softmax_mkldnn_op.cc 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16 17
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
30 31
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
32
using mkldnn::stream;
J
Jacek Czaja 已提交
33 34 35 36
using platform::to_void_cast;

class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
 public:
37 38 39
  SoftmaxMKLDNNHandler(const platform::MKLDNNDeviceContext& dev_ctx,
                       mkldnn::engine engine, const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {}
J
Jacek Czaja 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53

  SoftmaxMKLDNNHandler(
      std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd,
      std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        softmax_pd_(softmax_pd),
        softmax_bwd_pd_(softmax_bwd_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

54 55 56
  std::shared_ptr<softmax_forward::primitive_desc>
  AcquireSoftmaxPrimitiveDescriptor(const softmax_forward::desc& softmax_desc,
                                    const mkldnn::engine& engine) {
57 58 59 60
    // Softmax PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_softmax_pd = key_common_ + "@softmax_pd";
61

62
    softmax_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
63
        dev_ctx_.GetBlob(key_softmax_pd));
64 65 66 67 68 69 70 71 72 73 74
    if (softmax_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      softmax_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
          dev_ctx_.GetBlob(key_softmax_pd));
      if (softmax_pd_ == nullptr) {
        softmax_pd_.reset(
            new softmax_forward::primitive_desc(softmax_desc, engine));
        dev_ctx_.SetBlob(key_softmax_pd, softmax_pd_);
      }
75 76 77 78 79
    }

    return softmax_pd_;
  }

J
Jacek Czaja 已提交
80 81 82 83 84 85 86 87 88 89
  std::shared_ptr<mkldnn::softmax_forward> AcquireSoftmax(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@softmax_p";

    auto softmax_p = std::static_pointer_cast<mkldnn::softmax_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_p == nullptr) {
      softmax_p = std::make_shared<mkldnn::softmax_forward>(
90
          *softmax_pd_, *(static_cast<mkldnn::memory*>(src_memory_p.get())),
J
Jacek Czaja 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
          *(static_cast<mkldnn::memory*>(dst_memory_p.get())));
      dev_ctx_.SetBlob(prim_key, softmax_p);
    }

    return softmax_p;
  }

  std::shared_ptr<mkldnn::softmax_backward> AcquireSoftmaxBackward(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@softmax_bwd_p";
    auto softmax_bwd_p = std::static_pointer_cast<mkldnn::softmax_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_bwd_p == nullptr) {
      softmax_bwd_p = std::make_shared<mkldnn::softmax_backward>(
107 108
          *softmax_bwd_pd_, *dst_memory_p, *diff_dst_memory_p,
          *diff_src_memory_p);
J
Jacek Czaja 已提交
109 110 111 112 113 114 115 116 117 118
      dev_ctx_.SetBlob(prim_key, softmax_bwd_p);
    }

    return softmax_bwd_p;
  }

 private:
  std::shared_ptr<mkldnn::softmax_forward::primitive_desc> softmax_pd_;
  std::shared_ptr<mkldnn::softmax_backward::primitive_desc> softmax_bwd_pd_;
};
119 120 121 122 123 124 125 126 127 128 129

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        "The shape of softmax's input and output must be identical.");

    // make sure 'output' holds memory, which will be shared by
    // 'flattened_output' later.
    output->mutable_data<T>(ctx.GetPlace());

    // flatten input and output to 2-D matrixs
    auto dims = input->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_input;
    framework::Tensor flattened_output;
    flattened_input.ShareDataWith(*input).Resize(flattened_dims);
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);

    const T* input_data = flattened_input.data<T>();
    T* output_data = flattened_output.mutable_data<T>(ctx.GetPlace());

    std::vector<int> src_tz = paddle::framework::vectorize2int(flattened_dims);
    std::vector<int> dst_tz = src_tz;
151 152
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
153
    // Generate keys for storing/retriving primitives for this operator
J
Jacek Czaja 已提交
154 155 156
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Output("Out"));

157
    SoftmaxMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);
J
Jacek Czaja 已提交
158 159 160 161 162 163 164
    // Currently only NC data format is supported
    auto softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_desc = softmax_forward::desc(prop_kind::forward_scoring,
                                              softmax_md, 1 /*dim: C*/);

165 166 167
    auto softmax_pd =
        handler.AcquireSoftmaxPrimitiveDescriptor(softmax_desc, mkldnn_engine);

J
Jacek Czaja 已提交
168 169 170 171 172 173
    auto softmax_src_memory_p =
        handler.AcquireSrcMemory(softmax_md, to_void_cast<T>(input_data));
    auto softmax_dst_memory_p =
        handler.AcquireDstMemory(softmax_md, to_void_cast<T>(output_data));
    auto softmax_p =
        handler.AcquireSoftmax(softmax_dst_memory_p, softmax_src_memory_p);
174 175 176

    std::vector<primitive> pipeline{
        *(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
177
    stream(stream::kind::eager).submit(pipeline).wait();
J
Jacek Czaja 已提交
178 179 180 181

    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
      T threshold = exp(-64);
182
      for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
J
Jacek Czaja 已提交
183 184 185 186
        output_data[i] =
            output_data[i] < threshold ? threshold : output_data[i];
      }
    }
187 188 189
  }
};

J
Jacek Czaja 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    auto mkldnn_engine = dev_ctx.GetEngine();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    // make sure 'dx' holds memory, which will be shared by 'flattened_dx'
    // later.
    dx->template mutable_data<T>(ctx.GetPlace());

    auto dims = dout->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);
    framework::Tensor flattened_output;
    framework::Tensor flattened_dout;
    framework::Tensor flattened_dx;
    flattened_output.ShareDataWith(*output).Resize(flattened_dims);
    flattened_dout.ShareDataWith(*dout).Resize(flattened_dims);
    flattened_dx.ShareDataWith(*dx).Resize(flattened_dims);

    const T* dst_data = flattened_output.data<T>();
    const T* diff_dst_ptr = flattened_dout.template data<T>();
    T* diff_src_ptr = flattened_dx.template mutable_data<T>(ctx.GetPlace());

    std::vector<int> dst_tz = paddle::framework::vectorize2int(flattened_dims);
J
Jacek Czaja 已提交
226
    std::vector<int> src_tz(dst_tz);
F
fengjiayi 已提交
227

J
Jacek Czaja 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
    // Currently only supports NC data format
    // retrieve eltwise primitive desc from device context
    const std::string key =
        platform::MKLDNNHandler::GetHash(softmax_tz, ctx.op().Input("Out"));
    const std::string key_softmax_pd = key + "@softmax_pd";

    auto softmax_pd =
        std::static_pointer_cast<mkldnn::softmax_forward::primitive_desc>(
            dev_ctx.GetBlob(key_softmax_pd));
    PADDLE_ENFORCE(softmax_pd != nullptr,
                   "Fail to find softmax_pd in device context");

    // TODO(jczaja): Add layouts support when there is a need to do so
    // Two dimensional softmax does support NC format
    auto data_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    auto diff_softmax_md = MKLDNNMemDesc(
        {softmax_tz}, platform::MKLDNNGetDataType<T>(), memory::format::nc);
    // Normalization is made after innermost dimension eg. C out of NC
    auto softmax_bwd_desc =
        softmax_backward::desc(diff_softmax_md, data_softmax_md, 1 /* dim: C*/);
    auto softmax_bwd_pd =
        std::make_shared<mkldnn::softmax_backward::primitive_desc>(
            softmax_bwd_desc, mkldnn_engine, *softmax_pd);

    SoftmaxMKLDNNHandler handler(softmax_pd, softmax_bwd_pd, dev_ctx,
                                 mkldnn_engine, key);
    auto dst_memory_p =
        handler.AcquireDstMemory(data_softmax_md, to_void_cast<T>(dst_data));
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(
        diff_softmax_md, to_void_cast<T>(diff_dst_ptr));
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(
        diff_softmax_md, to_void_cast<T>(diff_src_ptr));

    // Get primitve from device context
    auto softmax_bwd_p = handler.AcquireSoftmaxBackward(
        dst_memory_p, diff_dst_memory_p, diff_src_memory_p);

    std::vector<primitive> pipeline{*softmax_bwd_p};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};
272 273 274 275 276 277 278
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
279 280
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);