::vector<int> subm_paddings(paddings), subm_strides(strides);
if (subm) {
// the out shape of subm_conv is same as input shape
// reset the padding=kernel_size/2 and strides=1
ResetSubmKernelSizeAndStrides(kernel.dims(), &subm_paddings, &subm_strides);
}
GetOutShape(
x_dims, kernel_sizes, subm_paddings, dilations, subm_strides, &out_dims);
out->set_dtype(x.dtype());
out->set_dims(out_dims);
out->set_layout(x.layout());
rulebook->set_dtype(DataType::INT32);
rulebook->set_layout(DataLayout::NCHW);
rulebook->set_dims({1});
counter->set_dtype(DataType::INT32);
counter->set_layout(DataLayout::NCHW);
counter->set_dims({1});
}
inline const std::vector<int> PoolResetKernel(
const std::vector<int>& kernel_sizes,
const int in_channels,
const int out_channels) {
std::vector<int> res(kernel_sizes);
res.resize(5);
res[3] = in_channels;
res[4] = out_channels;
return res;
}
void Pool3dInferMeta(const MetaTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
MetaTensor* out,
MetaTensor* rulebook,
MetaTensor* counter) {
const auto& x_dims = x.dims();
DDim out_dims = {1, 1, 1, 1, 1};
const std::vector<int>& real_kernel_sizes =
PoolResetKernel(kernel_sizes, x_dims[4], x_dims[4]);
GetOutShape(
x_dims, real_kernel_sizes, paddings, dilations, strides, &out_dims);
out->set_dtype(x.dtype());
out->set_dims(out_dims);
out->set_layout(x.layout());
rulebook->set_dtype(DataType::INT32);
rulebook->set_layout(DataLayout::NCHW);
rulebook->set_dims({1});
counter->set_dtype(DataType::INT32);
counter->set_layout(DataLayout::NCHW);
counter->set_dims({1});
}
void SparseCooTensorInferMeta(const MetaTensor& values,
const MetaTensor& indices,
const IntArray& dense_shape,
MetaTensor* out) {
out->set_dims(phi::make_ddim(dense_shape.GetData()));
out->set_dtype(values.dtype());
out->set_layout(values.layout());
}
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
namespace phi {
namespace sparse {
void Conv3dInferMeta(const MetaTensor& x,
const MetaTensor& kernel,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
const int groups,
const bool subm,
const std::string& key,
MetaTensor* out,
MetaTensor* rulebook,
MetaTensor* counter);
void Pool3dInferMeta(const MetaTensor& x,
const std::vector<int>& kernel_sizes,
const std::vector<int>& paddings,
const std::vector<int>& dilations,
const std::vector<int>& strides,
MetaTensor* out,
MetaTensor* rulebook,
MetaTensor* counter);
void SparseCooTensorInferMeta(const MetaTensor& values,
const MetaTensor& indices,
const IntArray& dense_shape,
MetaTensor* out);
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/infermeta/sparse/multiary.h"
namespace phi {
namespace sparse {
void FusedAttentionInferMeta(const MetaTensor& query,
const MetaTensor& key,
const MetaTensor& value,
const MetaTensor& sparse_mask,
const MetaTensor& key_padding_mask,
const MetaTensor& attn_mask,
MetaTensor* out,
MetaTensor* softmax) {
// TODO(zhouwei,zhangkaihuo) add correct infer meta
}
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/phi/core/meta_tensor.h"
namespace phi {
namespace sparse {
void FusedAttentionInferMeta(const MetaTensor& query,
const MetaTensor& key,
const MetaTensor& value,
const MetaTensor& sparse_mask,
const MetaTensor& key_padding_mask,
const MetaTensor& attn_mask,
MetaTensor* out,
MetaTensor* softmax);
} // namespace sparse
} // namespace phi
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/core/infermeta_utils.h"
namespace phi {
namespace sparse {
void IndicesInferMeta(const MetaTensor& x, MetaTensor* out) {
out->set_dims({-1});
out->set_dtype(DataType::INT32);
out->set_layout(DataLayout::NCHW);
}
void ValuesInferMeta(const MetaTensor& x, MetaTensor* out) {
const auto& x_dims = x.dims();
out->set_dims({-1, x_dims[x_dims.size() - 1]});
out->set_dtype(x.dtype());
out->set_layout(x.layout());
}
} // namespace sparse
} // namespace phi
......@@ -14,19 +14,15 @@ limitations under the License. */
#pragma once
#include "paddle/phi/api/include/tensor.h"
#include "paddle/phi/common/backend.h"
#include "paddle/phi/core/meta_tensor.h"
#include "paddle/phi/core/tensor_meta.h"
namespace paddle {
namespace experimental {
namespace phi {
namespace sparse {
Tensor to_dense_impl(const Tensor& x);
void IndicesInferMeta(const MetaTensor& x, MetaTensor* out);
Tensor to_sparse_coo_impl(const Tensor& x, const int64_t sparse_dim);
Tensor to_sparse_csr_impl(const Tensor& x);
void ValuesInferMeta(const MetaTensor& x, MetaTensor* out);
} // namespace sparse
} // namespace experimental
} // namespace paddle
} // namespace phi
......@@ -45,7 +45,8 @@ set(COMMON_KERNEL_DEPS
selected_rows_functor)
# remove this dep after removing fluid deps on tensor creation
set(COMMON_KERNEL_DEPS ${COMMON_KERNEL_DEPS} phi_api_utils)
set(COMMON_KERNEL_DEPS ${COMMON_KERNEL_DEPS} infermeta infermeta_utils)
set(COMMON_KERNEL_DEPS ${COMMON_KERNEL_DEPS} infermeta infermeta_utils
sparse_infermeta)
set(COMMON_KERNEL_DEPS ${COMMON_KERNEL_DEPS} switch_autotune)
set(COMMON_KERNEL_DEPS
......
......@@ -12,6 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/elementwise_grad_kernel.h"
#include "paddle/phi/kernels/sparse/elementwise_kernel.h"
#include "glog/logging.h"
#include "paddle/phi/backends/cpu/cpu_context.h"
......@@ -24,7 +27,7 @@ limitations under the License. */
#include "paddle/phi/kernels/elementwise_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/sparse/elementwise_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace phi {
namespace sparse {
......@@ -45,7 +48,7 @@ void AllocCooPtr(const Context& dev_ctx,
SparseCooTensor* dx) {
DenseTensor dx_indices = phi::EmptyLike<IntT>(dev_ctx, x.indices());
DenseTensor dx_values = phi::EmptyLike<T>(dev_ctx, x.values());
dx->SetMember(dx_indices, dx_values, x.dims(), true);
dx->SetMember(dx_indices, dx_values, x.dims(), x.coalesced());
}
template <typename T, typename IntT, typename Context>
......
