提交 f3755dd4 编写于 作者: Q qiaolongfei

add v2-layers

上级 ccb553fe
......@@ -6,25 +6,16 @@ passed to C++ side of Paddle.
The user api could be simpler and carefully designed.
"""
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter
import paddle.trainer.PyDataProvider2 as dp
import numpy as np
import random
from mnist_util import read_from_mnist
from paddle.trainer_config_helpers import *
import paddle.v2
import numpy as np
import paddle.trainer.PyDataProvider2 as dp
import paddle.v2
import py_paddle.swig_paddle as api
from paddle.trainer_config_helpers import *
from py_paddle import DataProviderConverter
def network_config():
imgs = data_layer(name='pixel', size=784)
hidden1 = fc_layer(input=imgs, size=200)
hidden2 = fc_layer(input=hidden1, size=200)
inference = fc_layer(input=hidden2, size=10, act=SoftmaxActivation())
cost = classification_cost(
input=inference, label=data_layer(
name='label', size=10))
outputs(cost)
from mnist_util import read_from_mnist
def init_parameter(network):
......@@ -79,8 +70,17 @@ def main():
updater = optimizer.create_local_updater()
assert isinstance(updater, api.ParameterUpdater)
# define network
images = paddle.v2.layers.data_layer(name='pixel', size=784)
label = paddle.v2.layers.data_layer(name='label', size=10)
hidden1 = paddle.v2.layers.fc_layer(input=images, size=200)
hidden2 = paddle.v2.layers.fc_layer(input=hidden1, size=200)
inference = paddle.v2.layers.fc_layer(
input=hidden2, size=10, act=SoftmaxActivation())
cost = paddle.v2.layers.classification_cost(input=inference, label=label)
# Create Simple Gradient Machine.
model_config = parse_network_config(network_config)
model_config = paddle.v2.layers.parse_network(cost)
m = api.GradientMachine.createFromConfigProto(model_config,
api.CREATE_MODE_NORMAL,
optimizer.enable_types())
......
......@@ -13,5 +13,6 @@
# limitations under the License.
import optimizer
import layers
__all__ = ['optimizer']
__all__ = ['optimizer', 'layers']
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
parse_network_config as __parse__
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
import collections
class Layer(object):
def __init__(self, name, parent_layer):
assert isinstance(parent_layer, dict)
assert isinstance(name, basestring)
self.name = name
self.__parent_layer__ = parent_layer
def to_proto(self, context):
"""
function to set proto attribute
"""
kwargs = dict()
for param_name in self.__parent_layer__:
if not isinstance(self.__parent_layer__[param_name],
collections.Sequence):
param_value = self.__parent_layer__[param_name].to_proto(
context=context)
else:
param_value = map(lambda x: x.to_proto(context=context),
self.__parent_layer__[param_name])
kwargs[param_name] = param_value
if self.name not in context:
context[self.name] = self.to_proto_impl(**kwargs)
return context[self.name]
def to_proto_impl(self, **kwargs):
raise NotImplementedError()
def parse_network(*outputs):
def __real_func__():
context = dict()
real_output = [each.to_proto(context=context) for each in outputs]
conf_helps.outputs(real_output)
return __parse__(__real_func__)
def __convert__(method_name, name_prefix, parent_names):
if name_prefix is not None:
wrapper = wrap_name_default(name_prefix=name_prefix)
else:
wrapper = None
class __Impl__(Layer):
def __init__(self, name=None, **kwargs):
parent_layers = dict()
other_kwargs = dict()
for pname in parent_names:
parent_layers[pname] = kwargs[pname]
for key in kwargs.keys():
if key not in parent_names:
other_kwargs[key] = kwargs[key]
super(__Impl__, self).__init__(name, parent_layers)
self.__other_kwargs__ = other_kwargs
if wrapper is not None:
__init__ = wrapper(__init__)
def to_proto_impl(self, **kwargs):
args = dict()
for each in kwargs:
args[each] = kwargs[each]
for each in self.__other_kwargs__:
args[each] = self.__other_kwargs__[each]
return getattr(conf_helps, method_name)(name=self.name, **args)
return __Impl__
data_layer = __convert__('data_layer', None, [])
fc_layer = __convert__('fc_layer', name_prefix='fc', parent_names=['input'])
classification_cost = __convert__(
'classification_cost',
name_prefix='classification_cost',
parent_names=['input', 'label'])
__all__ = ['data_layer', 'fc_layer', 'classification_cost', 'parse_network']
if __name__ == '__main__':
data = data_layer(name='pixel', size=784)
hidden = fc_layer(input=data, size=100, act=conf_helps.SigmoidActivation())
predict = fc_layer(
input=[hidden, data], size=10, act=conf_helps.SoftmaxActivation())
cost = classification_cost(
input=predict, label=data_layer(
name='label', size=10))
print parse_network(cost)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册