layer_norm_op.h 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
P
Pei Yang 已提交
16

17
#include <algorithm>
P
Pei Yang 已提交
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
22
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yu Yang 已提交
23
#include "paddle/fluid/operators/math/blas.h"
24 25
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
26
#include "paddle/fluid/operators/jit/kernels.h"
27
#endif
Y
Yi Wang 已提交
28
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
29

C
chengduoZH 已提交
30 31 32
namespace paddle {
namespace operators {

X
Xin Pan 已提交
33 34 35 36 37 38 39 40 41 42 43 44
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
45
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
46 47 48 49 50 51 52 53 54 55 56
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
57 58 59
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
60 61 62 63 64 65 66
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
67
#endif
X
Xin Pan 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
91
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
92 93 94 95 96 97 98 99 100 101 102 103
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
104 105 106
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
107 108 109 110 111 112 113
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
114
#endif
X
Xin Pan 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
130 131 132 133 134 135 136 137 138
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
139
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

P
Pei Yang 已提交
157 158 159 160 161 162 163 164 165 166 167
#ifdef PADDLE_WITH_CUDA
template <typename T>
class LayerNormDirectCUDAFunctor {
 public:
  void operator()(cudaStream_t stream, const T* input,
                  std::vector<int> input_shape, const T* bias, const T* scale,
                  T* output, T* mean, T* variance, int begin_norm_axis,
                  float eps);
};
#endif

C
chengduoZH 已提交
168 169 170
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
171
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
172
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
173 174
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
175 176
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
177 178 179
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
180 181
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
182
    const auto x_dims = x.dims();
C
chengduoZH 已提交
183 184 185 186 187 188 189 190 191 192 193

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
194 195 196
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
197

198 199
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)
X
Xin Pan 已提交
200 201
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
202

C
chengduoZH 已提交
203
    // get mean
C
chengduoZH 已提交
204 205
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
206
    // get variance
C
chengduoZH 已提交
207
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
208 209
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
210

C
chengduoZH 已提交
211
    // get x_norm
C
chengduoZH 已提交
212
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
213
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
214
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
215 216
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
217 218 219

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
220
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
221 222 223
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
224
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
225
    }
226
#else
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
    PADDLE_ENFORCE_EQ(mean->numel(), left,
                      platform::errors::InvalidArgument(
                          "mean's length (%d) is not equal with expected (%d).",
                          mean->numel(), left));
    PADDLE_ENFORCE_EQ(var->numel(), left,
                      platform::errors::InvalidArgument(
                          "var's length (%d) is not equal with expected (%d).",
                          var->numel(), left));
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->numel(), right,
          platform::errors::InvalidArgument(
              "scale's length (%d) is not equal with expected (%d).",
              scale->numel(), right));
    }
    if (bias) {
      PADDLE_ENFORCE_EQ(
          bias->numel(), right,
          platform::errors::InvalidArgument(
              "bias's length (%d) is not equal with expected (%d).",
              bias->numel(), right));
    }
249

250 251 252
    auto ker =
        jit::KernelFuncs<jit::LayerNormTuple<T>, platform::CPUPlace>::Cache()
            .At(right);
253
    ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
254 255
        scale ? scale->data<T>() : nullptr, bias ? bias->data<T>() : nullptr,
        static_cast<int>(left), static_cast<const float>(epsilon), right);
256
#endif
C
chengduoZH 已提交
257
  }
C
chengduoZH 已提交
258 259 260 261 262
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
263
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
264 265
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
266 267 268
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
C
chengduoZH 已提交
269 270 271 272
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
273 274 275
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
276

X
Xin Pan 已提交
277
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
278 279 280 281 282 283
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
284 285 286
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
287 288 289 290 291 292 293

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

S
sneaxiy 已提交
294 295 296 297 298 299 300
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
C
chengduoZH 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
317
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
318 319 320
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
321 322
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
323 324 325 326

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
327
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
328
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
329 330 331 332 333 334 335 336 337 338 339

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
340
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
354
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
355
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
356
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
357 358

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
359
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
360
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
361
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
362 363
    }
  }
C
chengduoZH 已提交
364 365 366 367
};

}  // namespace operators
}  // namespace paddle