......@@ -13,14 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/elementwise_kernel.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/visit_type.h"
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/elementwise_kernel.h"
#include "paddle/phi/kernels/funcs/elementwise_functor.h"
#include "paddle/phi/kernels/funcs/sparse/flatten_indices.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/kernels/sparse/sparse_utils_kernel.h"
namespace phi {
......@@ -246,9 +247,7 @@ void ElementWiseCooKernelImpl(const Context& dev_ctx,
vectorize(slice_ddim(x.values().dims(), 1, x.values().dims().size()));
indeces_dim.insert(indeces_dim.begin(), nnz);
DenseTensorMeta values_meta(
paddle::experimental::CppTypeToDataType<T>::Type(),
phi::make_ddim(indeces_dim),
DataLayout::NCHW);
x.dtype(), phi::make_ddim(indeces_dim), DataLayout::NCHW);
phi::DenseTensor out_indices = phi::Empty(dev_ctx, std::move(indices_meta));
phi::DenseTensor out_values = phi::Empty(dev_ctx, std::move(values_meta));
......@@ -263,22 +262,16 @@ void ElementWiseCooKernelImpl(const Context& dev_ctx,
}
}
#define DEFINE_CSR_ELEMENTWISE_CPU_KERNEL(name) \
template <typename T, typename IntT, typename Context> \
void ElementWise##name##CsrCPUKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
const SparseCsrTensor& y, \
SparseCsrTensor* out) { \
funcs::name##Functor<T> functor; \
auto coo_x = CsrToCoo<T>(dev_ctx, x); \
auto coo_y = CsrToCoo<T>(dev_ctx, y); \
DenseTensor indeces; \
DenseTensor values; \
SparseCooTensor coo_out; \
coo_out.SetMember(indeces, values, x.dims()); \
ElementWiseCooKernelImpl<T, IntT, Context, funcs::name##Functor<T>>( \
dev_ctx, coo_x, coo_y, &coo_out, functor); \
*out = CooToCsr<T>(dev_ctx, coo_out); \
#define DEFINE_CSR_ELEMENTWISE_CPU_KERNEL(name) \
template <typename T, typename IntT, typename Context> \
void ElementWise##name##CsrCPUKernel(const Context& dev_ctx, \
const SparseCsrTensor& x, \
const SparseCsrTensor& y, \
SparseCsrTensor* out) { \
auto coo_x = CsrToCoo<T>(dev_ctx, x); \
auto coo_y = CsrToCoo<T>(dev_ctx, y); \
auto coo_out = ElementWise##name##Coo<T, Context>(dev_ctx, coo_x, coo_y); \
CooToCsrKernel<T>(dev_ctx, coo_out, out); \
}
#define DEFINE_CSR_ELEMENTWISE_KERNEL(name) \
......
......@@ -103,6 +103,7 @@ void DenseToCooKernel(const Context& dev_ctx,
++index;
}
}
out->SetMember(indices, values, x_dims, true);
}
......@@ -181,17 +182,12 @@ void CooToCsrCPUKernel(const CPUContext& dev_ctx,
int batchs = x_dims.size() == 2 ? 1 : x_dims[0];
int rows = x_dims.size() == 2 ? x_dims[0] : x_dims[1];
phi::DenseTensor crows;
crows.Resize({batchs * (rows + 1)});
IntT* csr_crows_data = dev_ctx.template Alloc<IntT>(&crows);
phi::DenseTensor cols;
cols.Resize({non_zero_num});
IntT* csr_cols_data = dev_ctx.template Alloc<IntT>(&cols);
phi::DenseTensor values;
values.Resize({non_zero_num});
T* csr_values_data = dev_ctx.template Alloc<T>(&values);
phi::DenseTensor crows = phi::Empty<IntT>(dev_ctx, {batchs * (rows + 1)});
phi::DenseTensor cols = phi::Empty<IntT>(dev_ctx, {non_zero_num});
phi::DenseTensor values = phi::EmptyLike<T, CPUContext>(dev_ctx, x.values());
IntT* csr_crows_data = crows.data<IntT>();
IntT* csr_cols_data = cols.data<IntT>();
T* csr_values_data = values.data<T>();
const auto& coo_indices = x.indices();
const auto& coo_values = x.values();
......@@ -270,8 +266,7 @@ void CooToDenseCPUKernel(const CPUContext& dev_ctx,
const int64_t dense_dim = x.dense_dim();
const T* x_data = values.data<T>();
*out = phi::Empty(dev_ctx,
DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
dev_ctx.template Alloc<T>(out);
T* out_data = out->data<T>();
int64_t base_offset = 1;
for (int64_t i = 0; i < dense_dim; i++) {
......@@ -403,6 +398,21 @@ PD_REGISTER_KERNEL(values_coo,
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
PD_REGISTER_KERNEL(indices_coo,
CPU,
ALL_LAYOUT,
phi::sparse::IndicesCooKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
PD_REGISTER_KERNEL(values_csr,
CPU,
ALL_LAYOUT,
......@@ -415,7 +425,7 @@ PD_REGISTER_KERNEL(values_csr,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
PD_REGISTER_KERNEL(sparse_coo_tensor,
......
