tensor_py.h 18.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
L
Luo Tao 已提交
16
#include <Python.h>
W
wopeizl 已提交
17 18
#include <algorithm>
#include <memory>
Q
qijun 已提交
19
#include <string>
C
chengduoZH 已提交
20 21
#include <tuple>
#include <vector>
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
24 25
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yi Wang 已提交
26
#include "paddle/fluid/platform/device_context.h"
27
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
28 29
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
30

W
wopeizl 已提交
31 32
namespace py = pybind11;

33
namespace paddle {
34
namespace pybind {
35 36 37 38 39 40 41
namespace details {

template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
42
  pybind11::buffer_info operator()(const framework::Tensor &tensor) {
43
    PADDLE_THROW("This type of tensor cannot be expose to Python");
44
    return pybind11::buffer_info();
45 46 47 48 49 50
  }
};

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
  using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
51
  pybind11::buffer_info operator()(const framework::Tensor &tensor) {
Y
Yu Yang 已提交
52
    if (framework::DataTypeTrait<CUR_TYPE>::DataType == tensor.type()) {
53 54 55 56 57 58 59 60 61 62 63 64
      auto dim_vec = framework::vectorize(tensor.dims());
      std::vector<size_t> dims_outside;
      std::vector<size_t> strides;
      dims_outside.resize(dim_vec.size());
      strides.resize(dim_vec.size());

      size_t prod = 1;
      for (size_t i = dim_vec.size(); i != 0; --i) {
        dims_outside[i - 1] = (size_t)dim_vec[i - 1];
        strides[i - 1] = sizeof(CUR_TYPE) * prod;
        prod *= dims_outside[i - 1];
      }
Q
qijun 已提交
65
      framework::Tensor dst_tensor;
Y
Yu Yang 已提交
66 67
      bool is_gpu = paddle::platform::is_gpu_place(tensor.place());
      if (is_gpu) {
68 69 70
#ifdef PADDLE_WITH_CUDA
        auto *src_ptr = static_cast<const void *>(tensor.data<CUR_TYPE>());
        auto *dst_ptr = static_cast<void *>(dst_tensor.mutable_data<CUR_TYPE>(
S
sneaxiy 已提交
71
            tensor.dims(), platform::CPUPlace()));
D
dzhwinter 已提交
72

Y
Yu Yang 已提交
73 74 75
        paddle::platform::GpuMemcpySync(dst_ptr, src_ptr,
                                        sizeof(CUR_TYPE) * tensor.numel(),
                                        cudaMemcpyDeviceToHost);
76
#else
D
dzhwinter 已提交
77
        PADDLE_THROW("'CUDAPlace' is not supported in CPU only device.");
78
#endif
Y
Yu Yang 已提交
79
      } else if (paddle::platform::is_cpu_place(tensor.place())) {
Q
qijun 已提交
80 81
        dst_tensor = tensor;
      }
82

Y
Yu Yang 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
      std::string dtype = std::type_index(typeid(CUR_TYPE)) ==
                                  std::type_index(typeid(platform::float16))
                              ? std::string("e")  // np.dtype('e') == np.float16
                              : pybind11::format_descriptor<CUR_TYPE>::format();

      if (is_gpu) {
        // manually construct a py_buffer if is_gpu since gpu data is copied
        // into CPU.
        // TODO(yy): Is these following code memleak?
        Py_buffer *py_buffer =
            reinterpret_cast<Py_buffer *>(malloc(sizeof(Py_buffer)));
        py_buffer->format = strdup(dtype.c_str());
        py_buffer->itemsize = sizeof(CUR_TYPE);
        py_buffer->ndim = framework::arity(dst_tensor.dims());
        py_buffer->len = tensor.numel();
        py_buffer->strides = reinterpret_cast<Py_ssize_t *>(
            malloc(sizeof(Py_ssize_t) * strides.size()));
        for (size_t i = 0; i < strides.size(); ++i) {
          py_buffer->strides[i] = strides[i];
        }

        py_buffer->shape = reinterpret_cast<Py_ssize_t *>(
            malloc(sizeof(Py_ssize_t) * tensor.dims().size()));
Y
Yu Yang 已提交
106
        for (int i = 0; i < tensor.dims().size(); ++i) {
Y
Yu Yang 已提交
107 108 109 110 111 112 113 114 115 116 117
          py_buffer->shape[i] = tensor.dims()[i];
        }

        py_buffer->readonly = false;
        py_buffer->suboffsets = nullptr;
        py_buffer->obj = nullptr;
        py_buffer->buf =
            malloc(static_cast<size_t>(py_buffer->len * py_buffer->itemsize));
        memcpy(py_buffer->buf, dst_tensor.data<CUR_TYPE>(),
               static_cast<size_t>(py_buffer->len * py_buffer->itemsize));
        return pybind11::buffer_info(py_buffer, true);
118
      } else {
119
        return pybind11::buffer_info(
Y
Yu Yang 已提交
120
            dst_tensor.data<CUR_TYPE>(), sizeof(CUR_TYPE), dtype,
121
            (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides);
122
      }
123 124 125 126 127 128
    } else {
      constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
      return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
    }
  }
};
129

