test_auto_parallel_searcher.py 7.5 KB
Newer Older
C
caozhou 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

# import os
# import copy
# import json
import unittest

import paddle
import paddle.nn as nn
import paddle.static as static
import paddle.nn.functional as F
import paddle.utils as utils
# from paddle.distributed import fleet
import paddle.distributed.auto_parallel as auto
# from paddle.distributed.auto_parallel.cluster import Cluster
# from paddle.distributed.auto_parallel.utils import SerialProgramInfo
# from paddle.distributed.auto_parallel.searcher import Checker, Enumerater
from paddle.distributed.auto_parallel.dist_context import DistributedContext
# from paddle.distributed.auto_parallel.utils import get_all_distributed_main_program
from paddle.distributed.auto_parallel.dist_attribute import TensorDistributedAttribute
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
from paddle.distributed.auto_parallel.utils import update_op_dims_mapping_by_default_dist_impl
from paddle.distributed.auto_parallel.utils import update_op_dims_mapping_by_elementwise_like_dist_impl

paddle.enable_static()


class MLPLayer(nn.Layer):
    def __init__(self,
                 hidden_size=1024,
                 intermediate_size=4 * 1024,
                 initializer_range=0.02):
        super(MLPLayer, self).__init__()
        d_model = hidden_size
        dim_feedforward = intermediate_size
        weight_attr = paddle.ParamAttr(initializer=nn.initializer.Normal(
            mean=0.0, std=initializer_range))
        bias_attr = None

        self.linear0 = nn.Linear(
            d_model, dim_feedforward, weight_attr, bias_attr=bias_attr)
        self.linear1 = nn.Linear(
            dim_feedforward, d_model, weight_attr, bias_attr=bias_attr)
        self.norm = nn.LayerNorm(d_model, epsilon=1e-5)

    def forward(self, input):
        out = self.norm(input)
        out = self.linear0(out)
        out = F.gelu(out, approximate=True)
        out = self.linear1(out)
        out = paddle.unsqueeze(out, axis=0)
        out = paddle.reshape(out, [4, 1024])
        return out


def mlp_forward(train_program, start_program):
    with static.program_guard(train_program,
                              start_program), utils.unique_name.guard():
        batch_size = 4
        hidden_size = 1024
        sequence_len = 512
        input = static.data(
            name="input", shape=[batch_size, hidden_size], dtype='float32')
        label = static.data(
            name="label", shape=[batch_size, 1], dtype='float32')
        loss_func = paddle.nn.CrossEntropyLoss(reduction="none")
        mlp = MLPLayer(
            hidden_size=hidden_size,
            intermediate_size=4 * hidden_size,
            initializer_range=0.02)

        predict = mlp(input)
        error_cost = loss_func(predict, label)
        loss = paddle.mean(error_cost)

    return loss, train_program, start_program


def set_default_dist_attr(program, dist_context, process_mesh):
    ops = program.global_block().ops
    vars = program.global_block().vars
    for op in ops:
        op_dist_attr = OperatorDistributedAttribute()
        op_dist_attr.process_mesh = process_mesh
        for var_name in op.input_arg_names:
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.process_mesh = process_mesh
            tensor_dist_attr.dims_mapping = [-1 for i in vars[var_name].shape]
            dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                          tensor_dist_attr)
            op_dist_attr.set_input_dims_mapping(var_name,
                                                tensor_dist_attr.dims_mapping)

        for var_name in op.output_arg_names:
            tensor_dist_attr = TensorDistributedAttribute()
            tensor_dist_attr.process_mesh = process_mesh
            tensor_dist_attr.dims_mapping = [-1 for i in vars[var_name].shape]
            dist_context.set_tensor_dist_attr_for_program(vars[var_name],
                                                          tensor_dist_attr)
            op_dist_attr.set_output_dims_mapping(var_name,
                                                 tensor_dist_attr.dims_mapping)
        dist_context.set_op_dist_attr_for_program(op, op_dist_attr)

    dist_context.add_process_mesh(process_mesh)


class TestMLPSearcher(unittest.TestCase):
    def test_update(self):
        train_program = paddle.static.Program()
        startup_program = paddle.static.Program()
        _, train_program, startup_program = mlp_forward(train_program,
                                                        startup_program)
        global_process_mesh = auto.ProcessMesh(mesh=[0, 1])
        dist_context = DistributedContext()
        set_default_dist_attr(train_program, dist_context, global_process_mesh)
        ops = train_program.global_block().ops
        vars = train_program.global_block().vars
        from paddle.distributed.auto_parallel.operators.common import get_distributed_operator_impl_container
        from paddle.distributed.auto_parallel.completion import is_elementwise_like_op
        from paddle.distributed.auto_parallel.dist_op import DistributedOperator

        for op in ops:
            dist_op_impl_container = get_distributed_operator_impl_container(
                op.type)
            if dist_op_impl_container is None:
                op_dist_attr = dist_context.get_op_dist_attr_for_program(op)
                dist_op = DistributedOperator(op, op_dist_attr)
                if is_elementwise_like_op(op.type):
                    changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                        dist_op)
                    self.assertFalse(changed)

                    dist_op.dist_attr.set_output_dims_mapping(
                        op.output_arg_names[0], [0] + [
                            -1
                            for i in range(
                                1, len(vars[op.output_arg_names[0]].shape))
                        ])
                    try:
                        changed = update_op_dims_mapping_by_elementwise_like_dist_impl(
                            dist_op)
                    except:
                        continue
                    self.assertTrue(changed)
                else:
                    changed = update_op_dims_mapping_by_default_dist_impl(
                        dist_op)
                    self.assertFalse(changed)

                    dist_op.dist_attr.set_output_dims_mapping(
                        op.output_arg_names[0], [0] + [
                            -1
                            for i in range(
                                1, len(vars[op.output_arg_names[0]].shape))
                        ])
                    try:
                        changed = update_op_dims_mapping_by_default_dist_impl(
                            dist_op)
                    except:
                        continue
                    self.assertTrue(changed)


if __name__ == "__main__":
    unittest.main()