......@@ -15,7 +15,9 @@ limitations under the License. */
#pragma once
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/infermeta/sparse/unary.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {
......@@ -49,6 +51,9 @@ namespace sparse {
const Sparse##type##Tensor& dout) { \
Sparse##type##Tensor dx; \
Sparse##type##Tensor dy; \
MetaTensor meta_dx(&dx), meta_dy(&dy); \
phi::UnchangedInferMeta(x, &meta_dx); \
phi::UnchangedInferMeta(y, &meta_dy); \
ElementWise##name##type##GradKernel<T, Context>( \
dev_ctx, x, y, dout, &dx, &dy); \
return std::vector<Sparse##type##Tensor>{dx, dy}; \
......@@ -89,6 +94,9 @@ std::vector<SparseCsrTensor> ElementWiseDivideCsrGrad(
const SparseCsrTensor& dout) {
SparseCsrTensor dx;
SparseCsrTensor dy;
MetaTensor meta_dx(&dx), meta_dy(&dy);
phi::UnchangedInferMeta(x, &meta_dx);
phi::UnchangedInferMeta(y, &meta_dy);
ElementWiseDivideCsrGradKernel<T, Context>(
dev_ctx, x, y, out, dout, &dx, &dy);
return std::vector<SparseCsrTensor>{dx, dy};
......@@ -103,6 +111,9 @@ std::vector<SparseCooTensor> ElementWiseDivideCooGrad(
const SparseCooTensor& dout) {
SparseCooTensor dx;
SparseCooTensor dy;
MetaTensor meta_dx(&dx), meta_dy(&dy);
phi::UnchangedInferMeta(x, &meta_dx);
phi::UnchangedInferMeta(y, &meta_dy);
ElementWiseDivideCooGradKernel<T, Context>(
dev_ctx, x, y, out, dout, &dx, &dy);
return std::vector<SparseCooTensor>{dx, dy};
......
......@@ -17,6 +17,7 @@ limitations under the License. */
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/infermeta/binary.h"
namespace phi {
namespace sparse {
......@@ -45,8 +46,10 @@ namespace sparse {
const SparseCsrTensor& y) { \
DenseTensor crows; \
DenseTensor cols; \
DenseTensor non_zero_elements; \
SparseCsrTensor out(crows, cols, non_zero_elements, x.dims()); \
DenseTensor values; \
SparseCsrTensor out(crows, cols, values, x.dims()); \
MetaTensor meta_out(out); \
phi::ElementwiseInferMeta(x, y, &meta_out); \
ElementWise##name##CsrKernel<T, Context>(dev_ctx, x, y, &out); \
return out; \
}
......@@ -57,8 +60,10 @@ namespace sparse {
const SparseCooTensor& x, \
const SparseCooTensor& y) { \
DenseTensor indices; \
DenseTensor non_zero_elements; \
SparseCooTensor out(indices, non_zero_elements, x.dims()); \
DenseTensor values; \
SparseCooTensor out(indices, values, x.dims()); \
MetaTensor meta_out(out); \
phi::ElementwiseInferMeta(x, y, &meta_out); \
ElementWise##name##CooKernel<T, Context>(dev_ctx, x, y, &out); \
return out; \
}
......
......@@ -26,11 +26,10 @@ template <typename T, typename Context>
void EmptyLikeCooKernel(const Context& dev_ctx,
const SparseCooTensor& x,
SparseCooTensor* out) {
out->set_dims(x.dims());
*(out->mutable_indices()) = x.indices();
const DenseTensor& x_values = x.non_zero_elements();
DenseTensor* out_values = out->mutable_non_zero_elements();
const DenseTensor& x_values = x.values();
DenseTensor* out_values = out->mutable_values();
out_values->Resize(x_values.dims());
dev_ctx.template Alloc<T>(out_values);
}
......@@ -39,12 +38,11 @@ template <typename T, typename Context>
void EmptyLikeCsrKernel(const Context& dev_ctx,
const SparseCsrTensor& x,
SparseCsrTensor* out) {
out->set_dims(x.dims());
*(out->mutable_crows()) = x.crows();
*(out->mutable_cols()) = x.cols();
const DenseTensor& x_values = x.non_zero_elements();
DenseTensor* out_values = out->mutable_non_zero_elements();
const DenseTensor& x_values = x.values();
DenseTensor* out_values = out->mutable_values();
out_values->Resize(x_values.dims());
dev_ctx.template Alloc<T>(out_values);
}
......
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/phi/kernels/sparse/elementwise_grad_kernel.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/tensor_utils.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
namespace phi {
namespace sparse {
template <typename T, typename Context>
void ElementWiseAddCooGradKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const SparseCooTensor& y,
const SparseCooTensor& dout,
SparseCooTensor* dx,
SparseCooTensor* dy) {
if (dx) {
EmptyLikeCooKernel<T, Context>(dev_ctx, x, dx);
Copy(dev_ctx, dout, dev_ctx.GetPlace(), false, dx);
}
if (dy) {
EmptyLikeCooKernel<T, Context>(dev_ctx, y, dy);
Copy(dev_ctx, dout, dev_ctx.GetPlace(), false, dy);
}
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(add_coo_coo_grad,
GPU,
ALL_LAYOUT,
phi::sparse::ElementWiseAddCooGradKernel,
float,
double,
int16_t,
int,
int64_t,
phi::dtype::float16) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/equal.h>
#include <thrust/execution_policy.h>
#include "paddle/phi/kernels/elementwise_add_kernel.h"
#include "paddle/phi/kernels/sparse/elementwise_kernel.h"
#include "paddle/phi/kernels/sparse/empty_kernel.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/visit_type.h"
namespace phi {
namespace sparse {
template <typename T, typename IntT>
void ElementWiseAddCooGPUKernel(const GPUContext& dev_ctx,
const SparseCooTensor& x,
const SparseCooTensor& y,
SparseCooTensor* out) {
const auto& x_indices = x.indices();
const auto& y_indices = y.indices();
PADDLE_ENFORCE_EQ(
x_indices.numel(),
y_indices.numel(),
phi::errors::PreconditionNotMet(
"The numel of x.indices() and y.indices() should be equal"));
const IntT* x_indices_ptr = x_indices.data<IntT>();
const IntT* y_indices_ptr = y_indices.data<IntT>();
#ifdef PADDLE_WITH_HIP
bool is_same = thrust::equal(thrust::hip::par.on(dev_ctx.stream()),
#else
bool is_same = thrust::equal(thrust::cuda::par.on(dev_ctx.stream()),
#endif
x_indices_ptr,
x_indices_ptr + x_indices.numel(),
y_indices_ptr);
PADDLE_ENFORCE_EQ(
is_same,
true,
phi::errors::PreconditionNotMet(
"Currently, ElementWiseAddCooKernel only supports the case "
"where x and y have the same indices"));
EmptyLikeCooKernel<T, GPUContext>(dev_ctx, x, out);
phi::AddKernel<T, GPUContext>(
dev_ctx, x.values(), y.values(), out->mutable_values());
}
template <typename T, typename Context>
void ElementWiseAddCooKernel(const Context& dev_ctx,
const SparseCooTensor& x,
const SparseCooTensor& y,
SparseCooTensor* out) {
PD_VISIT_BASE_INTEGRAL_TYPES(x.indices().dtype(), "VerifyIndices", ([&] {
ElementWiseAddCooGPUKernel<T, data_t>(
dev_ctx, x, y, out);
}));
}
} // namespace sparse
} // namespace phi
PD_REGISTER_KERNEL(add_coo_coo,
GPU,
ALL_LAYOUT,
phi::sparse::ElementWiseAddCooKernel,
float,
double,
int16_t,
int,
int64_t,
phi::dtype::float16) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
......@@ -172,6 +172,7 @@ void DenseToCooKernel(const Context& dev_ctx,
temp_indexs_ptr,
indices_data,
sparse_data);
out->SetMember(indices, values, x_dims, true);
}
......@@ -461,8 +462,8 @@ void CooToDenseGPUKernel(const GPUContext& dev_ctx,
const auto place = dev_ctx.GetPlace();
const T* x_data = values.data<T>();
*out = phi::Empty(
dev_ctx, phi::DenseTensorMeta(x.dtype(), x.dims(), x.values().layout()));
dev_ctx.template Alloc<T>(out);
T* out_data = out->data<T>();
int64_t base_offset = 1;
for (int64_t i = 0; i < dense_dim; i++) {
......@@ -619,6 +620,21 @@ PD_REGISTER_KERNEL(values_csr,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_CSR);
}
PD_REGISTER_KERNEL(indices_coo,
GPU,
ALL_LAYOUT,
phi::sparse::IndicesCooKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
......
......@@ -129,8 +129,6 @@ void CastCooKernel(const Context& dev_ctx,
DataType index_dtype,
DataType value_dtype,
SparseCooTensor* out) {
out->set_dims(x.dims());
const DenseTensor& x_indices = x.indices();
const DenseTensor& x_values = x.non_zero_elements();
DenseTensor* out_indices = out->mutable_indices();
......@@ -165,8 +163,6 @@ void CastCsrKernel(const Context& dev_ctx,
DataType index_dtype,
DataType value_dtype,
SparseCsrTensor* out) {
out->set_dims(x.dims());
const DenseTensor& x_crows = x.crows();
const DenseTensor& x_cols = x.cols();
const DenseTensor& x_values = x.non_zero_elements();
......
......@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
#include "paddle/phi/infermeta/unary.h"
#include "paddle/phi/kernels/empty_kernel.h"
namespace phi {
......@@ -36,6 +37,8 @@ SparseCooTensor DenseToCoo(const Context& dev_ctx,
DenseTensor indices;
DenseTensor values;
SparseCooTensor coo(indices, values, x.dims());
MetaTensor meta_out(&coo);
phi::UnchangedInferMeta(x, &meta_out);
DenseToCooKernel<T, Context>(dev_ctx, x, sparse_dim, &coo);
return coo;
}
......@@ -50,6 +53,8 @@ SparseCooTensor CsrToCoo(const Context& dev_ctx, const SparseCsrTensor& x) {
DenseTensor indices;
DenseTensor values;
SparseCooTensor coo(indices, values, x.dims());
MetaTensor meta_out(&coo);
phi::UnchangedInferMeta(x, &meta_out);
CsrToCooKernel<T, Context>(dev_ctx, x, &coo);
return coo;
}
......@@ -65,6 +70,8 @@ SparseCsrTensor CooToCsr(const Context& dev_ctx, const SparseCooTensor& x) {
DenseTensor cols;
DenseTensor non_zero_elements;
SparseCsrTensor csr(crows, cols, non_zero_elements, x.dims());
MetaTensor meta_out(&csr);
phi::UnchangedInferMeta(x, &meta_out);
CooToCsrKernel<T, Context>(dev_ctx, x, &csr);
return csr;
}
......@@ -79,10 +86,13 @@ void DenseToCsrKernel(const Context& dev_ctx,
true,
phi::errors::InvalidArgument(
"SparseCsrTensor only support 2-D or 3-D Tensor."));
const int64_t sparse_dim = x_dims.size() == 2 ? 2 : 3;
DenseTensor indices;
DenseTensor values;
SparseCooTensor coo(indices, values, x.dims());
MetaTensor meta_out(&coo);
phi::UnchangedInferMeta(x, &meta_out);
DenseToCooKernel<T, Context>(dev_ctx, x, sparse_dim, &coo);
CooToCsrKernel<T, Context>(dev_ctx, coo, out);
}
......@@ -93,6 +103,8 @@ SparseCsrTensor DenseToCsr(const Context& dev_ctx, const DenseTensor& x) {
DenseTensor cols;
DenseTensor non_zero_elements;
SparseCsrTensor csr(crows, cols, non_zero_elements, x.dims());
MetaTensor meta_out(&csr);
phi::UnchangedInferMeta(x, &meta_out);
DenseToCsrKernel<T, Context>(dev_ctx, x, &csr);
return csr;
}
......@@ -117,6 +129,8 @@ void CsrToDenseKernel(const Context& dev_ctx,
DenseTensor indices;
DenseTensor values;
SparseCooTensor coo(indices, values, x.dims());
MetaTensor meta_out(&coo);
phi::UnchangedInferMeta(x, &meta_out);
CsrToCooKernel<T, Context>(dev_ctx, x, &coo);
CooToDenseKernel<T, Context>(dev_ctx, coo, out);
}
......@@ -143,6 +157,13 @@ void ValuesCsrKernel(const Context& dev_ctx,
*out = x.non_zero_elements();
}
template <typename T, typename Context>
void IndicesCooKernel(const Context& dev_ctx,
const SparseCooTensor& x,
DenseTensor* out) {
*out = x.indices();
}
template <typename T, typename Context>
void SparseCooTensorKernel(const Context& dev_ctx,
const DenseTensor& values,
......
......@@ -52,7 +52,6 @@ TEST(sparse_coo_tensor, construct) {
CHECK_EQ(sparse.numel(), 9);
CHECK(sparse.dims() == dense_dims);
CHECK(sparse.dtype() == DataType::FLOAT32);
CHECK(sparse.layout() == DataLayout::SPARSE_COO);
CHECK(sparse.place() == phi::CPUPlace());
}
......
......@@ -62,7 +62,6 @@ TEST(sparse_csr_tensor, construct) {
CHECK_EQ(sparse.numel(), 9);
CHECK(sparse.dims() == dense_dims);
CHECK(sparse.dtype() == DataType::FLOAT32);
CHECK(sparse.layout() == DataLayout::SPARSE_CSR);
CHECK(sparse.place() == paddle::platform::CPUPlace());
CHECK(sparse.initialized() == true);
}
......
......@@ -18,7 +18,7 @@ from operator import __add__, __sub__, __mul__, __truediv__
import numpy as np
import paddle
from paddle.fluid.framework import _test_eager_guard
import paddle.incubate.sparse as sparse
op_list = [__add__, __sub__, __mul__, __truediv__]
......@@ -134,6 +134,35 @@ class TestSparseElementWiseAPI(unittest.TestCase):
for op in op_list:
self.func_test_coo(op)
def test_add_same_indices(self):
indices_data = [[0, 1], [0, 3]]
values1_data = [[1.0], [2.0]]
values2_data = [[1.0], [2.0]]
shape = [2, 4, 2]
sp_a = sparse.sparse_coo_tensor(indices_data,
values1_data,
shape,
stop_gradient=False)
sp_b = sparse.sparse_coo_tensor(indices_data,
values2_data,
shape,
stop_gradient=False)
values1 = paddle.to_tensor(values1_data, stop_gradient=False)
values2 = paddle.to_tensor(values2_data, stop_gradient=False)
#c.values() = a.values() + b.values()
sp_c = sparse.add(sp_a, sp_b)
sp_c.backward()
ref_c = values1 + values2
ref_c.backward()
np.testing.assert_allclose(sp_c.values().numpy(), ref_c.numpy())
np.testing.assert_allclose(sp_a.grad.values().numpy(),
values1.grad.numpy())
np.testing.assert_allclose(sp_b.grad.values().numpy(),
values2.grad.numpy())
if __name__ == "__main__":
paddle.device.set_device('cpu')
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册