softmax_mkldnn_op.cc 12.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <iostream>
16 17
#include "mkldnn.hpp"
#include "paddle/fluid/operators/softmax_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/mkldnn_reuse.h"
19 20 21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNMemDesc;

using mkldnn::memory;  // Note: paddle has also "memory" namespace
using mkldnn::primitive;
using mkldnn::prop_kind;
F
fengjiayi 已提交
30 31
using mkldnn::softmax_backward;
using mkldnn::softmax_forward;
32
using mkldnn::stream;
J
Jacek Czaja 已提交
33 34
using platform::to_void_cast;

35
template <typename T>
J
Jacek Czaja 已提交
36 37
class SoftmaxMKLDNNHandler : public platform::MKLDNNHandler {
 public:
38
  SoftmaxMKLDNNHandler(const std::vector<int>& dims,
39
                       const MKLDNNMemoryFormat fmt,
40
                       const platform::MKLDNNDeviceContext& dev_ctx,
41 42 43 44 45 46 47 48
                       platform::Place cpu_place, const std::string& uniq_name)
      : platform::MKLDNNHandler(dev_ctx, dev_ctx.GetEngine(),
                                platform::GetHash(dims, uniq_name)),
        place_(cpu_place),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
    this->AcquireSoftmaxPrimitiveDescriptor(dims, fmt);
  }
J
Jacek Czaja 已提交
49

50
  SoftmaxMKLDNNHandler(const std::vector<int>& dims,
51 52
                       const MKLDNNMemoryFormat fmt,
                       const MKLDNNMemoryFormat diff_fmt,
53
                       const platform::MKLDNNDeviceContext& dev_ctx,
54 55 56 57 58 59
                       platform::Place cpu_place, const std::string& uniq_name)
      : platform::MKLDNNHandler(dev_ctx, dev_ctx.GetEngine(),
                                platform::GetHash(dims, uniq_name)),
        place_(cpu_place),
        fwd_pd_(nullptr),
        bwd_pd_(nullptr) {
J
Jacek Czaja 已提交
60 61
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
62
    // Key_common will allow to access FWD_PD from cache
63 64
    this->AcquireSoftmaxPrimitiveDescriptor(dims, fmt);
    this->AcquireSoftmaxBackwardPrimitiveDescriptor(dims, fmt, diff_fmt);
J
Jacek Czaja 已提交
65 66
  }

67 68
  // TODO(jczaja): Once fwd_pd_ are moved to MKLDNNHandler then this function
  // should be moved as well eg. SoftmaxMKLDNNHandler -> MKLDNNHandler<softmax_>
69 70 71 72 73
  std::shared_ptr<mkldnn::memory> AcquireSrcMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(fwd_pd_->src_primitive_desc(),
                                            to_void_cast<T>(input_data),
                                            "@src_mem_p");
74
  }
75

76 77 78 79 80 81
  // TODO(jczaja): Move to MKLDNNHandler as common code
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(framework::Tensor* output) {
    T* ptr = output->mutable_data<T>(place_,
                                     fwd_pd_->dst_primitive_desc().get_size());
    return this->AcquireMemoryFromPrimitive(fwd_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
82 83
  }

84 85 86 87 88
  std::shared_ptr<mkldnn::memory> AcquireDstMemory(const Tensor* output) {
    const T* output_data = output->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->dst_primitive_desc(),
                                            to_void_cast<T>(output_data),
                                            "@bwd-dst_mem_p");
89 90
  }

91 92 93 94 95
  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemory(const Tensor* diffdst) {
    const T* ptr = diffdst->data<T>();
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_dst_primitive_desc(),
                                            to_void_cast<T>(ptr),
                                            "@diff_dst_mem_p");
96
  }
97

98 99 100 101 102 103
  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemory(
      framework::Tensor* diffsrc) {
    T* ptr = diffsrc->mutable_data<T>(
        place_, bwd_pd_->diff_src_primitive_desc().get_size());
    return this->AcquireMemoryFromPrimitive(bwd_pd_->diff_src_primitive_desc(),
                                            ptr, "@diff_src_mem_p");
104 105
  }

J
Jacek Czaja 已提交
106 107 108 109 110 111 112 113 114 115
  std::shared_ptr<mkldnn::softmax_forward> AcquireSoftmax(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> src_memory_p) {
    /*Generate key*/
    auto prim_key = key_ + "@softmax_p";

    auto softmax_p = std::static_pointer_cast<mkldnn::softmax_forward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_p == nullptr) {
      softmax_p = std::make_shared<mkldnn::softmax_forward>(
116
          *fwd_pd_, *(static_cast<mkldnn::memory*>(src_memory_p.get())),
J
Jacek Czaja 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
          *(static_cast<mkldnn::memory*>(dst_memory_p.get())));
      dev_ctx_.SetBlob(prim_key, softmax_p);
    }

    return softmax_p;
  }

  std::shared_ptr<mkldnn::softmax_backward> AcquireSoftmaxBackward(
      std::shared_ptr<mkldnn::memory> dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@softmax_bwd_p";
    auto softmax_bwd_p = std::static_pointer_cast<mkldnn::softmax_backward>(
        dev_ctx_.GetBlob(prim_key));
    if (softmax_bwd_p == nullptr) {
      softmax_bwd_p = std::make_shared<mkldnn::softmax_backward>(
133
          *bwd_pd_, *dst_memory_p, *diff_dst_memory_p, *diff_src_memory_p);
J
Jacek Czaja 已提交
134 135 136 137 138 139
      dev_ctx_.SetBlob(prim_key, softmax_bwd_p);
    }

    return softmax_bwd_p;
  }

140
 protected:
141 142
  void AcquireSoftmaxPrimitiveDescriptor(const std::vector<int>& dims,
                                         const mkldnn::memory::format fmt) {
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
    // Softmax PD has to be passed to Grad op that
    // may be executed by diffrent thread, hence
    // for that one we use key that does not contain TID
    const std::string key_softmax_pd = key_common_ + "@softmax_pd";

    fwd_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
        dev_ctx_.GetBlob(key_softmax_pd));
    if (fwd_pd_ == nullptr) {
      static std::mutex acquire_barrier;
      std::lock_guard<std::mutex> block_threads_until_finish_this_job(
          acquire_barrier);
      fwd_pd_ = std::static_pointer_cast<softmax_forward::primitive_desc>(
          dev_ctx_.GetBlob(key_softmax_pd));
      if (fwd_pd_ == nullptr) {
        // TODO(jczaja): Make it working along chosen axis and for
        // forward_training
        // Normalization is made after innermost dimension eg. C out of NC
        auto md =
161
            mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
162 163 164 165 166 167 168 169 170
        auto softmax_desc =
            softmax_forward::desc(prop_kind::forward_scoring, md, 1 /*dim: C*/);
        fwd_pd_.reset(
            new softmax_forward::primitive_desc(softmax_desc, engine_));
        dev_ctx_.SetBlob(key_softmax_pd, fwd_pd_);
      }
    }
  }

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  void AcquireSoftmaxBackwardPrimitiveDescriptor(
      const std::vector<int>& dims, const mkldnn::memory::format fmt,
      const mkldnn::memory::format diff_fmt) {
    // Fwd_PD_ has to exists when to create BWD_PD_
    PADDLE_ENFORCE_NOT_NULL(fwd_pd_);
    const std::string key_bwd_pd = key_ + "@softmax_bwd_pd";
    bwd_pd_ =
        std::static_pointer_cast<mkldnn::softmax_backward::primitive_desc>(
            dev_ctx_.GetBlob(key_bwd_pd));
    if (bwd_pd_ == nullptr) {
      auto data_softmax_md =
          mkldnn::memory::desc(dims, platform::MKLDNNGetDataType<T>(), fmt);
      auto diff_softmax_md = mkldnn::memory::desc(
          dims, platform::MKLDNNGetDataType<T>(), diff_fmt);
      // TODO(jczaja): Add support for other axes
      auto backward_desc = softmax_backward::desc(
          diff_softmax_md, data_softmax_md, 1 /* dim: C*/);
      bwd_pd_.reset(new mkldnn::softmax_backward::primitive_desc(
          backward_desc, engine_, *fwd_pd_));
      dev_ctx_.SetBlob(key_bwd_pd, bwd_pd_);
    }
  }

J
Jacek Czaja 已提交
194
 private:
195
  platform::Place place_;
196
  std::shared_ptr<mkldnn::softmax_forward::primitive_desc> fwd_pd_;
197
  std::shared_ptr<mkldnn::softmax_backward::primitive_desc> bwd_pd_;
J
Jacek Czaja 已提交
198
};
199 200 201 202 203 204 205 206 207 208

template <typename T>
class SoftmaxMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* input = ctx.Input<Tensor>("X");
    Tensor* output = ctx.Output<Tensor>("Out");
F
fengjiayi 已提交
209 210 211 212 213 214 215 216
    PADDLE_ENFORCE_EQ(
        input->dims(), output->dims(),
        "The shape of softmax's input and output must be identical.");

    // flatten input and output to 2-D matrixs
    auto dims = input->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);

217 218
    auto src_tz = paddle::framework::vectorize<int>(flattened_dims);
    auto dst_tz = src_tz;
219 220
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};
221
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, MKLDNNMemoryFormat::nc, dev_ctx,
222
                                    ctx.GetPlace(), ctx.op().Output("Out"));
223
    // Currently only NC data format is supported
224 225
    auto softmax_src_memory_p = handler.AcquireSrcMemory(input);
    auto softmax_dst_memory_p = handler.AcquireDstMemory(output);
J
Jacek Czaja 已提交
226 227
    auto softmax_p =
        handler.AcquireSoftmax(softmax_dst_memory_p, softmax_src_memory_p);
228 229 230

    std::vector<primitive> pipeline{
        *(static_cast<softmax_forward::primitive*>(softmax_p.get()))};
231
    stream(stream::kind::eager).submit(pipeline).wait();
J
Jacek Czaja 已提交
232

233
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
J
Jacek Czaja 已提交
234 235 236
    const bool is_test = ctx.Attr<bool>("is_test");
    if (!is_test) {
      T threshold = exp(-64);
237
      for (int i = 0; i < dst_tz[0] * dst_tz[1]; ++i) {
J
Jacek Czaja 已提交
238 239 240 241
        output_data[i] =
            output_data[i] < threshold ? threshold : output_data[i];
      }
    }
242 243 244 245

    output->set_layout(framework::DataLayout::kMKLDNN);
    // Softmax output format is the same as input one
    output->set_format(input->format());
246 247 248
  }
};

J
Jacek Czaja 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261
template <typename T>
class SoftmaxMKLDNNGradKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const Tensor* output = ctx.Input<Tensor>("Out");
    auto* dout = ctx.template Input<Tensor>(framework::GradVarName("Out"));
    auto* dx =
        ctx.template Output<framework::Tensor>(framework::GradVarName("X"));

F
fengjiayi 已提交
262 263 264 265 266 267 268
    PADDLE_ENFORCE_EQ(
        dout->dims(), dx->dims(),
        "The shape of softmax_grad's input and output must be identical.");

    auto dims = dout->dims();  // input and output share the same shape
    auto flattened_dims = framework::flatten_to_2d(dims, dims.size() - 1);

269 270
    std::vector<int> dst_tz = paddle::framework::vectorize<int>(flattened_dims);
    std::vector<int> src_tz(dst_tz);
F
fengjiayi 已提交
271

J
Jacek Czaja 已提交
272 273 274 275 276 277
    // Same memory descriptor to be used for input and output
    memory::dims softmax_tz = {src_tz[0], src_tz[1]};

    // TODO(jczaja): Add layouts support when there is a need to do so
    // Two dimensional softmax does support NC format
    // Normalization is made after innermost dimension eg. C out of NC
278 279
    SoftmaxMKLDNNHandler<T> handler(softmax_tz, MKLDNNMemoryFormat::nc,
                                    MKLDNNMemoryFormat::nc, dev_ctx,
280
                                    ctx.GetPlace(), ctx.op().Input("Out"));
281

282 283 284
    auto dst_memory_p = handler.AcquireDstMemory(output);
    auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout);
    auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx);
J
Jacek Czaja 已提交
285 286 287 288 289 290 291 292 293

    // Get primitve from device context
    auto softmax_bwd_p = handler.AcquireSoftmaxBackward(
        dst_memory_p, diff_dst_memory_p, diff_src_memory_p);

    std::vector<primitive> pipeline{*softmax_bwd_p};
    stream(stream::kind::eager).submit(pipeline).wait();
  }
};
294 295 296 297 298 299 300
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(softmax, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNKernel<float>);
J
Jacek Czaja 已提交
301 302
REGISTER_OP_KERNEL(softmax_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::SoftmaxMKLDNNGradKernel<float>);