gru_op.h 9.5 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

template <typename Place, typename T>
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
    math::LoDTensor2BatchFunctor<Place, T> to_batch;
60
    to_batch(context.device_context(), *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    int frame_size = hidden_dims[1];
    int batch_size = hidden_dims[0];
    auto g = EigenMatrix<T>::From(*batch_gate);
    auto place = context.GetEigenDevice<Place>();
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = g +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    }

    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
    gru_value.prevOutValue = const_cast<T*>(h0_data);
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
      gru_value.outputValue = hidden_t.data<T>();
      gru_value.gateValue = gate_t.data<T>();
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();
      math::GRUUnitFunctor<Place, T>::compute(
          context.device_context(), gru_value, frame_size, cur_batch_size,
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
      gru_value.prevOutValue = gru_value.outputValue;
    }

    math::Batch2LoDTensorFunctor<Place, T> to_seq;
    batch_hidden->set_lod(batch_gate->lod());
    to_seq(context.device_context(), *batch_hidden, *hidden);
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

template <typename Place, typename T>
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

    math::LoDTensor2BatchFunctor<Place, T> to_batch;
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
    math::SetConstant<Place, T> zero;
    zero(context.device_context(), &batch_hidden_grad, static_cast<T>(0.0));
    zero(context.device_context(), &batch_gate_grad, static_cast<T>(0.0));
    zero(context.device_context(), &batch_reset_hidden_prev_grad,
         static_cast<T>(0.0));

    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
148 149
    to_batch(context.device_context(), *hidden_grad, batch_hidden_grad, false,
             is_reverse);
G
guosheng 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231

    math::hl_gru_value<T> gru_value;
    gru_value.gateWeight = const_cast<T*>(weight_data);
    gru_value.stateWeight =
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

    math::hl_gru_grad<T> gru_grad;
    if (weight_grad) {
      gru_grad.gateWeightGrad =
          weight_grad->mutable_data<T>(context.GetPlace());
      zero(context.device_context(), weight_grad, static_cast<T>(0.0));
      gru_grad.stateWeightGrad =
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
      gru_grad.gateWeightGrad = nullptr;
      gru_grad.stateWeightGrad = nullptr;
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      gru_value.gateValue = gate_t.data<T>();
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      gru_value.resetOutputValue = reset_hidden_prev_t.data<T>();

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
      gru_grad.outputGrad = hidden_grad_t.data<T>();
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
      gru_grad.gateGrad = gate_grad_t.data<T>();
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
      gru_grad.resetOutputGrad = reset_hidden_prev_grad_t.data<T>();
      if (n == 0) {
        gru_value.prevOutValue = const_cast<T*>(h0_data);
        if (h0_grad) {
          T* h0_grad_data = h0_grad->mutable_data<T>(context.GetPlace());
          zero(context.device_context(), h0_grad, static_cast<T>(0.0));
          gru_grad.prevOutGrad = h0_grad_data;
        } else {
          gru_grad.prevOutGrad = nullptr;
        }
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
        gru_value.prevOutValue = hidden_prev_t.data<T>();
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
        gru_grad.prevOutGrad = hidden_prev_grad_t.data<T>();
      }

      math::GRUUnitGradFunctor<Place, T>::compute(
          context.device_context(), gru_value, gru_grad, frame_size,
          cur_batch_size,
          math::ActiveType(context.Attr<std::string>("activation")),
          math::ActiveType(context.Attr<std::string>("gate_activation")));
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      math::Batch2LoDTensorFunctor<Place, T> to_seq;
      batch_gate_grad.set_lod(batch_gate->lod());
      to_seq(context.device_context(), batch_gate_grad, *input_grad);
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
      auto d_b = EigenMatrix<T>::From(*bias_grad);
      auto d_g = EigenMatrix<T>::From(batch_gate_grad);
      auto place = context.GetEigenDevice<Place>();
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle