test_auto_parallel_searcher.py 8.9 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17 18 19
import os
import copy
import json
C
caozhou 已提交
20 21 22 23 24 25 26
import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
27
from paddle.distributed import fleet
C
caozhou 已提交
28
import paddle.distributed.auto_parallel as auto
29 30 31
from paddle.distributed.auto_parallel.cluster import Cluster
from paddle.distributed.auto_parallel.utils import SerialProgramInfo
from paddle.distributed.auto_parallel.planner import PlanSpace, PlanFilter
C
caozhou 已提交
32
from paddle.distributed.auto_parallel.dist_context import DistributedContext
33
from paddle.distributed.auto_parallel.utils import get_all_distributed_main_program
C
caozhou 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
from paddle.distributed.auto_parallel.dist_attribute import TensorDistributedAttribute
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
from paddle.distributed.auto_parallel.utils import update_op_dims_mapping_by_default_dist_impl
from paddle.distributed.auto_parallel.utils import update_op_dims_mapping_by_elementwise_like_dist_impl

paddle.enable_static()


class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = paddle.unsqueeze(out, axis=0)
        out = paddle.reshape(out, [4, 1024])
        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input", shape=[batch_size, hidden_size], dtype='float32')
        label = static.data(
            name="label", shape=[batch_size, 1], dtype='float32')
        loss_func = paddle.nn.CrossEntropyLoss(reduction="none")
        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            initializer_range=0.02)

        predict = mlp(input)
        error_cost = loss_func(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


def set_default_dist_attr(program, dist_context, process_mesh):
    ops = program.global_block().ops
    vars = program.global_block().vars
    for op in ops:
        op_dist_attr = OperatorDistributedAttribute()
        op_dist_attr.process_mesh = process_mesh
        for var_name in op.input_arg_names:
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.process_mesh = process_mesh
            tensor_dist_attr.dims_mapping = [-1 for i in vars[var_name].shape]
            dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                          tensor_dist_attr)
            op_dist_attr.set_input_dims_mapping(var_name,
                                                tensor_dist_attr.dims_mapping)

        for var_name in op.output_arg_names:
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.process_mesh = process_mesh
            tensor_dist_attr.dims_mapping = [-1 for i in vars[var_name].shape]
            dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                          tensor_dist_attr)
            op_dist_attr.set_output_dims_mapping(var_name,
                                                 tensor_dist_attr.dims_mapping)
        dist_context.set_op_dist_attr_for_program(op, op_dist_attr)

    dist_context.add_process_mesh(process_mesh)


121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
def check_process_meshes(processes):
    result = PlanSpace.enum_process_mesh_topology(processes)
    if result:
        return True
    return False


def check_pipeline_enumerater(program, process_mesh_topology):
    valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh = PlanSpace.enum_valid_dist_attr_for_program(
        program, process_mesh_topology, True)
    if valid_dist_attr_dict and len(
            pipeline_process_meshes) > 1 and not global_process_mesh:
        return True
    return False


def check_nonpipeline_enumerater(program, process_mesh_topology):
    valid_dist_attr_dict, pipeline_process_meshes, global_process_mesh = PlanSpace.enum_valid_dist_attr_for_program(
        program, process_mesh_topology, False)
    if valid_dist_attr_dict and not pipeline_process_meshes and global_process_mesh:
        return True
    return False


C
caozhou 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class TestMLPSearcher(unittest.TestCase):
    def test_update(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        _, train_program, startup_program = mlp_forward(train_program,
                                                        startup_program)
        global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
        dist_context = DistributedContext()
        set_default_dist_attr(train_program, dist_context, global_process_mesh)
        ops = train_program.global_block().ops
        vars = train_program.global_block().vars
        from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
        from paddle.distributed.auto_parallel.completion import is_elementwise_like_op
        from paddle.distributed.auto_parallel.dist_op import DistributedOperator

        for op in ops:
            dist_op_impl_container = get_distributed_operator_impl_container(
                op.type)
            if dist_op_impl_container is None:
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                dist_op = DistributedOperator(op, op_dist_attr)
                if is_elementwise_like_op(op.type):
                    changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                        dist_op)
                    self.assertFalse(changed)

                    dist_op.dist_attr.set_output_dims_mapping(
                        op.output_arg_names[0], [0] + [
                            -1
                            for i in range(
                                1, len(vars[op.output_arg_names[0]].shape))
                        ])
                    try:
                        changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                            dist_op)
                    except:
                        continue
                    self.assertTrue(changed)
                else:
                    changed = update_op_dims_mapping_by_default_dist_impl(
                        dist_op)
                    self.assertFalse(changed)

                    dist_op.dist_attr.set_output_dims_mapping(
                        op.output_arg_names[0], [0] + [
                            -1
                            for i in range(
                                1, len(vars[op.output_arg_names[0]].shape))
                        ])
                    try:
                        changed = update_op_dims_mapping_by_default_dist_impl(
                            dist_op)
                    except:
                        continue
                    self.assertTrue(changed)

201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def test_enumerater_and_checker(self):
        processes = 4
        self.assertTrue(check_process_meshes(processes))

        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        _, train_program, startup_program = mlp_forward(train_program,
                                                        startup_program)
        process_mesh_topology = [4]
        self.assertTrue(
            check_pipeline_enumerater(train_program, process_mesh_topology))
        self.assertTrue(
            check_nonpipeline_enumerater(train_program, process_mesh_topology))

C
caozhou 已提交
215 216 217

if __name__ == "__main__":
    unittest.main()