layer.py 15.3 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
Y
Yu Yang 已提交
75 76
from paddle.trainer_config_helpers.default_decorators import \
    wrap_bias_attr_default
Q
qiaolongfei 已提交
77
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
78
from paddle.trainer_config_helpers.layers import layer_support
79 80 81
from paddle.trainer.config_parser import \
    RecurrentLayerGroupWithoutOutLinksBegin, RecurrentLayerGroupSetOutLink, \
    RecurrentLayerGroupEnd, model_type
Q
qiaolongfei 已提交
82

L
Luo Tao 已提交
83
import activation
Q
qiaolongfei 已提交
84
import data_type
Q
qiaolongfei 已提交
85

Y
Yu Yang 已提交
86
__all__ = ['parse_network', 'data']
Q
qiaolongfei 已提交
87

D
dangqingqing 已提交
88 89 90 91 92 93 94
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
95

Q
qiaolongfei 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
111
class Layer(object):
112
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
113
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
114
        self.name = name
Q
qiaolongfei 已提交
115
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
116 117 118 119 120 121

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
122 123
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
124
                              collections.Sequence):
Q
qiaolongfei 已提交
125
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
126 127
                    context=context)
            else:
Q
qiaolongfei 已提交
128 129 130
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
131

132
        if self.context_name() is None:
133
            return self.to_proto_impl(**kwargs)
134 135
        elif self.context_name() not in context:
            context[self.context_name()] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
136 137 138 139 140
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()

141 142 143 144 145 146 147 148
    def context_name(self):
        """
        Context name means the context which stores `to_proto_impl` result.
        If multiple layer share same context_name, the `to_proto_impl` of them
        will be invoked only once.
        """
        return self.name

Q
qiaolongfei 已提交
149

L
Luo Tao 已提交
150 151 152
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
153 154 155
    else:
        wrapper = None

Q
qiaolongfei 已提交
156
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
157
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
158 159 160
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
161 162
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
163 164 165 166 167

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
168
            name = kwargs.get('name', None)
169
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
170 171 172 173 174 175 176 177 178 179 180
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
181
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
182

Q
qiaolongfei 已提交
183
    return V2LayerImpl
Q
qiaolongfei 已提交
184 185


Q
qiaolongfei 已提交
186 187 188 189 190 191 192
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
193
    def __init__(self, name, type, **kwargs):
194
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
195

Q
qiaolongfei 已提交
196
        self.type = type
Q
qiaolongfei 已提交
197 198
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
199 200 201 202 203

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
204
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
205 206
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
207 208
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
209 210 211
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
212 213 214 215
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228

        parent_names = ['boot_layer']
        parent_layers = dict()
        other_kwargs = dict()
        for pname in parent_names:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]

        for key in kwargs.keys():
            if key not in parent_names:
                other_kwargs[key] = kwargs[key]
        super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
        self.__kwargs__ = other_kwargs
Q
qiaolongfei 已提交
229 230 231 232 233 234 235

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
236

Q
qiaolongfei 已提交
237 238
        return conf_helps.memory(name=self.name, size=self.size, **args)

239 240 241
    def context_name(self):
        return self.name + "#memory"

Q
qiaolongfei 已提交
242

243
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
244 245 246 247 248
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

249 250 251 252 253 254 255 256 257 258
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


Q
qiaolongfei 已提交
259
class StaticInputV2(Layer):
260 261 262 263 264
    def __init__(self, input=None, **kwargs):
        assert input is not None
        self.__kwargs__ = kwargs
        super(StaticInputV2, self).__init__(
            name=input.name, parent_layers={'input': input})
265

266 267
    def context_name(self):
        return self.name + "#static_input"
Q
qiaolongfei 已提交
268

269 270
    def to_proto_impl(self, **kwargs):
        args = dict()
271 272 273
        args.update(kwargs)
        args.update(self.__kwargs__)
        return conf_helps.StaticInput(**args)
274 275


276 277 278 279 280 281 282 283 284 285
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
286
        pass
287 288 289 290 291 292 293 294 295 296

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
297
        self.__inputs__ = []
298
        if input is not None:
D
dangqingqing 已提交
299
            self.__inputs__ = input
300

D
dangqingqing 已提交
301 302
        other_kwargs = dict()
        other_kwargs['name'] = name
303 304 305 306 307
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
308 309
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
310 311 312 313
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
314
            self.__inputs__.append(other)
315 316 317 318 319
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
320
        assert len(self.__inputs__) == 0
321 322 323 324 325 326 327 328 329 330 331
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
332
        return getattr(conf_helps, self.__method_name__)(**args)
333 334 335


@wrap_name_default("mixed")
D
dangqingqing 已提交
336
@wrap_act_default(act=activation.Linear())
337 338 339 340 341 342 343 344 345 346 347
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
class RecurrentLayerInput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        print self.__parents__, parent_layers
        super(RecurrentLayerInput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".begin"

    def to_proto_impl(self, **kwargs):
        model_type('recurrent_nn')
        RecurrentLayerGroupWithoutOutLinksBegin(
            name=self.__recurrent_name__,
            in_links=map(lambda x: x.name, self.__parents__))
        return self


class RecurrentLayerOutput(Layer):
    def __init__(self, recurrent_name, index, parent_layers):
        assert len(parent_layers) == 1
        self.__parents__ = parent_layers.values()[0]
        super(RecurrentLayerOutput, self).__init__(
            name=self.__parents__[index].name, parent_layers=parent_layers)
        self.__recurrent_name__ = recurrent_name

    def context_name(self):
        return self.__recurrent_name__ + ".end"

    def to_proto_impl(self, **kwargs):
        for l in self.__parents__:
            RecurrentLayerGroupSetOutLink(l.name)
        RecurrentLayerGroupEnd(name=self.__recurrent_name__)


@wrap_name_default()
def recurrent_group(step, input, name=None):
    if not isinstance(input, collections.Sequence):
        input = [input]

    actual_input = [
        RecurrentLayerInput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_inputs': input})
        for i in xrange(len(input))
    ]

    actual_output = step(*actual_input)

    if not isinstance(actual_output, collections.Sequence):
        actual_output = [actual_output]

    retv = [
        RecurrentLayerOutput(
            recurrent_name=name,
            index=i,
            parent_layers={'recurrent_outputs': actual_output})
        for i in xrange(len(actual_output))
    ]
    if len(retv) == 1:
        return retv[0]
    else:
        return retv


Q
qiaolongfei 已提交
416
LayerV2 = Layer
Q
qiaolongfei 已提交
417
data = DataLayerV2
L
Luo Tao 已提交
418 419
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
420
recurrent_group = recurrent_group
Q
qiaolongfei 已提交
421
memory = MemoryV2
Q
qiaolongfei 已提交
422

Y
Yu Yang 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

def __layer_name_mapping__(inname):
    if inname in ['data_layer', 'memory', 'mixed_layer']:
        # Do Not handle these layers
        return
    elif inname == 'maxid_layer':
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]


def __layer_name_mapping_parent_names__(inname):
    all_args = getattr(conf_helps, inname).argspec.args
    return filter(
        lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
                        'weights', 'vectors', 'weight', 'score', 'left', 'right'],
        all_args)


def __convert_layer__(_new_name_, _old_name_, _parent_names_):
    global __all__
    __all__.append(_new_name_)
    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)


for each_layer_name in dir(conf_helps):
    new_name = __layer_name_mapping__(each_layer_name)
    if new_name is not None:
        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
        assert len(parent_names) != 0, each_layer_name
        __convert_layer__(new_name, each_layer_name, parent_names)

del parent_names
del new_name
del each_layer_name
Q
qiaolongfei 已提交
468

469
# convert projection
D
dangqingqing 已提交
470
for prj in __projection_names__:
L
Luo Tao 已提交
471 472
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
473 474 475 476 477 478 479 480

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
481 482
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)