Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
机器未来
Paddle
提交
46212b80
P
Paddle
项目概览
机器未来
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1
Issue
1
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
46212b80
编写于
12月 08, 2021
作者:
C
caozhou
提交者:
GitHub
12月 08, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add update func of auto search (#37867)
* add update func of auto search * update unitest
上级
6b48dfe9
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
318 addition
and
0 deletion
+318
-0
python/paddle/distributed/auto_parallel/utils.py
python/paddle/distributed/auto_parallel/utils.py
+136
-0
python/paddle/fluid/tests/unittests/CMakeLists.txt
python/paddle/fluid/tests/unittests/CMakeLists.txt
+3
-0
python/paddle/fluid/tests/unittests/test_auto_parallel_searcher.py
...ddle/fluid/tests/unittests/test_auto_parallel_searcher.py
+179
-0
未找到文件。
python/paddle/distributed/auto_parallel/utils.py
浏览文件 @
46212b80
...
...
@@ -1036,3 +1036,139 @@ def set_grad_var_shape(program, dist_context):
if
list
(
grad_var
.
shape
)
!=
ref_shape
:
grad_var
.
desc
.
set_shape
(
ref_shape
)
def
update_op_dims_mapping_by_default_dist_impl
(
dist_op
):
changed
=
False
op_dist_attr
=
dist_op
.
dist_attr
op_desc
=
dist_op
.
serial_op
.
desc
# The following statement will be replaced by a more elegent way
if
op_desc
.
type
()
==
"shape"
or
op_desc
.
type
()
==
"slice"
:
return
False
output_names
=
op_desc
.
output_names
()
xshape_arg_names
=
[]
if
"XShape"
in
output_names
:
xshape_arg_names
=
op_desc
.
output
(
"XShape"
)
batch_dim_mappings
=
[]
for
arg_name
in
op_desc
.
input_arg_names
():
serial_tensor
=
dist_op
.
get_serial_input
(
arg_name
)
if
serial_tensor
.
is_parameter
:
continue
dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
arg_name
)
if
len
(
dims_mapping
)
>
1
:
for
idx
,
mapping
in
enumerate
(
dims_mapping
[
1
:]):
assert
mapping
==
-
1
,
\
"{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."
\
.
format
(
op_desc
.
type
(),
idx
,
mapping
)
batch_dim_mappings
.
append
(
dims_mapping
[
0
])
for
arg_name
in
op_desc
.
output_arg_names
():
serial_tensor
=
dist_op
.
get_serial_output
(
arg_name
)
if
serial_tensor
.
is_parameter
:
continue
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
if
arg_name
not
in
xshape_arg_names
:
if
len
(
dims_mapping
)
>
1
:
for
idx
,
mapping
in
enumerate
(
dims_mapping
[
1
:]):
assert
mapping
==
-
1
,
\
"{} only the batch dimension (0-dim) can be sharded, but the dimension {} is sharded by {} part."
\
.
format
(
op_desc
.
type
(),
idx
,
mapping
)
batch_dim_mappings
.
append
(
dims_mapping
[
0
])
else
:
assert
dims_mapping
[
0
]
==
-
1
,
\
"{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension 0 is sharded by {} part."
\
.
format
(
op_desc
.
type
(),
mapping
)
if
len
(
dims_mapping
)
>
2
:
for
idx
,
mapping
in
enumerate
(
dims_mapping
[
2
:]):
assert
mapping
==
-
1
,
\
"{} only the batch dimension (1-dim) of XShape can be sharded, but the dimension {} is sharded by {} part."
\
.
format
(
op_desc
.
type
(),
idx
,
mapping
)
batch_dim_mappings
.
append
(
dims_mapping
[
1
])
compatible_dim_mapping
=
compute_compatible_dim_mapping
(
batch_dim_mappings
)
assert
compatible_dim_mapping
is
not
None
,
"There is no compatible dim mapping."
for
arg_name
in
op_desc
.
input_arg_names
():
serial_tensor
=
dist_op
.
get_serial_input
(
arg_name
)
if
serial_tensor
.
is_parameter
:
continue
dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
arg_name
)
if
compatible_dim_mapping
!=
dims_mapping
[
0
]:
dims_mapping
[
0
]
=
compatible_dim_mapping
changed
=
True
for
arg_name
in
op_desc
.
output_arg_names
():
serial_tensor
=
dist_op
.
get_serial_output
(
arg_name
)
if
serial_tensor
.
is_parameter
:
continue
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
if
arg_name
not
in
xshape_arg_names
:
if
compatible_dim_mapping
!=
dims_mapping
[
0
]:
dims_mapping
[
0
]
=
compatible_dim_mapping
changed
=
True
else
:
if
compatible_dim_mapping
!=
dims_mapping
[
1
]:
dims_mapping
[
1
]
=
compatible_dim_mapping
changed
=
True
return
changed
def
update_op_dims_mapping_by_elementwise_like_dist_impl
(
dist_op
):
changed
=
False
op_dist_attr
=
dist_op
.
dist_attr
op_desc
=
dist_op
.
serial_op
.
desc
input_arg_names
=
op_desc
.
input_arg_names
()
input_dims_mapping_dict
=
{}
input_dims_mapping_lens
=
{}
max_dims_mapping_len
=
-
1
for
arg_name
in
input_arg_names
:
dims_mapping
=
op_dist_attr
.
get_input_dims_mapping
(
arg_name
)
if
max_dims_mapping_len
<
len
(
dims_mapping
):
max_dims_mapping_len
=
len
(
dims_mapping
)
input_dims_mapping_dict
[
arg_name
]
=
dims_mapping
input_dims_mapping_lens
[
arg_name
]
=
len
(
dims_mapping
)
dims_mapping_list
=
[]
for
arg_name
in
input_arg_names
:
if
input_dims_mapping_lens
[
arg_name
]
<
max_dims_mapping_len
:
new_dims_mapping
=
[
-
1
for
_
in
range
(
max_dims_mapping_len
)]
for
i
in
range
(
input_dims_mapping_lens
[
arg_name
]):
new_idx
=
(
max_dims_mapping_len
-
input_dims_mapping_lens
[
arg_name
])
+
i
new_dims_mapping
[
new_idx
]
=
input_dims_mapping_dict
[
arg_name
][
i
]
dims_mapping_list
.
append
(
new_dims_mapping
)
else
:
dims_mapping_list
.
append
(
input_dims_mapping_dict
[
arg_name
])
output_arg_names
=
op_desc
.
output_arg_names
()
for
arg_name
in
output_arg_names
:
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
assert
len
(
dims_mapping
)
==
max_dims_mapping_len
dims_mapping_list
.
append
(
dims_mapping
)
compatible_dims_mapping
=
compute_compatible_dims_mapping
(
dims_mapping_list
)
assert
compatible_dims_mapping
is
not
None
,
"There is no compatible dim mapping."
for
arg_name
in
input_arg_names
:
if
input_dims_mapping_lens
[
arg_name
]
<
max_dims_mapping_len
:
new_dims_mapping
=
[
-
1
for
_
in
range
(
input_dims_mapping_lens
[
arg_name
])
]
for
i
in
range
(
input_dims_mapping_lens
[
arg_name
]):
new_idx
=
(
max_dims_mapping_len
-
input_dims_mapping_lens
[
arg_name
])
+
i
new_dims_mapping
[
i
]
=
compatible_dims_mapping
[
new_idx
]
if
new_dims_mapping
!=
input_dims_mapping_dict
[
arg_name
]:
op_dist_attr
.
set_input_dims_mapping
(
arg_name
,
new_dims_mapping
)
changed
=
True
else
:
if
compatible_dims_mapping
!=
input_dims_mapping_dict
[
arg_name
]:
op_dist_attr
.
set_input_dims_mapping
(
arg_name
,
compatible_dims_mapping
)
changed
=
True
for
arg_name
in
output_arg_names
:
dims_mapping
=
op_dist_attr
.
get_output_dims_mapping
(
arg_name
)
if
compatible_dims_mapping
!=
dims_mapping
:
op_dist_attr
.
set_output_dims_mapping
(
arg_name
,
compatible_dims_mapping
)
changed
=
True
return
changed
python/paddle/fluid/tests/unittests/CMakeLists.txt
浏览文件 @
46212b80
...
...
@@ -92,6 +92,7 @@ list(APPEND MIXED_DIST_TEST_OPS test_fleet_auto)
list
(
APPEND MIXED_DIST_TEST_OPS test_fleet_static_mp_layers
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_partitioner
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_partitioner_gpt
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_searcher
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_reshard
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_reshard_serial
)
list
(
APPEND MIXED_DIST_TEST_OPS test_auto_parallel_reshard_mppp
)
...
...
@@ -257,6 +258,7 @@ if ((NOT WITH_GPU) AND (NOT WITH_ROCM))
LIST
(
REMOVE_ITEM TEST_OPS test_parallel_margin_cross_entropy
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_partitioner_gpt
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_searcher
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_reshard
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_reshard_serial
)
LIST
(
REMOVE_ITEM TEST_OPS test_auto_parallel_reshard_mppp
)
...
...
@@ -643,6 +645,7 @@ if(WITH_DISTRIBUTE)
py_test_modules
(
test_fleet_lamb_meta_optimizer MODULES test_fleet_lamb_meta_optimizer ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_partitioner MODULES test_auto_parallel_partitioner ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_partitioner_gpt MODULES test_auto_parallel_partitioner_gpt ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_searcher MODULES test_auto_parallel_searcher ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_reshard MODULES test_auto_parallel_reshard ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_reshard_serial MODULES test_auto_parallel_reshard_serial ENVS
${
dist_ENVS
}
)
py_test_modules
(
test_auto_parallel_reshard_mppp MODULES test_auto_parallel_reshard_mppp ENVS
${
dist_ENVS
}
)
...
...
python/paddle/fluid/tests/unittests/test_auto_parallel_searcher.py
0 → 100644
浏览文件 @
46212b80
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
# import os
# import copy
# import json
import
unittest
import
paddle
import
paddle.nn
as
nn
import
paddle.static
as
static
import
paddle.nn.functional
as
F
import
paddle.utils
as
utils
# from paddle.distributed import fleet
import
paddle.distributed.auto_parallel
as
auto
# from paddle.distributed.auto_parallel.cluster import Cluster
# from paddle.distributed.auto_parallel.utils import SerialProgramInfo
# from paddle.distributed.auto_parallel.searcher import Checker, Enumerater
from
paddle.distributed.auto_parallel.dist_context
import
DistributedContext
# from paddle.distributed.auto_parallel.utils import get_all_distributed_main_program
from
paddle.distributed.auto_parallel.dist_attribute
import
TensorDistributedAttribute
from
paddle.distributed.auto_parallel.dist_attribute
import
OperatorDistributedAttribute
from
paddle.distributed.auto_parallel.utils
import
update_op_dims_mapping_by_default_dist_impl
from
paddle.distributed.auto_parallel.utils
import
update_op_dims_mapping_by_elementwise_like_dist_impl
paddle
.
enable_static
()
class
MLPLayer
(
nn
.
Layer
):
def
__init__
(
self
,
hidden_size
=
1024
,
intermediate_size
=
4
*
1024
,
initializer_range
=
0.02
):
super
(
MLPLayer
,
self
).
__init__
()
d_model
=
hidden_size
dim_feedforward
=
intermediate_size
weight_attr
=
paddle
.
ParamAttr
(
initializer
=
nn
.
initializer
.
Normal
(
mean
=
0.0
,
std
=
initializer_range
))
bias_attr
=
None
self
.
linear0
=
nn
.
Linear
(
d_model
,
dim_feedforward
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
linear1
=
nn
.
Linear
(
dim_feedforward
,
d_model
,
weight_attr
,
bias_attr
=
bias_attr
)
self
.
norm
=
nn
.
LayerNorm
(
d_model
,
epsilon
=
1e-5
)
def
forward
(
self
,
input
):
out
=
self
.
norm
(
input
)
out
=
self
.
linear0
(
out
)
out
=
F
.
gelu
(
out
,
approximate
=
True
)
out
=
self
.
linear1
(
out
)
out
=
paddle
.
unsqueeze
(
out
,
axis
=
0
)
out
=
paddle
.
reshape
(
out
,
[
4
,
1024
])
return
out
def
mlp_forward
(
train_program
,
start_program
):
with
static
.
program_guard
(
train_program
,
start_program
),
utils
.
unique_name
.
guard
():
batch_size
=
4
hidden_size
=
1024
sequence_len
=
512
input
=
static
.
data
(
name
=
"input"
,
shape
=
[
batch_size
,
hidden_size
],
dtype
=
'float32'
)
label
=
static
.
data
(
name
=
"label"
,
shape
=
[
batch_size
,
1
],
dtype
=
'float32'
)
loss_func
=
paddle
.
nn
.
