layer_norm_op.h 11.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
C
chengduoZH 已提交
18

Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/elementwise_op_function.h"
#include "paddle/fluid/operators/math/math_function.h"
C
chengduoZH 已提交
21

C
chengduoZH 已提交
22 23 24
namespace paddle {
namespace operators {

X
Xin Pan 已提交
25 26 27 28 29 30 31 32 33 34 35 36
// Wrap RowwiseMean and ColwiseMean.
// Reuse the cpu codes and replace the gpu codes with cublas_gemv, which is
// significantly faster. Unlike the RowwiseMean and ColwiseMean, the
// implementation only considers 2D.
template <typename DeviceContext, typename T>
struct RowwiseMean2D {
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
37
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
template <typename T>
class RowwiseMean2D<platform::CUDADeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({right_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0 / right);
  }
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    math::gemv<platform::CUDADeviceContext, T>(
        context, false, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
        0., out->data<T>());
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
59
#endif
X
Xin Pan 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82

template <typename T>
class RowwiseMean2D<platform::CPUDeviceContext, T> {
 public:
  RowwiseMean2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    row_mean_(context, input, out);
  }

 private:
  math::RowwiseMean<platform::CPUDeviceContext, T> row_mean_;
};

template <typename DeviceContext, typename T>
struct ColwiseSum2D {
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx);

  void operator()(const platform::DeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* vec);
};

X
Xin Pan 已提交
83
#ifdef PADDLE_WITH_CUDA
X
Xin Pan 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
template <typename T>
class ColwiseSum2D<platform::CUDADeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx)
      : left_(left), right_(right) {
    framework::DDim ones_dim({left_});
    divisor_.mutable_data<T>(ones_dim, dev_ctx.GetPlace());
    math::set_constant(dev_ctx, &divisor_, 1.0);
  }

  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    math::gemv<platform::CUDADeviceContext, T>(
        context, true, left_, right_, 1., input.data<T>(), divisor_.data<T>(),
        0., out->data<T>());
  }

 private:
  int left_;
  int right_;
  framework::Tensor divisor_;
};
X
Xin Pan 已提交
106
#endif
X
Xin Pan 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121

template <typename T>
class ColwiseSum2D<platform::CPUDeviceContext, T> {
 public:
  ColwiseSum2D(int left, int right, const platform::DeviceContext& dev_ctx) {}

  void operator()(const platform::CPUDeviceContext& context,
                  const framework::Tensor& input, framework::Tensor* out) {
    col_wise_(context, input, out);
  }

 private:
  math::ColwiseSum<platform::CPUDeviceContext, T> col_wise_;
};

C
chengduoZH 已提交
122 123 124 125 126 127 128 129 130
template <typename T>
struct SubAndSquareFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return (a - b) * (a - b); }
};

template <typename T>
struct DivAndSqrtFunctor {
  explicit DivAndSqrtFunctor(T epsilon) { epsilon_ = epsilon; }
  inline HOSTDEVICE T operator()(T a, T b) const {
C
chengduoZH 已提交
131
    return a / (sqrt(b + epsilon_));
C
chengduoZH 已提交
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
  }

 private:
  T epsilon_;
};

template <typename T>
struct MulFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a * b; }
};

template <typename T>
struct AddFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a + b; }
};

template <typename T>
struct SubFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const { return a - b; }
};

template <typename T>
struct MulInvVarFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    return a * std::sqrt(1.0 / b);
  }
};

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
164 165 166
template <typename DeviceContext, typename T>
class LayerNormKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
167
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
168
    const float epsilon = ctx.Attr<float>("epsilon");
X
Xin Pan 已提交
169 170
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
171 172
    auto x = *ctx.Input<Tensor>("X");

X
Xin Pan 已提交
173 174 175
    auto* y = ctx.Output<Tensor>("Y");
    auto* mean = ctx.Output<Tensor>("Mean");
    auto* var = ctx.Output<Tensor>("Variance");
C
chengduoZH 已提交
176 177
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

C
chengduoZH 已提交
178
    const auto x_dims = x.dims();
C
chengduoZH 已提交
179 180 181 182 183 184 185 186 187 188 189

    y->mutable_data<T>(ctx.GetPlace());
    mean->mutable_data<T>(ctx.GetPlace());
    var->mutable_data<T>(ctx.GetPlace());

    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    x.Resize(matrix_shape);
C
chengduoZH 已提交
190 191 192
    Tensor out;
    out.ShareDataWith(*y);
    out.Resize(matrix_shape);
C
chengduoZH 已提交
193

X
Xin Pan 已提交
194 195
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    RowwiseMean2D<DeviceContext, T> row_mean(left, right, ctx.device_context());
C
chengduoZH 已提交
196

C
chengduoZH 已提交
197
    // get mean
C
chengduoZH 已提交
198 199
    row_mean(dev_ctx, x, mean);

C
chengduoZH 已提交
200
    // get variance
C
chengduoZH 已提交
201
    ElementwiseComputeEx<SubAndSquareFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
202 203
        ctx, &x, mean, /*axis*/ 0, SubAndSquareFunctor<T>(), &out);
    row_mean(dev_ctx, out, var);
C
chengduoZH 已提交
204

C
chengduoZH 已提交
205
    // get x_norm
C
chengduoZH 已提交
206
    ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
207
        ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &out);
C
chengduoZH 已提交
208
    ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
209 210
        ctx, &out, var, /*axis*/ 0,
        DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &out);
C
chengduoZH 已提交
211 212 213

    if (scale) {
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
214
          ctx, &out, scale, /*axis*/ 1, MulFunctor<T>(), &out);
C
chengduoZH 已提交
215 216 217
    }
    if (bias) {
      ElementwiseComputeEx<AddFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
218
          ctx, &out, bias, /*axis*/ 1, AddFunctor<T>(), &out);
C
chengduoZH 已提交
219 220
    }
  }
C
chengduoZH 已提交
221 222 223 224 225
};

template <typename DeviceContext, typename T>
class LayerNormGradKernel : public framework::OpKernel<T> {
 public:
X
Xin Pan 已提交
226
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduoZH 已提交
227 228
    const float epsilon = ctx.Attr<float>("epsilon");
    auto x = *ctx.Input<Tensor>("X");
X
Xin Pan 已提交
229 230 231 232 233
    auto* y = ctx.Input<Tensor>("Y");
    auto* mean = ctx.Input<Tensor>("Mean");
    auto* var = ctx.Input<Tensor>("Variance");
    auto* scale = ctx.Input<Tensor>("Scale");
    auto* bias = ctx.Input<Tensor>("Bias");
C
chengduoZH 已提交
234 235 236 237
    auto d_y = *ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto begin_norm_axis = ctx.Attr<int>("begin_norm_axis");

    // init output
X
Xin Pan 已提交
238 239 240
    auto* d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto* d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));
C
chengduoZH 已提交
241

X
Xin Pan 已提交
242
    const auto& x_dims = x.dims();
C
chengduoZH 已提交
243 244 245 246 247 248
    auto matrix_dim = framework::flatten_to_2d(x_dims, begin_norm_axis);
    int left = static_cast<int>(matrix_dim[0]);
    int right = static_cast<int>(matrix_dim[1]);
    framework::DDim matrix_shape({left, right});

    d_y.Resize(matrix_shape);
X
Xin Pan 已提交
249 250 251
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    ColwiseSum2D<DeviceContext, T> colwise_sum(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
252 253 254 255 256 257 258

    Tensor temp;
    Tensor temp_norm;
    if (d_scale || d_x) {
      x.Resize(matrix_shape);
      temp.mutable_data<T>(matrix_shape, ctx.GetPlace());

C
chengduoZH 已提交
259 260 261 262 263 264 265 266 267 268 269 270
      if (!(bias && scale)) {
        temp_norm.ShareDataWith(*y);
        temp_norm.Resize(matrix_shape);
      } else {
        temp_norm.mutable_data<T>(matrix_shape, ctx.GetPlace());
        // get x_norm
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, &x, mean, /*axis*/ 0, SubFunctor<T>(), &temp_norm);
        ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
            ctx, &temp_norm, var, /*axis*/ 0,
            DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), &temp_norm);
      }
C
chengduoZH 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
    }

    if (d_bias) {
      d_bias->mutable_data<T>(ctx.GetPlace());
      colwise_sum(dev_ctx, d_y, d_bias);
    }
    if (d_scale) {
      d_scale->mutable_data<T>(ctx.GetPlace());
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
          ctx, &temp_norm, &d_y, /*axis*/ 0, MulFunctor<T>(), &temp);
      colwise_sum(dev_ctx, temp, d_scale);
    }

    if (d_x) {
      framework::DDim vec_shape({left});
      d_x->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
287
      auto dx_dim = d_x->dims();
C
chengduoZH 已提交
288 289 290
      Tensor temp_vec;
      temp_vec.mutable_data<T>(vec_shape, ctx.GetPlace());

X
Xin Pan 已提交
291 292
      RowwiseMean2D<DeviceContext, T> row_mean(left, right,
                                               ctx.device_context());
C
chengduoZH 已提交
293 294 295 296

      if (d_scale) {
        // dy_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
297
            ctx, &d_y, scale, /*axis*/ 1, MulFunctor<T>(), &temp);
Y
Yi Wang 已提交
298
        framework::TensorCopy(temp, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
299 300 301 302 303 304 305 306 307 308 309

        // dy_dmean_dx
        row_mean(dev_ctx, temp, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &temp, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      } else {
        // dy_dx
Y
Yi Wang 已提交
310
        framework::TensorCopy(d_y, ctx.GetPlace(), ctx.device_context(), d_x);
C
chengduoZH 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323

        // dy_dmean_dx
        row_mean(dev_ctx, d_y, &temp_vec);
        ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
            ctx, d_x, &temp_vec, /*axis*/ 0, SubFunctor<T>(), d_x);

        // dy_var_dx
        ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
            ctx, &d_y, &temp_norm, /*axis*/ 0, MulFunctor<T>(), &temp);
      }
      // dy_var_dx
      row_mean(dev_ctx, temp, &temp_vec);
      ElementwiseComputeEx<MulFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
324
          ctx, &temp_norm, &temp_vec, /*axis*/ 0, MulFunctor<T>(), &temp);
C
chengduoZH 已提交
325
      ElementwiseComputeEx<SubFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
326
          ctx, d_x, &temp, /*axis*/ 0, SubFunctor<T>(), d_x);
C
chengduoZH 已提交
327 328

      ElementwiseComputeEx<DivAndSqrtFunctor<T>, DeviceContext, T>(
C
chengduoZH 已提交
329
          ctx, d_x, var, /*axis*/ 0,
C
chengduoZH 已提交
330
          DivAndSqrtFunctor<T>(static_cast<T>(epsilon)), d_x);
C
chengduoZH 已提交
331
      d_x->Resize(dx_dim);
C
chengduoZH 已提交
332 333
    }
  }
C
chengduoZH 已提交
334 335 336 337
};

}  // namespace operators
}  // namespace paddle