jit_kernel_blas.cc 18.7 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
18 19
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
20 21 22 23
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/math/jit_code.h"
#endif

T
tensor-tang 已提交
24 25 26 27 28 29 30 31 32 33 34 35
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
36
namespace jit = platform::jit;
T
tensor-tang 已提交
37

38 39 40 41
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
42
  }
43
}
T
tensor-tang 已提交
44

45 46 47 48 49 50 51 52 53 54 55 56
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
57 58
#endif

59
/* VMUL JitKernel */
60 61 62 63 64
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
  static inline std::string name(int d) {
    PADDLE_THROW("DType should be either float or double");
T
tensor-tang 已提交
65
  }
66 67 68 69
  static inline bool useJIT(int d) { return false; }
  static inline bool useMKL(int d) { return false; }

  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
T
tensor-tang 已提交
70
#ifdef PADDLE_WITH_XBYAK
71
    if (useJIT(d)) {
72 73 74
      // roughly estimate the size of code
      size_t sz = 96 + d / AVX_FLOAT_BLOCK * 4 * 8;
      jitcode_.reset(new gen::VMulJitCode(d, sz > 4096 ? sz : 4096));
75 76 77 78
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
T
tensor-tang 已提交
79
#endif
80 81 82 83 84
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
85
#endif
86 87 88
    this->Compute = VMulRefer<T>;
  }

T
tensor-tang 已提交
89 90
#ifdef PADDLE_WITH_XBYAK

91
 private:
92
  std::unique_ptr<gen::VMulJitCode> jitcode_{nullptr};
T
tensor-tang 已提交
93
#endif
94 95
};

T
tensor-tang 已提交
96
#ifdef PADDLE_WITH_XBYAK
97 98
template <>
bool VMulKernelImpl<float>::useJIT(int d) {
99
  return gen::VMulJitCode::init(d);
100
}
T
tensor-tang 已提交
101
#endif
102

T
tensor-tang 已提交
103
#ifdef PADDLE_WITH_MKLML
104 105 106 107 108 109 110 111 112
template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}
T
tensor-tang 已提交
113
#endif
114 115

REGISTER_JITKERNEL(vmul, VMulKernel);
T
tensor-tang 已提交
116

T
tensor-tang 已提交
117
/* VADD JitKernel */
T
tensor-tang 已提交
118
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
119 120
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
121 122 123
  explicit VAddKernelImpl(int d) : VAddKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
124 125
      z[i] = x[i] + y[i];
    }
T
tensor-tang 已提交
126
  }
T
tensor-tang 已提交
127
};
T
tensor-tang 已提交
128

129
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
130 131 132 133 134
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VAddKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsAdd(this->num_, x, y, z);      \
T
tensor-tang 已提交
135 136
  }

T
tensor-tang 已提交
137 138 139 140 141
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VAddKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdAdd(this->num_, x, y, z);         \
T
tensor-tang 已提交
142 143
  }

T
tensor-tang 已提交
144 145
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
146 147
#endif

T
tensor-tang 已提交
148 149 150 151 152 153 154 155 156
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_add_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
157
  }
T
tensor-tang 已提交
158
#ifdef __AVX__
T
tensor-tang 已提交
159
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
160 161
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
162
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
163 164
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
165
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
166
#endif
T
tensor-tang 已提交
167
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
168

T
tensor-tang 已提交
169 170 171
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
172

T
tensor-tang 已提交
173 174 175 176
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
177 178 179
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
180 181 182
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
183 184
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
185 186 187 188 189 190
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
191 192 193 194 195
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
196 197
  }

T
tensor-tang 已提交
198 199 200 201 202
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
203 204
  }

T
tensor-tang 已提交
205 206
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
207 208
#endif

T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
218
  }
T
tensor-tang 已提交
219 220 221 222 223 224 225 226 227
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
228 229 230
  }

#ifdef __AVX__
T
tensor-tang 已提交
231 232
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
233 234
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
235 236
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
237 238
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
239 240
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
241 242 243
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
244 245 246 247
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
248

249 250 251 252
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
253 254 255
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
256 257 258 259 260
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
261 262 263 264 265 266 267
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
268 269
  }

T
tensor-tang 已提交
270 271 272 273 274 275 276 277 278 279
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

395 396 397 398 399
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
400 401 402 403 404 405 406 407
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
/* VAddRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
      z[i] = x[i] + y[i];
      z[i] = z[i] > 0 ? z[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ8>::Compute(   \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx = _mm256_loadu_ps(x);                   \
    __m256 tmpy = _mm256_loadu_ps(y);                   \
    tmpy = _mm256_add_ps(tmpx, tmpy);                   \
    tmpy = _mm256_max_ps(tmpy, _mm256_setzero_ps());    \
    _mm256_storeu_ps(z, tmpy);                          \
  }

#define INTRI16_FLOAT(isa)                              \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ16>::Compute(  \
      const float* x, const float* y, float* z) const { \
    __m256 zeros = _mm256_setzero_ps();                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                   \
    __m256 tmp1 = _mm256_loadu_ps(y);                   \
    tmp0 = _mm256_add_ps(tmp0, tmp1);                   \
    tmp0 = _mm256_max_ps(tmp0, zeros);                  \
    tmp1 = _mm256_loadu_ps(x + 8);                      \
    __m256 tmp2 = _mm256_loadu_ps(y + 8);               \
    tmp1 = _mm256_add_ps(tmp1, tmp2);                   \
    tmp1 = _mm256_max_ps(tmp1, zeros);                  \
    _mm256_storeu_ps(z, tmp0);                          \
    _mm256_storeu_ps(z + 8, tmp1);                      \
  }

#define INTRI_COMMON_FLOAT(isa, block)                             \
  template <>                                                      \
  VAddReluKernelImpl<float, isa, block>::VAddReluKernelImpl(int d) \
      : VAddReluKernel<float>() {                                  \
    this->num_ = d;                                                \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                          \
    this->rest_ = d - this->end_;                                  \
  }                                                                \
  template <>                                                      \
  void VAddReluKernelImpl<float, isa, block>::Compute(             \
      const float* x, const float* y, float* z) const {            \
    __m256 zeros = _mm256_setzero_ps();                            \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {        \
      __m256 tmpx = _mm256_loadu_ps(x + i);                        \
      __m256 tmpy = _mm256_loadu_ps(y + i);                        \
      tmpy = _mm256_add_ps(tmpx, tmpy);                            \
      tmpy = _mm256_max_ps(tmpy, zeros);                           \
      _mm256_storeu_ps(z + i, tmpy);                               \
    }                                                              \
    for (int i = this->end_; i < this->num_; ++i) {                \
      z[i] = x[i] + y[i];                                          \
      z[i] = z[i] > 0 ? z[i] : 0;                                  \
    }                                                              \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_COMMON_FLOAT(jit::avx, kGT16);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_COMMON_FLOAT(jit::avx2, kGT16);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_COMMON_FLOAT(jit::avx512f, kGT16);
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_COMMON_FLOAT

495 496 497 498 499 500
REGISTER_JITKERNEL_DEPRECATED(vadd, VAddKernel);
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
501 502 503 504 505

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle
新手
引导
客服 返回
顶部