layer_norm_op.h 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
P
Pei Yang 已提交
16 17

#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/operators/elementwise/elementwise_op_function.cu.h"
W
Wu Yi 已提交
21
#include "paddle/fluid/operators/elementwise/elementwise_op_function.h"
Y
Yu Yang 已提交
22
#include "paddle/fluid/operators/math/blas.h"
23 24
#if !defined(PADDLE_WITH_CUDA) && !defined(_WIN32) && !defined(__APPLE__) && \
    !defined(__OSX__)
25
#include "paddle/fluid/operators/jit/kernels.h"
26
#endif
Y
Yi Wang 已提交
27
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
28

C
chengduoZH 已提交
29 30 31
namespace paddle {
namespace operators {

X
Xin Pan 已提交
32 33 34 35 36 37 38 39 40 41 42 43
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
44
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
45 46 47 48 49 50 51 52 53 54 55
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
56 57 58
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        false, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
59 60 61 62 63 64 65
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
66
#endif
X
Xin Pan 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
90
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
91 92 93 94 95 96 97 98 99 100 101 102
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
Y
Yu Yang 已提交
103 104 105
    math::GetBlas<platform::CUDADeviceContext, T>(context).GEMV(
        true, left_, right_, 1., input.data<T>(), divisor_.data<T>(), 0.,
        out->data<T>());
X
Xin Pan 已提交
106 107 108 109 110 111 112
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
113
#endif
X
Xin Pan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
129 130 131 132 133 134 135 136 137
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
138
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

P
Pei Yang 已提交
156 157 158 159 160 161 162 163 164 165 166
#ifdef PADDLE_WITH_CUDA
template <typename T>
class LayerNormDirectCUDAFunctor {
 public:
  void operator()(cudaStream_t stream, const T* input,
                  std::vector<int> input_shape, const T* bias, const T* scale,
                  T* output, T* mean, T* variance, int begin_norm_axis,
                  float eps);
};
#endif

C
chengduoZH 已提交
167 168 169
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
170
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
171
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
172 173
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
174 175
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
176 177 178
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
179 180
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
181
    const auto x_dims = x.dims();
C
chengduoZH 已提交
182 183 184 185 186 187 188 189 190 191 192

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
193 194 195
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
196

197 198
#if defined(PADDLE_WITH_CUDA) || defined(_WIN32) || defined(__APPLE__) || \
    defined(__OSX__)
X
Xin Pan 已提交
199 200
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
201

C
chengduoZH 已提交
202
    // get mean
C
chengduoZH 已提交
203 204
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
205
    // get variance
C
chengduoZH 已提交
206
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
207 208
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
209

C
chengduoZH 已提交
210
    // get x_norm
C
chengduoZH 已提交
211
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
212
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
213
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
214 215
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
216 217 218

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
219
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
220 221 222
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
223
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
224
    }
225
#else
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    PADDLE_ENFORCE_EQ(mean->numel(), left,
                      platform::errors::InvalidArgument(
                          "mean's length (%d) is not equal with expected (%d).",
                          mean->numel(), left));
    PADDLE_ENFORCE_EQ(var->numel(), left,
                      platform::errors::InvalidArgument(
                          "var's length (%d) is not equal with expected (%d).",
                          var->numel(), left));
    if (scale) {
      PADDLE_ENFORCE_EQ(
          scale->numel(), right,
          platform::errors::InvalidArgument(
              "scale's length (%d) is not equal with expected (%d).",
              scale->numel(), right));
    }
    if (bias) {
      PADDLE_ENFORCE_EQ(
          bias->numel(), right,
          platform::errors::InvalidArgument(
              "bias's length (%d) is not equal with expected (%d).",
              bias->numel(), right));
    }
248

249 250 251
    auto ker =
        jit::KernelFuncs<jit::LayerNormTuple<T>, platform::CPUPlace>::Cache()
            .At(right);
252
    ker(x.data<T>(), out.data<T>(), mean->data<T>(), var->data<T>(),
253 254
        scale ? scale->data<T>() : nullptr, bias ? bias->data<T>() : nullptr,
        static_cast<int>(left), static_cast<const float>(epsilon), right);
255
#endif
C
chengduoZH 已提交
256
  }
C
chengduoZH 已提交
257 258 259 260 261
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
262
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
263 264
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
265 266 267
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
C
chengduoZH 已提交
268 269 270 271
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
272 273 274
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
275

X
Xin Pan 已提交
276
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
277 278 279 280 281 282
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
283 284 285
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
286 287 288 289 290 291 292

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

S
sneaxiy 已提交
293 294 295 296 297 298 299
      temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
      // get x_norm
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
          ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, var, /*axis*/ 0,
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
C
chengduoZH 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
316
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
317 318 319
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
320 321
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
322 323 324 325

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
326
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
327
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
328 329 330 331 332 333 334 335 336 337 338

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
339
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
340 341 342 343 344 345 346 347 348 349 350 351 352

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
353
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
354
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
355
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
356 357

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
358
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
359
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
360
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
361 362
    }
  }
C
chengduoZH 已提交
363 364 365 366
};

}  // namespace operators
}  // namespace paddle