softmax_mkldnn_op.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16
#include <numeric>
17 18
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23 24 25 26 27 28 29 30

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
31 32
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
33
using mkldnn::stream;
J
Jacek Czaja 已提交
34 35
using platform::to_void_cast;

36
template <typename T>
37 38 39
class SoftmaxMKLDNNHandler
    : public platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                      mkldnn::softmax_backward> {
J
Jacek Czaja 已提交
40
 public:
A
Adam 已提交
41
  SoftmaxMKLDNNHandler(const std::vector<int64_t>& dims,
42
                       const MKLDNNMemoryFormat fmt, const int& axis,
43
                       const platform::MKLDNNDeviceContext& dev_ctx,
44
                       platform::Place cpu_place, const std::string& uniq_name)
45 46 47
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
48
            platform::CreateKey(dims, uniq_name)) {
49 50 51
    auto md = mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);

    this->AcquireForwardPrimitiveDescriptor(prop_kind::forward_scoring, md,
52
                                            axis);
53
  }
J
Jacek Czaja 已提交
54

A
Adam 已提交
55
  SoftmaxMKLDNNHandler(const std::vector<int64_t>& dims,
56
                       const MKLDNNMemoryFormat fmt,
57
                       const MKLDNNMemoryFormat diff_fmt, const int& axis,
58
                       const platform::MKLDNNDeviceContext& dev_ctx,
59
                       platform::Place cpu_place, const std::string& uniq_name)
60 61 62
      : platform::MKLDNNHandlerT<T, mkldnn::softmax_forward,
                                 mkldnn::softmax_backward>(
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
63
            platform::CreateKey(dims, uniq_name)) {
64 65 66 67 68 69
    auto data_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
    auto diff_softmax_md =
        mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), diff_fmt);

    this->AcquireBackwardPrimitiveDescriptor(diff_softmax_md, data_softmax_md,
70
                                             axis);
71
  }
J
Jacek Czaja 已提交
72
};
73 74 75 76 77 78 79 80 81 82

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
83 84 85 86 87
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        "The shape of softmax's input and output must be identical.");

    auto dims = input->dims();  // input and output share the same shape
88
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
F
fengjiayi 已提交
89

A
Adam 已提交
90
    auto softmax_tz = paddle::framework::vectorize<int64_t>(dims);
91

92
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, input->format(), axis, dev_ctx,
H
hong 已提交
93
                                    ctx.GetPlace(), ctx.OutputName("Out"));
94

95 96
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
    auto softmax_dst_memory_p = handler.AcquireDstMemory(output);
A
Adam 已提交
97
    auto softmax_p = handler.AcquireForwardPrimitive();
98

A
Adam 已提交
99 100 101 102
    mkldnn::stream astream(dev_ctx.GetEngine());
    softmax_p->execute(astream, {{MKLDNN_ARG_SRC, *softmax_src_memory_p},
                                 {MKLDNN_ARG_DST, *softmax_dst_memory_p}});
    astream.wait();
J
Jacek Czaja 已提交
103 104 105

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
106
      T* output_data = output->mutable_data<T>(ctx.GetPlace());
A
Adam 已提交
107
      std::for_each(output_data, &output_data[output->numel()], [](T& val) {
108 109
        val = std::max(val, static_cast<T>(exp(-64)));
      });
J
Jacek Czaja 已提交
110
    }
111 112 113 114

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
115 116 117
  }
};

J
Jacek Czaja 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
131 132 133 134 135
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    auto dims = dout->dims();  // input and output share the same shape
136
    const int axis = CanonicalAxis(ctx.Attr<int>("axis"), dims.size());
F
fengjiayi 已提交
137

A
Adam 已提交
138
    auto softmax_tz = paddle::framework::vectorize<int64_t>(dims);
F
fengjiayi 已提交
139

140 141
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, output->format(),
                                    dout->format(), axis, dev_ctx,
H
hong 已提交
142
                                    ctx.GetPlace(), ctx.InputName("Out"));
143

144 145 146
    auto dst_memory_p = handler.AcquireDstMemory(output);
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
J
Jacek Czaja 已提交
147

A
Adam 已提交
148
    auto softmax_bwd_p = handler.AcquireBackwardPrimitive();
J
Jacek Czaja 已提交
149

A
Adam 已提交
150 151 152 153 154 155
    mkldnn::stream astream(dev_ctx.GetEngine());
    softmax_bwd_p->execute(astream,
                           {{MKLDNN_ARG_DST, *dst_memory_p},
                            {MKLDNN_ARG_DIFF_DST, *diff_dst_memory_p},
                            {MKLDNN_ARG_DIFF_SRC, *diff_src_memory_p}});
    astream.wait();
156 157 158

    dx->set_layout(framework::DataLayout::kMKLDNN);
    dx->set_format(dout->format());
J
Jacek Czaja 已提交
159 160
  }
};
161 162 163 164 165 166 167
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
168 169
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);