jit_kernel_blas.cc 14.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

namespace jit = platform::jit;

T
tensor-tang 已提交
33
/* VMUL JitKernel */
T
tensor-tang 已提交
34
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
35 36
class VMulKernelImpl : public VMulKernel<T> {
 public:
T
tensor-tang 已提交
37 38 39
  explicit VMulKernelImpl(int d) : VMulKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
40 41
      z[i] = x[i] * y[i];
    }
T
tensor-tang 已提交
42
  }
T
tensor-tang 已提交
43
};
T
tensor-tang 已提交
44

T
tensor-tang 已提交
45
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
46 47 48 49 50
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VMulKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsMul(this->num_, x, y, z);      \
T
tensor-tang 已提交
51 52
  }

T
tensor-tang 已提交
53 54 55 56 57
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VMulKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdMul(this->num_, x, y, z);         \
T
tensor-tang 已提交
58 59
  }

T
tensor-tang 已提交
60 61
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
62 63
#endif

T
tensor-tang 已提交
64 65 66 67 68 69 70 71 72
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VMulKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_mul_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
73 74
  }

T
tensor-tang 已提交
75 76
// avx > for > mkl
#ifdef __AVX__
T
tensor-tang 已提交
77
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
78 79
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
80
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
81 82
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
83
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
84
#endif
T
tensor-tang 已提交
85
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
86 87 88
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
89

T
tensor-tang 已提交
90
/* VADD JitKernel */
T
tensor-tang 已提交
91
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
92 93
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
94 95 96
  explicit VAddKernelImpl(int d) : VAddKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
97 98
      z[i] = x[i] + y[i];
    }
T
tensor-tang 已提交
99
  }
T
tensor-tang 已提交
100
};
T
tensor-tang 已提交
101

T
tensor-tang 已提交
102
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
103 104 105 106 107
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VAddKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsAdd(this->num_, x, y, z);      \
T
tensor-tang 已提交
108 109
  }

T
tensor-tang 已提交
110 111 112 113 114
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VAddKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdAdd(this->num_, x, y, z);         \
T
tensor-tang 已提交
115 116
  }

T
tensor-tang 已提交
117 118
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
119 120
#endif

T
tensor-tang 已提交
121 122 123 124 125 126 127 128 129
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_add_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
130
  }
T
tensor-tang 已提交
131
#ifdef __AVX__
T
tensor-tang 已提交
132
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
133 134
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
135
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
136 137
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
138
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
139
#endif
T
tensor-tang 已提交
140
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
141

T
tensor-tang 已提交
142 143 144
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
145

T
tensor-tang 已提交
146 147 148 149
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
150 151 152
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
153 154 155
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
156 157
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
158 159 160 161 162 163
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
164 165 166 167 168
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
169 170
  }

T
tensor-tang 已提交
171 172 173 174 175
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
176 177
  }

T
tensor-tang 已提交
178 179
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
180 181
#endif

T
tensor-tang 已提交
182 183 184 185 186 187 188 189 190
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
191
  }
T
tensor-tang 已提交
192 193 194 195 196 197 198 199 200
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
201 202 203
  }

#ifdef __AVX__
T
tensor-tang 已提交
204 205
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
206 207
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
208 209
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
210 211
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
212 213
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
214 215 216
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
217 218 219 220
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
221

T
tensor-tang 已提交
222 223 224 225
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
226 227 228
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
229 230 231 232 233
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
234 235 236 237 238 239 240
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
241 242
  }

T
tensor-tang 已提交
243 244 245 246 247 248 249 250 251 252
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
368 369 370 371 372
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
373 374 375 376 377 378 379 380
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
381 382 383
REGISTER_JITKERNEL(vmul, VMulKernel);
REGISTER_JITKERNEL(vadd, VAddKernel);
REGISTER_JITKERNEL(vscal, VScalKernel);
T
tensor-tang 已提交
384
REGISTER_JITKERNEL(vaddb, VAddBiasKernel);
T
tensor-tang 已提交
385 386
REGISTER_JITKERNEL(vrelu, VReluKernel);
REGISTER_JITKERNEL(videntity, VIdentityKernel);
T
tensor-tang 已提交
387 388 389 390 391

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle