gru_op.h 9.7 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

G
guosheng 已提交
17
#include "paddle/operators/lstm_op.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

template <typename Place, typename T>
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<Place, T> to_batch;
53 54
    auto& dev_ctx = context.device_context();
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
55 56

    if (bias) {
57 58
      math::RowwiseAdd<Place, T> add_bias;
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
59 60
    }

61
    int frame_size = hidden_dims[1];
G
guosheng 已提交
62 63 64 65
    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
66 67 68 69 70 71 72 73 74 75 76 77
    Tensor ordered_h0;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
      ReorderInitState<Place, T>(context.device_context(), *h0, order,
                                 &ordered_h0, true);
      gru_value.prevOutValue = ordered_h0.data<T>();
    } else {
      gru_value.prevOutValue = nullptr;
    }
G
guosheng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
      gru_value.outputValue = hidden_t.data<T>();
      gru_value.gateValue = gate_t.data<T>();
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();
      math::GRUUnitFunctor<Place, T>::compute(
92
          dev_ctx, gru_value, frame_size, cur_batch_size,
G
guosheng 已提交
93 94 95 96 97 98 99
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
      gru_value.prevOutValue = gru_value.outputValue;
    }

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
100
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

template <typename Place, typename T>
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

    math::LoDTensor2BatchFunctor<Place, T> to_batch;
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
    math::SetConstant<Place, T> zero;
140 141 142 143
    auto& dev_ctx = context.device_context();
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
144

G
guosheng 已提交
145 146 147 148 149 150 151 152
    Tensor ordered_h0, ordered_h0_grad;
    const size_t* order = batch_gate->lod()[2].data();
    if (h0) {
      ReorderInitState<Place, T>(context.device_context(), *h0, order,
                                 &ordered_h0, true);
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
G
guosheng 已提交
153
      zero(context.device_context(), &ordered_h0_grad, static_cast<T>(0.0));
G
guosheng 已提交
154 155
    }

G
guosheng 已提交
156 157
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
158
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
159 160 161 162 163 164 165 166 167 168

    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

    math::hl_gru_grad<T> gru_grad;
    if (weight_grad) {
      gru_grad.gateWeightGrad =
          weight_grad->mutable_data<T>(context.GetPlace());
169
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
      gru_grad.stateWeightGrad =
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
      gru_grad.gateWeightGrad = nullptr;
      gru_grad.stateWeightGrad = nullptr;
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      gru_value.gateValue = gate_t.data<T>();
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
      gru_grad.outputGrad = hidden_grad_t.data<T>();
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
      gru_grad.gateGrad = gate_grad_t.data<T>();
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
      gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data<T>();
      if (n == 0) {
G
guosheng 已提交
197 198 199 200 201 202 203
        if (h0) {
          gru_value.prevOutValue = ordered_h0.data<T>();
        } else {
          gru_value.prevOutValue = nullptr;
        }
        if (h0 && h0_grad) {
          gru_grad.prevOutGrad = ordered_h0_grad.data<T>();
G
guosheng 已提交
204 205 206 207 208 209 210 211 212 213 214 215
        } else {
          gru_grad.prevOutGrad = nullptr;
        }
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
        gru_value.prevOutValue = hidden_prev_t.data<T>();
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
        gru_grad.prevOutGrad = hidden_prev_grad_t.data<T>();
      }

      math::GRUUnitGradFunctor<Place, T>::compute(
216
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size,
G
guosheng 已提交
217 218 219 220 221 222 223
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      math::Batch2LoDTensorFunctor<Place, T> to_seq;
      batch_gate_grad.set_lod(batch_gate->lod());
224
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
225 226 227
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
228 229
      math::ColwiseSum<Place, T> col_sum;
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
230
    }
G
guosheng 已提交
231 232 233 234
    if (h0 && h0_grad) {
      ReorderInitState<Place, T>(context.device_context(), ordered_h0_grad,
                                 order, h0_grad, false);
    }
G
guosheng 已提交
235 236 237 238 239 240 241 242 243
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle