jit_kernel_exp.cc 9.9 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {

#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
}  // namespace detail
#endif

namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
43
  void Compute(const int n, const T* x, T* y) const override {
T
tensor-tang 已提交
44 45 46 47 48 49 50 51 52 53
    for (int i = 0; i < n; ++i) {
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)                                                  \
  template <>                                                                  \
  void VExpKernelImpl<float, isa, block>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
54
                                                  float* y) const {            \
T
tensor-tang 已提交
55 56 57
    platform::dynload::vsExp(n, x, y);                                         \
  }

T
tensor-tang 已提交
58 59 60 61 62
#define MKL_DOUBLE(isa, block)                         \
  template <>                                          \
  void VExpKernelImpl<double, isa, block>::Compute(    \
      const int n, const double* x, double* y) const { \
    platform::dynload::vdExp(n, x, y);                 \
T
tensor-tang 已提交
63 64 65 66 67 68 69 70 71 72
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

#define INTRI8_FLOAT(isa)                                                     \
  template <>                                                                 \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
73
                                                 float* y) const {            \
T
tensor-tang 已提交
74 75 76 77 78 79 80
    __m256 tmp = _mm256_loadu_ps(x);                                          \
    _mm256_storeu_ps(y, detail::Exp(tmp));                                    \
  }

#define INTRI16_FLOAT(isa)                                                     \
  template <>                                                                  \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const int n, const float* x, \
T
tensor-tang 已提交
81
                                                  float* y) const {            \
T
tensor-tang 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
    __m256 tmp0 = _mm256_loadu_ps(x);                                          \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                      \
    tmp0 = detail::Exp(tmp0);                                                  \
    tmp1 = detail::Exp(tmp1);                                                  \
    _mm256_storeu_ps(y, tmp0);                                                 \
    _mm256_storeu_ps(y + 8, tmp1);                                             \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

REGISTER_JITKERNEL(vexp, VExpKernel);

T
tensor-tang 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
  void Compute(const int n, const T* x, T* y) const override {
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
    for (int i = 0; i < n; ++i) {
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
    vexp_->Compute(n, y, y);
    for (int i = 0; i < n; ++i) {
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
#define INTRI_SIGMOID(tmp, min, max)              \
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
  tmp = detail::Exp(tmp);                         \
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(   \
      const int n, const float* x, float* y) const {    \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
    __m256 tmp = _mm256_loadu_ps(x);                    \
    INTRI_SIGMOID(tmp, min, max);                       \
    _mm256_storeu_ps(y, tmp);                           \
  }

#define INTRI16_FLOAT(isa)                              \
  template <>                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(  \
      const int n, const float* x, float* y) const {    \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
    __m256 tmp0 = _mm256_loadu_ps(x);                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);               \
    INTRI_SIGMOID(tmp0, min, max);                      \
    INTRI_SIGMOID(tmp1, min, max);                      \
    _mm256_storeu_ps(y, tmp0);                          \
    _mm256_storeu_ps(y + 8, tmp1);                      \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                   \
  template <>                                                      \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(          \
      const int n, const float* x, float* y) const {               \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);            \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);            \
    __m256 tmp = _mm256_loadu_ps(x);                               \
    INTRI_SIGMOID(tmp, min, max);                                  \
    _mm256_storeu_ps(y, tmp);                                      \
    const float min_ = SIGMOID_THRESHOLD_MIN;                      \
    const float max_ = SIGMOID_THRESHOLD_MAX;                      \
    for (int i = AVX_FLOAT_BLOCK; i < n; ++i) {                    \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
      y[i] = 0.f - y[i];                                           \
    }                                                              \
    vexp_->Compute(n - AVX_FLOAT_BLOCK, y + AVX_FLOAT_BLOCK,       \
                   y + AVX_FLOAT_BLOCK);                           \
    for (int i = AVX_FLOAT_BLOCK; i < n; ++i) {                    \
      y[i] = 1.f / (1.f + y[i]);                                   \
    }                                                              \
  }

#define INTRI_GT16_FLOAT(isa)                                      \
  template <>                                                      \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(             \
      const int n, const float* x, float* y) const {               \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);            \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);            \
    const int rest = n % AVX_FLOAT_BLOCK;                          \
    const int end = n - rest;                                      \
    for (int i = 0; i < end; i += AVX_FLOAT_BLOCK) {               \
      __m256 tmp = _mm256_loadu_ps(x + i);                         \
      INTRI_SIGMOID(tmp, min, max);                                \
      _mm256_storeu_ps(y + i, tmp);                                \
    }                                                              \
    const float min_ = SIGMOID_THRESHOLD_MIN;                      \
    const float max_ = SIGMOID_THRESHOLD_MAX;                      \
    for (int i = end; i < n; ++i) {                                \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
      y[i] = 0.f - y[i];                                           \
    }                                                              \
    vexp_->Compute(rest, y + end, y + end);                        \
    for (int i = end; i < n; ++i) {                                \
      y[i] = 1.f / (1.f + y[i]);                                   \
    }                                                              \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
T
tensor-tang 已提交
224 225
// INTRI_GT8LT16_FLOAT(jit::avx2);
// INTRI_GT16_FLOAT(jit::avx2);
226 227 228 229
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
T
tensor-tang 已提交
230 231
// INTRI_GT8LT16_FLOAT(jit::avx512f);
// INTRI_GT16_FLOAT(jit::avx512f);
232 233 234 235 236 237 238
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
239 240 241 242 243 244 245 246
#define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \
  p = std::dynamic_pointer_cast<ker<dtype>>(       \
      std::make_shared<ker##Impl<dtype, isa, k>>(d))

REGISTER_JITKERNEL_ARGS(vsigmoid, VSigmoidKernel, JITKERNEL_DECLARE,
                        JITKERNEL_KEY, JITKERNEL_NEW_ACT_IMPL);

#undef JITKERNEL_NEW_ACT_IMPL
247

T
tensor-tang 已提交
248 249 250 251
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle