提交 0bd75a57 编写于 作者: Q qiaolongfei

change layers to layer

上级 281250f5
......@@ -10,7 +10,7 @@ import random
import numpy as np
import paddle.trainer.PyDataProvider2 as dp
import paddle.v2
import paddle.v2 as paddle_v2
import py_paddle.swig_paddle as api
from paddle.trainer_config_helpers import *
from py_paddle import DataProviderConverter
......@@ -58,7 +58,7 @@ def input_order_converter(generator):
def main():
api.initPaddle("-use_gpu=false", "-trainer_count=4") # use 4 cpu cores
optimizer = paddle.v2.optimizer.Adam(
optimizer = paddle_v2.optimizer.Adam(
learning_rate=1e-4,
batch_size=1000,
model_average=ModelAverage(average_window=0.5),
......@@ -71,16 +71,17 @@ def main():
assert isinstance(updater, api.ParameterUpdater)
# define network
images = paddle.v2.layers.data_layer(name='pixel', size=784)
label = paddle.v2.layers.data_layer(name='label', size=10)
hidden1 = paddle.v2.layers.fc_layer(input=images, size=200)
hidden2 = paddle.v2.layers.fc_layer(input=hidden1, size=200)
inference = paddle.v2.layers.fc_layer(
input=hidden2, size=10, act=SoftmaxActivation())
cost = paddle.v2.layers.classification_cost(input=inference, label=label)
images = paddle_v2.layer.data(name='pixel', size=784)
label = paddle_v2.layer.data(name='label', size=10)
hidden1 = paddle_v2.layer.fc(input=images, size=200)
hidden2 = paddle_v2.layer.fc(input=hidden1, size=200)
inference = paddle_v2.layer.fc(input=hidden2,
size=10,
act=SoftmaxActivation())
cost = paddle_v2.layer.classification_cost(input=inference, label=label)
# Create Simple Gradient Machine.
model_config = paddle.v2.layers.parse_network(cost)
model_config = paddle_v2.layer.parse_network(cost)
m = api.GradientMachine.createFromConfigProto(model_config,
api.CREATE_MODE_NORMAL,
optimizer.enable_types())
......
......@@ -13,6 +13,6 @@
# limitations under the License.
import optimizer
import layers
import layer
__all__ = ['optimizer', 'layers']
__all__ = ['optimizer', 'layer']
......@@ -19,6 +19,21 @@ from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import collections
def parse_network(*outputs):
"""
parse all output layers and then generate a model config proto.
:param outputs:
:return:
"""
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
class Layer(object):
def __init__(self, name, parent_layer):
assert isinstance(parent_layer, dict)
......@@ -49,22 +64,13 @@ class Layer(object):
raise NotImplementedError()
def parse_network(*outputs):
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
def __convert__(method_name, name_prefix, parent_names):
def __convert_to_v2__(method_name, name_prefix, parent_names):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
wrapper = None
class __Impl__(Layer):
class V2LayerImpl(Layer):
def __init__(self, name=None, **kwargs):
parent_layers = dict()
other_kwargs = dict()
......@@ -75,7 +81,7 @@ def __convert__(method_name, name_prefix, parent_names):
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(__Impl__, self).__init__(name, parent_layers)
super(V2LayerImpl, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
......@@ -89,24 +95,38 @@ def __convert__(method_name, name_prefix, parent_names):
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return __Impl__
return V2LayerImpl
data_layer = __convert__('data_layer', None, [])
fc_layer = __convert__('fc_layer', name_prefix='fc', parent_names=['input'])
classification_cost = __convert__(
data = __convert_to_v2__('data_layer', None, [])
fc = __convert_to_v2__('fc_layer', name_prefix='fc', parent_names=['input'])
max_id = __convert_to_v2__(
'maxid_layer', name_prefix='maxid_layer', parent_names=['input'])
classification_cost = __convert_to_v2__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label'])
cross_entropy_cost = __convert_to_v2__(
'cross_entropy',
name_prefix='cross_entropy',
parent_names=['input', 'label'])
__all__ = ['data_layer', 'fc_layer', 'classification_cost', 'parse_network']
__all__ = [
'parse_network', 'data', 'fc', 'max_id', 'classification_cost',
'cross_entropy_cost'
]
if __name__ == '__main__':
data = data_layer(name='pixel', size=784)
hidden = fc_layer(input=data, size=100, act=conf_helps.SigmoidActivation())
predict = fc_layer(
input=[hidden, data], size=10, act=conf_helps.SoftmaxActivation())
cost = classification_cost(
input=predict, label=data_layer(
name='label', size=10))
print parse_network(cost)
pixel = data(name='pixel', size=784)
label = data(name='label', size=10)
hidden = fc(input=pixel, size=100, act=conf_helps.SigmoidActivation())
inference = fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation())
maxid = max_id(input=inference)
cost1 = classification_cost(input=inference, label=label)
cost2 = cross_entropy_cost(input=inference, label=label)
print parse_network(cost1)
print parse_network(cost2)
print parse_network(cost1, cost2)
print parse_network(cost2)
print parse_network(inference, maxid)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册