CrossEntropyLoss
(
reduction
=
"none"
)
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
predict
=
mlp
(
input
)
error_cost
=
loss_func
(
predict
,
label
)
loss
=
paddle
.
mean
(
error_cost
)
return
loss
,
train_program
,
start_program
def
set_default_dist_attr
(
program
,
dist_context
,
process_mesh
):
ops
=
program
.
global_block
().
ops
vars
=
program
.
global_block
().
vars
for
op
in
ops
:
op_dist_attr
=
OperatorDistributedAttribute
()
op_dist_attr
.
process_mesh
=
process_mesh
for
var_name
in
op
.
input_arg_names
:
tensor_dist_attr
=
TensorDistributedAttribute
()
tensor_dist_attr
.
process_mesh
=
process_mesh
tensor_dist_attr
.
dims_mapping
=
[
-
1
for
i
in
vars
[
var_name
].
shape
]
dist_context
.
set_tensor_dist_attr_for_program
(
vars
[
var_name
],
tensor_dist_attr
)
op_dist_attr
.
set_input_dims_mapping
(
var_name
,
tensor_dist_attr
.
dims_mapping
)
for
var_name
in
op
.
output_arg_names
:
tensor_dist_attr
=
TensorDistributedAttribute
()
tensor_dist_attr
.
process_mesh
=
process_mesh
tensor_dist_attr
.
dims_mapping
=
[
-
1
for
i
in
vars
[
var_name
].
shape
]
dist_context
.
set_tensor_dist_attr_for_program
(
vars
[
var_name
],
tensor_dist_attr
)
op_dist_attr
.
set_output_dims_mapping
(
var_name
,
tensor_dist_attr
.
dims_mapping
)
dist_context
.
set_op_dist_attr_for_program
(
op
,
op_dist_attr
)
dist_context
.
add_process_mesh
(
process_mesh
)
class
TestMLPSearcher
(
unittest
.
TestCase
):
def
test_update
(
self
):
train_program
=
paddle
.
static
.
Program
()
startup_program
=
paddle
.
static
.
Program
()
_
,
train_program
,
startup_program
=
mlp_forward
(
train_program
,
startup_program
)
global_process_mesh
=
auto
.
ProcessMesh
(
mesh
=
[
0
,
1
])
dist_context
=
DistributedContext
()
set_default_dist_attr
(
train_program
,
dist_context
,
global_process_mesh
)
ops
=
train_program
.
global_block
().
ops
vars
=
train_program
.
global_block
().
vars
from
paddle.distributed.auto_parallel.operators.common
import
get_distributed_operator_impl_container
from
paddle.distributed.auto_parallel.completion
import
is_elementwise_like_op
from
paddle.distributed.auto_parallel.dist_op
import
DistributedOperator
for
op
in
ops
:
dist_op_impl_container
=
get_distributed_operator_impl_container
(
op
.
type
)
if
dist_op_impl_container
is
None
:
op_dist_attr
=
dist_context
.
get_op_dist_attr_for_program
(
op
)
dist_op
=
DistributedOperator
(
op
,
op_dist_attr
)
if
is_elementwise_like_op
(
op
.
type
):
changed
=
update_op_dims_mapping_by_elementwise_like_dist_impl
(
dist_op
)
self
.
assertFalse
(
changed
)
dist_op
.
dist_attr
.
set_output_dims_mapping
(
op
.
output_arg_names
[
0
],
[
0
]
+
[
-
1
for
i
in
range
(
1
,
len
(
vars
[
op
.
output_arg_names
[
0
]].
shape
))
])
try
:
changed
=
update_op_dims_mapping_by_elementwise_like_dist_impl
(
dist_op
)
except
:
continue
self
.
assertTrue
(
changed
)
else
:
changed
=
update_op_dims_mapping_by_default_dist_impl
(
dist_op
)
self
.
assertFalse
(
changed
)
dist_op
.
dist_attr
.
set_output_dims_mapping
(
op
.
output_arg_names
[
0
],
[
0
]
+
[
-
1
for
i
in
range
(
1
,
len
(
vars
[
op
.
output_arg_names
[
0
]].
shape
))
])
try
:
changed
=
update_op_dims_mapping_by_default_dist_impl
(
dist_op
)
except
:
continue
self
.
assertTrue
(
changed
)
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录