tensor_py.h 17.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
L
Luo Tao 已提交
16
#include <Python.h>
W
wopeizl 已提交
17 18
#include <algorithm>
#include <memory>
Q
qijun 已提交
19
#include <string>
C
chengduoZH 已提交
20 21
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
24 25
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/device_context.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28 29
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
30

W
wopeizl 已提交
31 32
namespace py = pybind11;

33
namespace paddle {
34
namespace pybind {
35

36
template <typename T>
37
T TensorGetElement(const framework::Tensor &self, size_t offset) {
Q
qingqing01 已提交
38 39
  PADDLE_ENFORCE_LT(offset, self.numel());
  T b = static_cast<T>(0);
40
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
41 42
    b = self.data<T>()[offset];
#ifdef PADDLE_WITH_CUDA
43
  } else {
Q
qingqing01 已提交
44 45 46 47 48
    const T *a = self.data<T>();
    auto p = boost::get<platform::CUDAPlace>(self.place());
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
#endif
49
  }
Q
qingqing01 已提交
50
  return b;
51 52 53
}

template <typename T>
54
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
Q
qingqing01 已提交
55 56
  PADDLE_ENFORCE_LT(offset, self->numel());
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
57
    self->mutable_data<T>(self->place())[offset] = elem;
Q
qingqing01 已提交
58 59 60 61 62 63 64
#ifdef PADDLE_WITH_CUDA
  } else {
    auto p = boost::get<platform::CUDAPlace>(self->place());
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
#endif
65
  }
66 67
}

68
template <typename T>
Q
qijun 已提交
69
void PyCPUTensorSetFromArray(
70 71 72 73
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
Q
qijun 已提交
74
  std::vector<int64_t> dims;
75
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
76
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
77
    dims.push_back(static_cast<int>(array.shape()[i]));
78 79
  }

80 81
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
82 83 84
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

85
template <>
C
chengduoZH 已提交
86 87
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
88
inline void PyCPUTensorSetFromArray(
89 90 91 92 93
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
94 95
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
96
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
97
    dims.push_back(static_cast<int>(array.shape()[i]));
98 99
  }

100 101
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
102 103 104
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}

W
wopeizl 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

void _getSliceinfo(const framework::Tensor &self, py::object obj,
                   const int64_t dim, int64_t *pstart, int64_t *pstop,
                   int64_t *pstep, int64_t *pslicelength) {
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
    output->mutable_data(boost::get<platform::CPUPlace>(place), self.type());
#ifdef PADDLE_WITH_CUDA
  } else {
    if (platform::is_cuda_pinned_place(place)) {
      output->mutable_data(boost::get<platform::CUDAPinnedPlace>(place),
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
      output->mutable_data(boost::get<platform::CUDAPlace>(place), self.type());
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
      PADDLE_THROW("dim size not exepected, current is %d", size);
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
      return _sliceAndConcat<bool>(self, obj, dim);
    default:
      PADDLE_THROW("Not support type %d", src_type);
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

352
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
353 354
template <typename T>
void PyCUDATensorSetFromArray(
355 356 357 358
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
Q
qijun 已提交
359
  std::vector<int64_t> dims;
Q
qijun 已提交
360
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
361
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
362
    dims.push_back(static_cast<int>(array.shape()[i]));
Q
qijun 已提交
363
  }
Q
qijun 已提交
364

365 366
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
Y
Yu Yang 已提交
367 368
  paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
                                  cudaMemcpyHostToDevice);
369
}
370 371

template <>
C
chengduoZH 已提交
372 373
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
374
inline void PyCUDATensorSetFromArray(
375 376 377 378 379
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
380 381
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
382
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
383
    dims.push_back(static_cast<int>(array.shape()[i]));
384 385
  }

386 387
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
Y
Yu Yang 已提交
388 389 390
  paddle::platform::GpuMemcpySync(dst, array.data(),
                                  sizeof(uint16_t) * array.size(),
                                  cudaMemcpyHostToDevice);
391
}
C
chengduoZH 已提交
392 393 394

template <typename T>
void PyCUDAPinnedTensorSetFromArray(
395 396 397
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
398 399 400
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
401
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
402 403 404
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

405 406
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
C
chengduoZH 已提交
407 408 409 410
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

template <>
C
chengduoZH 已提交
411 412
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
413
inline void PyCUDAPinnedTensorSetFromArray(
414 415 416 417
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
418 419 420
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
421
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
422 423 424
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

425 426
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
C
chengduoZH 已提交
427 428
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}
Q
qijun 已提交
429
#endif
430

431 432 433
namespace details {

template <typename T>
Z
Zeng Jinle 已提交
434 435 436 437 438 439 440 441
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
442 443 444 445 446 447 448 449 450 451 452 453 454
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
Z
Zeng Jinle 已提交
455 456 457 458 459 460 461 462 463 464
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
      PADDLE_ENFORCE(kIsValidDType,                                         \
                     "This type of tensor cannot be expose to Python");     \
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
  PADDLE_THROW("Unsupported data type %d", static_cast<int>(type));
}

}  // namespace details

inline py::array TensorToPyArray(const framework::Tensor &tensor) {
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
  const auto &tensor_dims = tensor.dims();
  auto tensor_dtype = tensor.type();
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = (size_t)tensor_dims[i];
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

  const void *tensor_buf_ptr = tensor.data<void>();

  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type());

  if (!is_gpu_tensor) {
    return py::array(py::buffer_info(
        const_cast<void *>(tensor_buf_ptr), sizeof_dtype, py_dtype_str,
        static_cast<size_t>(tensor.dims().size()), py_dims, py_strides));
  }

#ifdef PADDLE_WITH_CUDA
  py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
  PADDLE_ENFORCE(py_arr.writeable() && py_arr.owndata(),
                 "PyArray must be writable and own data, otherwise memory leak "
                 "or double free would occur");

  size_t copy_bytes = sizeof_dtype * numel;
  paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr,
                                  copy_bytes, cudaMemcpyDeviceToHost);
  return py_arr;
#else
  PADDLE_THROW("CUDAPlace is not supported when not compiled with CUDA");
#endif
}

515 516
}  // namespace pybind
}  // namespace paddle