130
}  // namespace details
131

132
inline pybind11::buffer_info CastToPyBuffer(const framework::Tensor &tensor) {
133
  auto buffer_info =
134
      details::CastToPyBufferImpl<true, 0, float, int, double, int64_t, bool,
Q
qingqing01 已提交
135
                                  uint8_t, int8_t, platform::float16>()(tensor);
136 137 138
  return buffer_info;
}

139
template <typename T>
140
T TensorGetElement(const framework::Tensor &self, size_t offset) {
141 142 143 144
  if (platform::is_cpu_place(self.place())) {
    return self.data<T>()[offset];
  } else {
    std::shared_ptr<framework::Tensor> dst(new framework::Tensor);
F
fix  
fengjiayi 已提交
145
    framework::TensorCopySync(self, platform::CPUPlace(), dst.get());
146 147
    return dst->data<T>()[offset];
  }
148 149
}

Y
Yu Yang 已提交
150
// TODO(dzhwinter) : fix the redundant Tensor allocate and free
151
template <typename T>
152 153
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
  if (platform::is_gpu_place(self->place())) {
Y
Yu Yang 已提交
154 155 156 157
    framework::Tensor dst;
    framework::TensorCopySync(*self, platform::CPUPlace(), &dst);
    dst.mutable_data<T>(platform::CPUPlace())[offset] = elem;
    framework::TensorCopySync(dst, self->place(), self);
158
  } else if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
159
    self->mutable_data<T>(self->place())[offset] = elem;
160
  }
161 162
}

163
template <typename T>
Q
qijun 已提交
164
void PyCPUTensorSetFromArray(
165 166 167 168
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
Q
qijun 已提交
169
  std::vector<int64_t> dims;
170
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
171
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
172
    dims.push_back(static_cast<int>(array.shape()[i]));
173 174
  }

175 176
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
177 178 179
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

180
template <>
C
chengduoZH 已提交
181 182
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
183
inline void PyCPUTensorSetFromArray(
184 185 186 187 188
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CPUPlace place) {
189 190
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
191
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
192
    dims.push_back(static_cast<int>(array.shape()[i]));
193 194
  }

195 196
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
197 198 199
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}

W
wopeizl 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

void _getSliceinfo(const framework::Tensor &self, py::object obj,
                   const int64_t dim, int64_t *pstart, int64_t *pstop,
                   int64_t *pstep, int64_t *pslicelength) {
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
    output->mutable_data(boost::get<platform::CPUPlace>(place), self.type());
#ifdef PADDLE_WITH_CUDA
  } else {
    if (platform::is_cuda_pinned_place(place)) {
      output->mutable_data(boost::get<platform::CUDAPinnedPlace>(place),
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
      output->mutable_data(boost::get<platform::CUDAPlace>(place), self.type());
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
      PADDLE_THROW("dim size not exepected, current is %d", size);
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
      return _sliceAndConcat<bool>(self, obj, dim);
    default:
      PADDLE_THROW("Not support type %d", src_type);
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

447
#ifdef PADDLE_WITH_CUDA
Q
qijun 已提交
448 449
template <typename T>
void PyCUDATensorSetFromArray(
450 451 452 453
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
Q
qijun 已提交
454
  std::vector<int64_t> dims;
Q
qijun 已提交
455
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
456
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
457
    dims.push_back(static_cast<int>(array.shape()[i]));
Q
qijun 已提交
458
  }
Q
qijun 已提交
459

460 461
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
Y
Yu Yang 已提交
462 463
  paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(),
                                  cudaMemcpyHostToDevice);
464
}
465 466

template <>
C
chengduoZH 已提交
467 468
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
469
inline void PyCUDATensorSetFromArray(
470 471 472 473 474
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
    paddle::platform::CUDAPlace place) {
475 476
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
477
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
478
    dims.push_back(static_cast<int>(array.shape()[i]));
479 480
  }

481 482
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
Y
Yu Yang 已提交
483 484 485
  paddle::platform::GpuMemcpySync(dst, array.data(),
                                  sizeof(uint16_t) * array.size(),
                                  cudaMemcpyHostToDevice);
486
}
C
chengduoZH 已提交
487 488 489

template <typename T>
void PyCUDAPinnedTensorSetFromArray(
490 491 492
    framework::Tensor *self,
    pybind11::array_t<T, pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
493 494 495
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
496
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
497 498 499
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

500 501
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<T>(place);
C
chengduoZH 已提交
502 503 504 505
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

template <>
C
chengduoZH 已提交
506 507
// This following specialization maps uint16_t in the parameter type to
// platform::float16.
S
sneaxiy 已提交
508
inline void PyCUDAPinnedTensorSetFromArray(
509 510 511 512
    framework::Tensor *self,
    pybind11::array_t<uint16_t,
                      pybind11::array::c_style | pybind11::array::forcecast>
        array,
C
chengduoZH 已提交
513 514 515
    const paddle::platform::CUDAPinnedPlace &place) {
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
S
fix bug  
sneaxiy 已提交
516
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
C
chengduoZH 已提交
517 518 519
    dims.push_back(static_cast<int>(array.shape()[i]));
  }

520 521
  self->Resize(framework::make_ddim(dims));
  auto *dst = self->mutable_data<platform::float16>(place);
C
chengduoZH 已提交
522 523
  std::memcpy(dst, array.data(), sizeof(uint16_t) * array.size());
}
Q
qijun 已提交
524
#endif
525 526 527

}  // namespace pybind
}  // namespace paddle