gru_op.h 10.5 KB
Newer Older
G
guosheng 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

17
#include "paddle/operators/math/detail/activation_functions.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

G
guosheng 已提交
28 29 30
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
31 32
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
33 34
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
G
guosheng 已提交
35
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
36
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
37
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
D
dzhwinter 已提交
38
  row_shuffle(ctx, src, index_lod, *dst, indexed_src);
G
guosheng 已提交
39 40
}

Q
QI JUN 已提交
41
template <typename DeviceContext, typename T>
G
guosheng 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
Q
QI JUN 已提交
65 66
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
67
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
68 69

    if (bias) {
Q
QI JUN 已提交
70
      math::RowwiseAdd<DeviceContext, T> add_bias;
71
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
72 73
    }

74
    int frame_size = hidden_dims[1];
75
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
76 77
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
78
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
79
    Tensor ordered_h0;
D
dzhwinter 已提交
80 81 82

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
83 84 85 86
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
87 88 89
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
G
guosheng 已提交
90
      gru_value.prev_out_value = ordered_h0.data<T>();
G
guosheng 已提交
91
    } else {
G
guosheng 已提交
92
      gru_value.prev_out_value = nullptr;
G
guosheng 已提交
93
    }
G
guosheng 已提交
94 95
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
96 97 98 99
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
100 101 102 103 104 105 106 107
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
G
guosheng 已提交
108 109 110
      gru_value.output_value = hidden_t.data<T>();
      gru_value.gate_value = gate_t.data<T>();
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
Q
QI JUN 已提交
111
      math::GRUUnitFunctor<DeviceContext, T>::compute(
112 113
          dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
114
      gru_value.prev_out_value = gru_value.output_value;
G
guosheng 已提交
115 116
    }

Q
QI JUN 已提交
117
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
118
    batch_hidden->set_lod(batch_gate->lod());
119
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
120 121 122 123 124 125 126
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

Q
QI JUN 已提交
127
template <typename DeviceContext, typename T>
G
guosheng 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
152
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
153 154 155 156 157
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
158 159
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
160 161 162
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
163

G
guosheng 已提交
164
    Tensor ordered_h0, ordered_h0_grad;
D
dzhwinter 已提交
165 166 167

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
168
    if (h0) {
Q
QI JUN 已提交
169 170
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
171 172 173
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
174 175
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
176 177
    }

G
guosheng 已提交
178 179
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
180
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
181

182
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
183 184
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
185 186
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

187
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
188
    if (weight_grad) {
G
guosheng 已提交
189
      gru_grad.gate_weight_grad =
G
guosheng 已提交
190
          weight_grad->mutable_data<T>(context.GetPlace());
191
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
192
      gru_grad.state_weight_grad =
G
guosheng 已提交
193 194
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
195 196
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
197 198 199 200
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
201 202 203 204
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
205 206 207 208 209 210
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
211
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
212
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
213
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
214 215

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
216
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
217
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
218
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
219 220
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
221
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
222
      if (n == 0) {
G
guosheng 已提交
223 224
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
225
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
226 227 228
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
229
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
230
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
231
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
232 233
      }

Q
QI JUN 已提交
234
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
235 236
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
237 238 239
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
240
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
241
      batch_gate_grad.set_lod(batch_gate->lod());
242
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
243 244 245
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
246
      math::ColwiseSum<DeviceContext, T> col_sum;
247
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
248
    }
G
guosheng 已提交
249
    if (h0 && h0_grad) {
Q
QI JUN 已提交
250 251
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
252
    }
G
guosheng 已提交
253 254 255 256 257 258 259 260 261
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle