jit_kernel_exp.cc 18.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {

#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif

namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
43
  void Compute(const int n, const T* x, T* y) const override {
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53
    for (int i = 0; i < n; ++i) {
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)                                                  \
  template <>                                                                  \
  void VExpKernelImpl<float, isa, block>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
54
                                                  float* y) const {            \
T
tensor-tang 已提交
55 56 57
    platform::dynload::vsExp(n, x, y);                                         \
  }

T
tensor-tang 已提交
58 59 60 61 62
#define MKL_DOUBLE(isa, block)                         \
  template <>                                          \
  void VExpKernelImpl<double, isa, block>::Compute(    \
      const int n, const double* x, double* y) const { \
    platform::dynload::vdExp(n, x, y);                 \
T
tensor-tang 已提交
63 64 65 66 67 68 69 70 71 72
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

#define INTRI8_FLOAT(isa)                                                     \
  template <>                                                                 \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
73
                                                 float* y) const {            \
T
tensor-tang 已提交
74 75 76 77 78 79 80
    __m256 tmp = _mm256_loadu_ps(x);                                          \
    _mm256_storeu_ps(y, detail::Exp(tmp));                                    \
  }

#define INTRI16_FLOAT(isa)                                                     \
  template <>                                                                  \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
81
                                                  float* y) const {            \
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    __m256 tmp0 = _mm256_loadu_ps(x);                                          \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                      \
    tmp0 = detail::Exp(tmp0);                                                  \
    tmp1 = detail::Exp(tmp1);                                                  \
    _mm256_storeu_ps(y, tmp0);                                                 \
    _mm256_storeu_ps(y + 8, tmp1);                                             \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

REGISTER_JITKERNEL(vexp, VExpKernel);

T
tensor-tang 已提交
111 112 113 114 115
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
T
tensor-tang 已提交
116
    this->num_ = d;
T
tensor-tang 已提交
117 118
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
T
tensor-tang 已提交
119
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
120 121
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
122
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
123 124 125
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
T
tensor-tang 已提交
126 127
    vexp_->Compute(this->num_, y, y);
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
128 129 130 131 132 133 134 135
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

136 137 138 139 140 141 142 143
#define INTRI_SIGMOID(tmp, min, max)              \
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
  tmp = detail::Exp(tmp);                         \
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

T
tensor-tang 已提交
144 145 146 147 148 149 150 151 152
#define INTRI8_FLOAT(isa)                                                      \
  template <>                                                                  \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                                  \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                        \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                        \
    __m256 tmp = _mm256_loadu_ps(x);                                           \
    INTRI_SIGMOID(tmp, min, max);                                              \
    _mm256_storeu_ps(y, tmp);                                                  \
153 154
  }

T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164 165 166
#define INTRI16_FLOAT(isa)                                              \
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                               \
    INTRI_SIGMOID(tmp0, min, max);                                      \
    INTRI_SIGMOID(tmp1, min, max);                                      \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + 8, tmp1);                                      \
167 168
  }

T
tensor-tang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
#define INTRI_GT8LT16_FLOAT(isa)                                           \
  template <>                                                              \
  VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d)      \
      : VSigmoidKernel<float>() {                                          \
    this->num_ = d;                                                        \
    this->end_ = AVX_FLOAT_BLOCK;                                          \
    this->rest_ = d - this->end_;                                          \
    vexp_ = KernelPool::Instance().template Get<VExpKernel<float>>(d);     \
  }                                                                        \
  template <>                                                              \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                         float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                    \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                    \
    __m256 tmp = _mm256_loadu_ps(x);                                       \
    INTRI_SIGMOID(tmp, min, max);                                          \
    _mm256_storeu_ps(y, tmp);                                              \
    const float min_ = SIGMOID_THRESHOLD_MIN;                              \
    const float max_ = SIGMOID_THRESHOLD_MAX;                              \
    for (int i = this->end_; i < this->num_; ++i) {                        \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);         \
      y[i] = 0.f - y[i];                                                   \
    }                                                                      \
    vexp_->Compute(this->rest_, y + this->end_, y + this->end_);           \
    for (int i = this->end_; i < this->num_; ++i) {                        \
      y[i] = 1.f / (1.f + y[i]);                                           \
    }                                                                      \
196 197
  }

T
tensor-tang 已提交
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
#define INTRI_GT16_FLOAT(isa)                                           \
  template <>                                                           \
  VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d)      \
      : VSigmoidKernel<float>() {                                       \
    this->num_ = d;                                                     \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                  \
    this->end_ = d - this->rest_;                                       \
    vexp_ = KernelPool::Instance().template Get<VExpKernel<float>>(d);  \
  }                                                                     \
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {             \
      __m256 tmp = _mm256_loadu_ps(x + i);                              \
      INTRI_SIGMOID(tmp, min, max);                                     \
      _mm256_storeu_ps(y + i, tmp);                                     \
    }                                                                   \
    const float min_ = SIGMOID_THRESHOLD_MIN;                           \
    const float max_ = SIGMOID_THRESHOLD_MAX;                           \
    for (int i = this->end_; i < this->num_; ++i) {                     \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);      \
      y[i] = 0.f - y[i];                                                \
    }                                                                   \
    vexp_->Compute(this->rest_, y + this->end_, y + this->end_);        \
    for (int i = this->end_; i < this->num_; ++i) {                     \
      y[i] = 1.f / (1.f + y[i]);                                        \
    }                                                                   \
227 228 229 230 231 232 233 234 235 236 237
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
T
tensor-tang 已提交
238 239
// INTRI_GT8LT16_FLOAT(jit::avx2);
// INTRI_GT16_FLOAT(jit::avx2);
240 241 242 243
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
T
tensor-tang 已提交
244 245
// INTRI_GT8LT16_FLOAT(jit::avx512f);
// INTRI_GT16_FLOAT(jit::avx512f);
246 247 248 249 250 251
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
T
tensor-tang 已提交
252
#undef INTRI_VSIGMOID
253

T
tensor-tang 已提交
254 255 256 257 258 259 260
#define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \
  p = std::dynamic_pointer_cast<ker<dtype>>(       \
      std::make_shared<ker##Impl<dtype, isa, k>>(d))

REGISTER_JITKERNEL_ARGS(vsigmoid, VSigmoidKernel, JITKERNEL_DECLARE,
                        JITKERNEL_KEY, JITKERNEL_NEW_ACT_IMPL);

T
tensor-tang 已提交
261 262 263 264 265
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
266
    this->num_ = d;
T
tensor-tang 已提交
267 268 269 270
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
271 272 273 274 275
  void Compute(const T* x, T* y) const override {
    vscal_->Compute(this->num_, static_cast<T>(2), x, y);
    vsigmoid_->Compute(y, y);
    vscal_->Compute(this->num_, static_cast<T>(2), y);
    vaddbias_->Compute(this->num_, static_cast<T>(-1), y, y);
T
tensor-tang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

#define INTRI_VTANH(tmp)                                   \
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
  tmp = detail::Exp(tmp);                                  \
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

T
tensor-tang 已提交
292 293 294 295 296 297 298
#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    INTRI_VTANH(tmp);                                                       \
    _mm256_storeu_ps(y, tmp);                                               \
T
tensor-tang 已提交
299 300
  }

T
tensor-tang 已提交
301 302 303 304 305 306 307 308 309 310
#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    INTRI_VTANH(tmp0);                                                       \
    INTRI_VTANH(tmp1);                                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
T
tensor-tang 已提交
311 312
  }

T
tensor-tang 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
#define INTRI_GT8LT16_FLOAT(isa)                                              \
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,         \
                                                      float* y) const {       \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
    INTRI_VTANH(tmp);                                                         \
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
    vscal_->Compute(this->rest_, 2.f, x, y);                                  \
    vsigmoid_->Compute(y, y);                                                 \
    vscal_->Compute(this->rest_, 2.f, y);                                     \
    vaddbias_->Compute(this->rest_, -1.f, y, y);                              \
T
tensor-tang 已提交
339 340
  }

T
tensor-tang 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
#define INTRI_GT16_FLOAT(isa)                                                 \
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                  \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                        \
    this->end_ = d - this->rest_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y)  \
      const {                                                                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                   \
      __m256 tmp = _mm256_loadu_ps(x + i);                                    \
      INTRI_VTANH(tmp);                                                       \
      _mm256_storeu_ps(y + i, tmp);                                           \
    }                                                                         \
    x += this->end_;                                                          \
    y += this->end_;                                                          \
    vscal_->Compute(this->rest_, 2.f, x, y);                                  \
    vsigmoid_->Compute(y, y);                                                 \
    vscal_->Compute(this->rest_, 2.f, y);                                     \
    vaddbias_->Compute(this->rest_, -1.f, y, y);                              \
T
tensor-tang 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

REGISTER_JITKERNEL_ARGS(vtanh, VTanhKernel, JITKERNEL_DECLARE, JITKERNEL_KEY,
                        JITKERNEL_NEW_ACT_IMPL);

T
tensor-tang 已提交
397
#undef JITKERNEL_NEW_ACT_IMPL
398

T
tensor-tang 已提交
399 400 401 402
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle