jit_kernel_blas.cc 19.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
#include <string>
T
tensor-tang 已提交
17
#include "paddle/fluid/operators/math/jit_gen.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
T
tensor-tang 已提交
19 20
#include "paddle/fluid/platform/enforce.h"

T
tensor-tang 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

T
tensor-tang 已提交
34 35 36
namespace jit = platform::jit;  // remove me

using namespace platform::jit;  // NOLINT
T
tensor-tang 已提交
37

T
tensor-tang 已提交
38
/* VMUL JitKernel */
T
tensor-tang 已提交
39 40 41 42 43 44 45 46 47 48 49
struct VMulJitCode : public gen::JitCode {
  DECLARE_JIT_CODE(VMulJitCode);
  explicit VMulJitCode(size_t code_size = 256 * 1024, void* code_ptr = nullptr)
      : gen::JitCode(code_size, code_ptr) {}
  static bool init(int d) {
    if (MayIUse(avx) || MayIUse(avx2)) {
      return d % AVX_FLOAT_BLOCK == 0;
    } else if (MayIUse(avx512f)) {
      return d % AVX512_FLOAT_BLOCK == 0;
    } else {
      return false;
T
tensor-tang 已提交
50
    }
T
tensor-tang 已提交
51
  }
T
tensor-tang 已提交
52 53 54 55
  void generate() override {
    preCode();
    postCode();
  }
T
tensor-tang 已提交
56
};
T
tensor-tang 已提交
57

T
tensor-tang 已提交
58 59 60 61
template <typename T>
void VMulRefer(const T* x, const T* y, T* z, int n) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
T
tensor-tang 已提交
62
  }
T
tensor-tang 已提交
63
}
T
tensor-tang 已提交
64

T
tensor-tang 已提交
65 66 67 68 69 70 71 72 73 74 75 76
#ifdef PADDLE_WITH_MKLML
template <typename T>
void VMulMKL(const T* x, const T* y, T* z, int n);

template <>
void VMulMKL<float>(const float* x, const float* y, float* z, int n) {
  platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMulMKL<double>(const double* x, const double* y, double* z, int n) {
  platform::dynload::vdMul(n, x, y, z);
}
T
tensor-tang 已提交
77 78
#endif

T
tensor-tang 已提交
79 80 81 82 83
template <typename T>
class VMulKernelImpl : public VMulKernel<T> {
 public:
  static inline std::string name(int d) {
    PADDLE_THROW("DType should be either float or double");
T
tensor-tang 已提交
84
  }
T
tensor-tang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
  static inline bool useJIT(int d) { return false; }
  static inline bool useMKL(int d) { return false; }

  explicit VMulKernelImpl(int d) : VMulKernel<T>() {
    if (useJIT(d)) {
      constexpr size_t sz = 256 * 1024;  // TODO(TJ): should be related with d
      jitcode_.reset(new VMulJitCode(sz));
      this->Compute =
          jitcode_->getCode<void (*)(const T*, const T*, T*, int)>();
      return;
    }
#ifdef PADDLE_WITH_MKLML
    if (useMKL(d)) {
      this->Compute = VMulMKL<T>;
      return;
    }
T
tensor-tang 已提交
101
#endif
T
tensor-tang 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    this->Compute = VMulRefer<T>;
  }

 private:
  std::unique_ptr<VMulJitCode> jitcode_{nullptr};
};

template <>
bool VMulKernelImpl<float>::useJIT(int d) {
  return VMulJitCode::init(d);
}

template <>
bool VMulKernelImpl<float>::useMKL(int d) {
  return jit::MayIUse(jit::avx512f) && d > 512;
}

template <>
bool VMulKernelImpl<double>::useMKL(int d) {
  return true;
}

REGISTER_JITKERNEL(vmul, VMulKernel);
T
tensor-tang 已提交
125

T
tensor-tang 已提交
126
/* VADD JitKernel */
T
tensor-tang 已提交
127
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
T
tensor-tang 已提交
128 129
class VAddKernelImpl : public VAddKernel<T> {
 public:
T
tensor-tang 已提交
130 131 132
  explicit VAddKernelImpl(int d) : VAddKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
133 134
      z[i] = x[i] + y[i];
    }
T
tensor-tang 已提交
135
  }
T
tensor-tang 已提交
136
};
T
tensor-tang 已提交
137

T
tensor-tang 已提交
138
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
139 140 141 142 143
#define MKL_FLOAT(isa, block)                           \
  template <>                                           \
  void VAddKernelImpl<float, isa, block>::Compute(      \
      const float* x, const float* y, float* z) const { \
    platform::dynload::vsAdd(this->num_, x, y, z);      \
T
tensor-tang 已提交
144 145
  }

T
tensor-tang 已提交
146 147 148 149 150
#define MKL_DOUBLE(isa, block)                             \
  template <>                                              \
  void VAddKernelImpl<double, isa, block>::Compute(        \
      const double* x, const double* y, double* z) const { \
    platform::dynload::vdAdd(this->num_, x, y, z);         \
T
tensor-tang 已提交
151 152
  }

T
tensor-tang 已提交
153 154
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
155 156
#endif

T
tensor-tang 已提交
157 158 159 160 161 162 163 164 165
#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddKernelImpl<float, isa, kEQ8>::Compute(       \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx, tmpy;                                  \
    tmpx = _mm256_loadu_ps(x);                          \
    tmpy = _mm256_loadu_ps(y);                          \
    tmpx = _mm256_add_ps(tmpx, tmpy);                   \
    _mm256_storeu_ps(z, tmpx);                          \
T
tensor-tang 已提交
166
  }
T
tensor-tang 已提交
167
#ifdef __AVX__
T
tensor-tang 已提交
168
INTRI8_FLOAT(jit::avx);
T
tensor-tang 已提交
169 170
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
171
INTRI8_FLOAT(jit::avx2);
T
tensor-tang 已提交
172 173
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
174
INTRI8_FLOAT(jit::avx512f);
T
tensor-tang 已提交
175
#endif
T
tensor-tang 已提交
176
// TODO(TJ): eq16 test and complete avx512
T
tensor-tang 已提交
177

T
tensor-tang 已提交
178 179 180
#undef INTRI8_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
181

T
tensor-tang 已提交
182 183 184 185
/* VSCAL JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VScalKernelImpl : public VScalKernel<T> {
 public:
T
tensor-tang 已提交
186 187 188
  explicit VScalKernelImpl(int d) : VScalKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
189 190 191
      y[i] = a * x[i];
    }
  }
T
tensor-tang 已提交
192 193
  void Compute(const T a, T* x) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
194 195 196 197 198 199
      x[i] = a * x[i];
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
200 201 202 203 204
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VScalKernelImpl<float, isa, block>::Compute(const float a, float* x) \
      const {                                                               \
    platform::dynload::cblas_sscal(this->num_, a, x, 1);                    \
T
tensor-tang 已提交
205 206
  }

T
tensor-tang 已提交
207 208 209 210 211
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VScalKernelImpl<double, isa, block>::Compute(const double a, double* x) \
      const {                                                                  \
    platform::dynload::cblas_dscal(this->num_, a, x, 1);                       \
T
tensor-tang 已提交
212 213
  }

T
tensor-tang 已提交
214 215
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
T
tensor-tang 已提交
216 217
#endif

T
tensor-tang 已提交
218 219 220 221 222 223 224 225 226
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(     \
      const float a, const float* x, float* y) const { \
    __m256 tmp;                                        \
    __m256 scalar = _mm256_set1_ps(a);                 \
    tmp = _mm256_loadu_ps(x);                          \
    tmp = _mm256_mul_ps(tmp, scalar);                  \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
227
  }
T
tensor-tang 已提交
228 229 230 231 232 233 234 235 236
#define INTRI8_INPLACE_FLOAT(isa)                                          \
  template <>                                                              \
  void VScalKernelImpl<float, isa, kEQ8>::Compute(const float a, float* x) \
      const {                                                              \
    __m256 tmp;                                                            \
    __m256 scalar = _mm256_set1_ps(a);                                     \
    tmp = _mm256_loadu_ps(x);                                              \
    tmp = _mm256_mul_ps(tmp, scalar);                                      \
    _mm256_storeu_ps(x, tmp);                                              \
T
tensor-tang 已提交
237 238 239
  }

#ifdef __AVX__
T
tensor-tang 已提交
240 241
INTRI8_FLOAT(jit::avx);
INTRI8_INPLACE_FLOAT(jit::avx);
T
tensor-tang 已提交
242 243
#endif
#ifdef __AVX2__
T
tensor-tang 已提交
244 245
INTRI8_FLOAT(jit::avx2);
INTRI8_INPLACE_FLOAT(jit::avx2);
T
tensor-tang 已提交
246 247
#endif
#ifdef __AVX512F__
T
tensor-tang 已提交
248 249
INTRI8_FLOAT(jit::avx512f);
INTRI8_INPLACE_FLOAT(jit::avx512f);
T
tensor-tang 已提交
250 251 252
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
253 254 255 256
#undef INTRI8_FLOAT
#undef INTRI8_INPLACE_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE
T
tensor-tang 已提交
257

T
tensor-tang 已提交
258 259 260 261
/* VAddBias JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddBiasKernelImpl : public VAddBiasKernel<T> {
 public:
T
tensor-tang 已提交
262 263 264
  explicit VAddBiasKernelImpl(int d) : VAddBiasKernel<T>() { this->num_ = d; }
  void Compute(const T a, const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
265 266 267 268 269
      y[i] = x[i] + a;
    }
  }
};

T
tensor-tang 已提交
270 271 272 273 274 275 276
#define INTRI8_FLOAT(isa)                              \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(  \
      const float a, const float* x, float* y) const { \
    __m256 tmp = _mm256_loadu_ps(x);                   \
    tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));       \
    _mm256_storeu_ps(y, tmp);                          \
T
tensor-tang 已提交
277 278
  }

T
tensor-tang 已提交
279 280 281 282 283 284 285 286 287 288
#define INTRI16_FLOAT(isa)                             \
  template <>                                          \
  void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
      const float a, const float* x, float* y) const { \
    __m256 tmp0 = _mm256_loadu_ps(x);                  \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);              \
    tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));     \
    tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));     \
    _mm256_storeu_ps(y, tmp0);                         \
    _mm256_storeu_ps(y + 8, tmp1);                     \
T
tensor-tang 已提交
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512

T
tensor-tang 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT

/* VRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VReluKernelImpl : public VReluKernel<T> {
 public:
  explicit VReluKernelImpl(int d) : VReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
      y[i] = x[i] > 0 ? x[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                                                   \
  template <>                                                               \
  void VReluKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
    tmp = _mm256_max_ps(tmp, _mm256_setzero_ps());                          \
    _mm256_storeu_ps(y, tmp);                                               \
  }

#define INTRI16_FLOAT(isa)                                                   \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                       \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                       \
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
  }

#define INTRI_GT8LT16_FLOAT(isa)                                        \
  template <>                                                           \
  VReluKernelImpl<float, isa, kGT8LT16>::VReluKernelImpl(int d)         \
      : VReluKernel<float>() {                                          \
    this->num_ = d;                                                     \
    this->end_ = AVX_FLOAT_BLOCK;                                       \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                  \
  }                                                                     \
  template <>                                                           \
  void VReluKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 zeros = _mm256_setzero_ps();                                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + this->rest_);                     \
    tmp0 = _mm256_max_ps(tmp0, zeros);                                  \
    tmp1 = _mm256_max_ps(tmp1, zeros);                                  \
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + this->rest_, tmp1);                            \
  }

#define INTRI_GT16_FLOAT(isa)                                                \
  template <>                                                                \
  VReluKernelImpl<float, isa, kGT16>::VReluKernelImpl(int d)                 \
      : VReluKernel<float>() {                                               \
    this->num_ = d;                                                          \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                                    \
    this->rest_ = d - AVX_FLOAT_BLOCK;                                       \
  }                                                                          \
  template <>                                                                \
  void VReluKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 zeros = _mm256_setzero_ps();                                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
      tmp = _mm256_max_ps(tmp, zeros);                                       \
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    __m256 tmp = _mm256_loadu_ps(x + this->rest_);                           \
    tmp = _mm256_max_ps(tmp, zeros);                                         \
    _mm256_storeu_ps(y + this->rest_, tmp);                                  \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif

T
tensor-tang 已提交
404 405 406 407 408
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT

T
tensor-tang 已提交
409 410 411 412 413 414 415 416
/* An empty JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VIdentityKernelImpl : public VIdentityKernel<T> {
 public:
  explicit VIdentityKernelImpl(int d) : VIdentityKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {}
};

T
tensor-tang 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
/* VAddRelu JitKernel */
template <typename T, platform::jit::cpu_isa_t isa, jit_block>
class VAddReluKernelImpl : public VAddReluKernel<T> {
 public:
  explicit VAddReluKernelImpl(int d) : VAddReluKernel<T>() { this->num_ = d; }
  void Compute(const T* x, const T* y, T* z) const override {
    for (int i = 0; i < this->num_; ++i) {
      z[i] = x[i] + y[i];
      z[i] = z[i] > 0 ? z[i] : 0;
    }
  }
};

#define INTRI8_FLOAT(isa)                               \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ8>::Compute(   \
      const float* x, const float* y, float* z) const { \
    __m256 tmpx = _mm256_loadu_ps(x);                   \
    __m256 tmpy = _mm256_loadu_ps(y);                   \
    tmpy = _mm256_add_ps(tmpx, tmpy);                   \
    tmpy = _mm256_max_ps(tmpy, _mm256_setzero_ps());    \
    _mm256_storeu_ps(z, tmpy);                          \
  }

#define INTRI16_FLOAT(isa)                              \
  template <>                                           \
  void VAddReluKernelImpl<float, isa, kEQ16>::Compute(  \
      const float* x, const float* y, float* z) const { \
    __m256 zeros = _mm256_setzero_ps();                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                   \
    __m256 tmp1 = _mm256_loadu_ps(y);                   \
    tmp0 = _mm256_add_ps(tmp0, tmp1);                   \
    tmp0 = _mm256_max_ps(tmp0, zeros);                  \
    tmp1 = _mm256_loadu_ps(x + 8);                      \
    __m256 tmp2 = _mm256_loadu_ps(y + 8);               \
    tmp1 = _mm256_add_ps(tmp1, tmp2);                   \
    tmp1 = _mm256_max_ps(tmp1, zeros);                  \
    _mm256_storeu_ps(z, tmp0);                          \
    _mm256_storeu_ps(z + 8, tmp1);                      \
  }

#define INTRI_COMMON_FLOAT(isa, block)                             \
  template <>                                                      \
  VAddReluKernelImpl<float, isa, block>::VAddReluKernelImpl(int d) \
      : VAddReluKernel<float>() {                                  \
    this->num_ = d;                                                \
    this->end_ = d - d % AVX_FLOAT_BLOCK;                          \
    this->rest_ = d - this->end_;                                  \
  }                                                                \
  template <>                                                      \
  void VAddReluKernelImpl<float, isa, block>::Compute(             \
      const float* x, const float* y, float* z) const {            \
    __m256 zeros = _mm256_setzero_ps();                            \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {        \
      __m256 tmpx = _mm256_loadu_ps(x + i);                        \
      __m256 tmpy = _mm256_loadu_ps(y + i);                        \
      tmpy = _mm256_add_ps(tmpx, tmpy);                            \
      tmpy = _mm256_max_ps(tmpy, zeros);                           \
      _mm256_storeu_ps(z + i, tmpy);                               \
    }                                                              \
    for (int i = this->end_; i < this->num_; ++i) {                \
      z[i] = x[i] + y[i];                                          \
      z[i] = z[i] > 0 ? z[i] : 0;                                  \
    }                                                              \
  }

#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_COMMON_FLOAT(jit::avx, kGT16);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_COMMON_FLOAT(jit::avx2, kGT16);
#endif
#ifdef __AVX512F__
// TODO(TJ): refine avx512
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_COMMON_FLOAT(jit::avx512f, kGT16);
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_COMMON_FLOAT

T
tensor-tang 已提交
504 505 506 507 508 509
REGISTER_JITKERNEL_DEPRECATED(vadd, VAddKernel);
REGISTER_JITKERNEL_DEPRECATED(vscal, VScalKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddb, VAddBiasKernel);
REGISTER_JITKERNEL_DEPRECATED(vrelu, VReluKernel);
REGISTER_JITKERNEL_DEPRECATED(vaddrelu, VAddReluKernel);
REGISTER_JITKERNEL_DEPRECATED(videntity, VIdentityKernel);
T
tensor-tang 已提交
510 511 512 513 514

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle