jit_kernel_exp.cc 19.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {

#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif

namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
43 44 45
  explicit VExpKernelImpl(int d) : VExpKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
46 47 48 49 50 51
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
52 53 54 55 56
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VExpKernelImpl<float, isa, block>::Compute(const float* x, float* y) \
      const {                                                               \
    platform::dynload::vsExp(this->num_, x, y);                             \
T
tensor-tang 已提交
57 58
  }

T
tensor-tang 已提交
59 60 61 62 63
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VExpKernelImpl<double, isa, block>::Compute(const double* x, double* y) \
      const {                                                                  \
    platform::dynload::vdExp(this->num_, x, y);                                \
T
tensor-tang 已提交
64 65 66 67 68 69 70
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

T
tensor-tang 已提交
71 72 73 74 75 76
#define INTRI8_FLOAT(isa)                                                  \
  template <>                                                              \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                              \
    __m256 tmp = _mm256_loadu_ps(x);                                       \
    _mm256_storeu_ps(y, detail::Exp(tmp));                                 \
T
tensor-tang 已提交
77 78
  }

T
tensor-tang 已提交
79 80 81 82 83 84 85 86 87 88
#define INTRI16_FLOAT(isa)                                                  \
  template <>                                                               \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp0 = _mm256_loadu_ps(x);                                       \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                   \
    tmp0 = detail::Exp(tmp0);                                               \
    tmp1 = detail::Exp(tmp1);                                               \
    _mm256_storeu_ps(y, tmp0);                                              \
    _mm256_storeu_ps(y + 8, tmp1);                                          \
T
tensor-tang 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

REGISTER_JITKERNEL(vexp, VExpKernel);

T
tensor-tang 已提交
112 113 114 115 116
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
T
tensor-tang 已提交
117
    this->num_ = d;
T
tensor-tang 已提交
118 119
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
T
tensor-tang 已提交
120
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
121 122
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
123
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
124 125 126
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
T
tensor-tang 已提交
127
    vexp_->Compute(y, y);
T
tensor-tang 已提交
128
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
129 130 131 132 133 134 135 136
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

137 138 139 140 141 142 143 144
#define INTRI_SIGMOID(tmp, min, max)              \
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
  tmp = detail::Exp(tmp);                         \
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

T
tensor-tang 已提交
145 146 147 148 149 150 151 152 153
#define INTRI8_FLOAT(isa)                                                      \
  template <>                                                                  \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                                  \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                        \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                        \
    __m256 tmp = _mm256_loadu_ps(x);                                           \
    INTRI_SIGMOID(tmp, min, max);                                              \
    _mm256_storeu_ps(y, tmp);                                                  \
154 155
  }

T
tensor-tang 已提交
156 157 158 159 160 161 162 163 164 165 166 167
#define INTRI16_FLOAT(isa)                                              \
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                               \
    INTRI_SIGMOID(tmp0, min, max);                                      \
    INTRI_SIGMOID(tmp1, min, max);                                      \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + 8, tmp1);                                      \
168 169
  }

T
tensor-tang 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
#define INTRI_GT8LT16_FLOAT(isa)                                             \
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d)        \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->end_ = AVX_FLOAT_BLOCK;                                            \
    this->rest_ = d - this->end_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,     \
                                                         float* y) const {   \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    __m256 tmp = _mm256_loadu_ps(x);                                         \
    INTRI_SIGMOID(tmp, min, max);                                            \
    _mm256_storeu_ps(y, tmp);                                                \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
198 199
  }

T
tensor-tang 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d)           \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                       \
    this->end_ = d - this->rest_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x,        \
                                                      float* y) const {      \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      INTRI_SIGMOID(tmp, min, max);                                          \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
230 231 232 233 234 235 236 237 238 239 240
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
T
tensor-tang 已提交
241 242
// INTRI_GT8LT16_FLOAT(jit::avx2);
// INTRI_GT16_FLOAT(jit::avx2);
243 244 245 246
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
T
tensor-tang 已提交
247 248
// INTRI_GT8LT16_FLOAT(jit::avx512f);
// INTRI_GT16_FLOAT(jit::avx512f);
249 250 251 252 253 254
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
T
tensor-tang 已提交
255
#undef INTRI_VSIGMOID
256

T
tensor-tang 已提交
257
REGISTER_JITKERNEL(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
258

T
tensor-tang 已提交
259 260 261 262 263
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
264
    this->num_ = d;
T
tensor-tang 已提交
265 266 267 268
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
269
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
270
    vscal_->Compute(static_cast<T>(2), x, y);
T
tensor-tang 已提交
271
    vsigmoid_->Compute(y, y);
T
tensor-tang 已提交
272 273
    vscal_->Compute(static_cast<T>(2), y);
    vaddbias_->Compute(static_cast<T>(-1), y, y);
T
tensor-tang 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

#define INTRI_VTANH(tmp)                                   \
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
  tmp = detail::Exp(tmp);                                  \
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

T
tensor-tang 已提交
290 291 292 293 294 295 296
#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    INTRI_VTANH(tmp);                                                       \
    _mm256_storeu_ps(y, tmp);                                               \
T
tensor-tang 已提交
297 298
  }

T
tensor-tang 已提交
299 300 301 302 303 304 305 306 307 308
#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    INTRI_VTANH(tmp0);                                                       \
    INTRI_VTANH(tmp1);                                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
T
tensor-tang 已提交
309 310
  }

T
tensor-tang 已提交
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
#define INTRI_GT8LT16_FLOAT(isa)                                              \
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,         \
                                                      float* y) const {       \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
    INTRI_VTANH(tmp);                                                         \
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
T
tensor-tang 已提交
333
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
334
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
335 336
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
337 338
  }

T
tensor-tang 已提交
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#define INTRI_GT16_FLOAT(isa)                                                 \
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                  \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                        \
    this->end_ = d - this->rest_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y)  \
      const {                                                                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                   \
      __m256 tmp = _mm256_loadu_ps(x + i);                                    \
      INTRI_VTANH(tmp);                                                       \
      _mm256_storeu_ps(y + i, tmp);                                           \
    }                                                                         \
    x += this->end_;                                                          \
    y += this->end_;                                                          \
T
tensor-tang 已提交
363
    vscal_->Compute(2.f, x, y);                                               \
T
tensor-tang 已提交
364
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
365 366
    vscal_->Compute(2.f, y);                                                  \
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

T
tensor-tang 已提交
392
REGISTER_JITKERNEL(vtanh, VTanhKernel);
T
tensor-tang 已提交
393

T
tensor-tang 已提交
394
#undef JITKERNEL_NEW_ACT_IMPL
395

T
tensor-tang 已提交
396 397 398 399
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle