conv_transpose_op.cc 28.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
22

J
Jacek Czaja 已提交
23 24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
27 28 29
namespace paddle {
namespace operators {

30 31
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
32
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
33 34 35
  OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasInput("Filter"), "Input", "Filter", "ConvTranspose");
  OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "ConvTranspose");
C
chengduoZH 已提交
36 37 38

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
39 40
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
L
LielinJiang 已提交
41 42
  std::vector<int> output_padding =
      ctx->Attrs().Get<std::vector<int>>("output_padding");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
49 50
  const std::string data_layout_str =
      ctx->Attrs().Get<std::string>("data_format");
51 52 53
  const DataLayout data_layout =
      this->IsMKLDNNType() ? DataLayout::kNCHW
                           : framework::StringToDataLayout(data_layout_str);
C
chengduoZH 已提交
54

55
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
56 57 58 59 60
                    platform::errors::InvalidArgument(
                        "Input of Op(conv_transpose) should be 4-D or "
                        "5-D Tensor. But received: %u-D Tensor, "
                        "the shape of input is [%s]",
                        in_dims.size(), in_dims));
61 62
  PADDLE_ENFORCE_EQ(
      in_dims.size(), filter_dims.size(),
63 64 65 66 67 68
      platform::errors::InvalidArgument(
          "The input's dimension size and filter's dimension size of "
          "Op (conv_transpose) should be equal. But received: the shape of "
          "input is [%s], the dimension size of input is [%d], the shape "
          "of filter is [%s],  the dimension size of filter is [%d]. ",
          in_dims, in_dims.size(), filter_dims, filter_dims.size()));
69
  int in_sub_stride_size = in_dims.size() - strides.size();
70 71
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
72 73 74 75 76 77
      platform::errors::InvalidArgument(
          "The input's dimension size minus Attr(stride)'s size must "
          "be euqal to 2 for Op(conv_transpose). But received: [%d], the "
          "input's dimension size is [%d], the shape of input "
          "is [%s], the Attr(stride)'s size is [%d].",
          in_sub_stride_size, in_dims.size(), in_dims, strides.size()));
78
  if (output_size.size())
79 80
    PADDLE_ENFORCE_EQ(
        output_size.size(), strides.size(),
81 82 83
        platform::errors::InvalidArgument(
            "The Attr(output_size) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
L
LielinJiang 已提交
84 85 86 87 88 89
  if (output_padding.size())
    PADDLE_ENFORCE_EQ(
        output_padding.size(), strides.size(),
        platform::errors::InvalidArgument(
            "The Attr(output_padding) and Attr(stride) of Op(conv_transpose) "
            "should be the same."));
C
chengduoZH 已提交
90

91
  const int64_t C =
92
      (data_layout != DataLayout::kNHWC ? in_dims[1]
93 94 95
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
96 97 98 99 100 101 102
      platform::errors::InvalidArgument(
          "The number of input channels should be equal to filter channels "
          "for Op(conv_transpose). But received: the input's channels is "
          "[%d], the shape of input is [%s], the filter's channels is [%d], "
          "the shape of filter is [%s]. The data_format is %s."
          "The error may come from wrong data_format setting.",
          C, in_dims, filter_dims[0], filter_dims, data_layout_str));
103 104

  framework::DDim in_data_dims;
105
  if (data_layout != DataLayout::kNHWC) {
106 107 108 109 110 111 112 113 114 115 116
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
117
  if (data_layout != DataLayout::kNHWC) {
118 119
    output_shape.push_back(filter_dims[1] * groups);
  }
120
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
121
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
122
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
123 124 125 126 127
    auto infer_shape = (ctx->IsRuntime() || in_dims[i + offset] > 0)
                           ? (in_dims[i + offset] - 1) * strides[i] -
                                 paddings[2 * i] - paddings[2 * i + 1] +
                                 filter_extent
                           : -1;
128
    if (output_size.size()) {
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_size[i], infer_shape,
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should not be "
                "less than the infered output size. But received output_size = "
                "[%s], whose dim %d is less than the infered output size [%s]",
                framework::make_ddim(output_size), i, infer_shape));
        PADDLE_ENFORCE_LT(
            output_size[i], infer_shape + strides[i],
            platform::errors::InvalidArgument(
                "output_size of Op(ConvTransposeOp) should be less "
                "than infered size + stride. But received output_size = [%s], "
                "whose dim %d is not less than the infered output size (%d) + "
                "stride (%d) = %d",
                framework::make_ddim(output_size), i, infer_shape, strides[i],
                infer_shape + strides[i]));
      }
147
      output_shape.push_back(output_size[i]);
L
LielinJiang 已提交
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
    } else if (output_padding.size()) {
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_GE(
            output_padding[i], 0,
            platform::errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should not be "
                "less than the 0. But received output_padding = "
                "[%s], whose dim %d is less than 0",
                framework::make_ddim(output_padding), i));
        PADDLE_ENFORCE_LT(
            output_padding[i], std::max(strides[i], dilations[i]),
            platform::errors::InvalidArgument(
                "output_padding of Op(ConvTransposeOp) should be less "
                "than either stride or dilation. But received output_size = "
                "[%s], "
                "whose dim %d is not less than either stride (%d)  or "
                "dilation (%d)",
                framework::make_ddim(output_size), i, strides[i],
                dilations[i]));
      }
      output_shape.push_back((infer_shape + output_padding[i]));
169 170 171
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
172
  }
173 174 175
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
176
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
177 178
}

179 180
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
181
  framework::LibraryType library_{framework::LibraryType::kPlain};
182
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
183
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
184
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
185 186 187 188
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
189 190 191
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
192 193
  }
#endif
J
Jacek Czaja 已提交
194 195
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
196
      this->CanMKLDNNBeUsed(ctx)) {
J
Jacek Czaja 已提交
197 198
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
199
  }
J
Jacek Czaja 已提交
200
#endif
201

202 203 204
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
205 206
}

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
framework::OpKernelType ConvTransposeOp::GetKernelTypeForVar(
    const std::string& var_name, const Tensor& tensor,
    const framework::OpKernelType& expected_kernel_type) const {
#ifdef PADDLE_WITH_MKLDNN
  // Only input require reshaping, weights and
  // bias are having shape in NCHW order
  if ((var_name == "Input") &&
      (expected_kernel_type.data_layout_ == framework::DataLayout::kMKLDNN) &&
      (tensor.layout() != framework::DataLayout::kMKLDNN)) {
    auto attrs = Attrs();
    auto ar = paddle::framework::AttrReader(attrs);
    const std::string data_format = ar.Get<std::string>("data_format");
    auto dl = framework::StringToDataLayout(data_format);
    // Some models may have intentionally set "AnyLayout" for pool
    // op. Treat this as NCHW (default data_format value)
    if (dl != framework::DataLayout::kAnyLayout) {
      return framework::OpKernelType(
          expected_kernel_type.data_type_, tensor.place(),
          framework::StringToDataLayout(data_format));
    }
  }
#endif
  return framework::OpKernelType(expected_kernel_type.data_type_,
                                 tensor.place(), tensor.layout());
}

Y
Yu Yang 已提交
233
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
234 235 236 237
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
238 239 240 241 242
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
243 244 245 246 247 248 249 250
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
251 252 253 254 255
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();
C
chengduoZH 已提交
256
  AddOutput("Output",
C
chengduoZH 已提交
257
            "(Tensor) The output tensor of convolution transpose operator. "
258
            "The format of output tensor is the same as input tensor.");
L
LielinJiang 已提交
259 260 261 262 263
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
264 265 266 267
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
268 269 270 271
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
272 273 274 275 276
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
277 278
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
279
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
280
      "convolution transpose operator.")
C
chengduoZH 已提交
281
      .SetDefault({1, 1});
C
chengduoZH 已提交
282 283
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
284
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
285
      "transpose operator.")
C
chengduoZH 已提交
286
      .SetDefault({0, 0});
287 288 289 290
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
291 292 293 294 295
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
296 297 298 299 300 301 302 303
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
304 305 306 307
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
308 309 310 311 312 313 314 315 316
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
317 318 319 320 321
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
322
               "better hardward. This size should be carefully set.")
323
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
324
  AddComment(R"DOC(
C
chengduoZH 已提交
325 326
Convolution2D Transpose Operator.

C
chengduoZH 已提交
327
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
328
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
329
parameters is checked in the infer-shape.
330
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
331 332 333 334 335 336
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
337
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
338

Y
update  
yi.wu 已提交
339
For an example:
C
chengduoZH 已提交
340
  Input:
C
chengduoZH 已提交
341 342
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
343
  Output:
C
chengduoZH 已提交
344 345 346
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
347 348
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
349
  $$
C
chengduoZH 已提交
350 351 352
)DOC");
}

Y
Yu Yang 已提交
353
void Conv3DTransposeOpMaker::Make() {
354 355 356 357 358 359
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
360 361
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
362 363 364
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
365 366
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
367
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
368
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
369 370
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
371
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
372
            "Where N is batch size, C is "
C
chengduoZH 已提交
373 374
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
L
LielinJiang 已提交
375 376 377 378 379
  AddAttr<std::vector<int>>("output_padding",
                            "(vector<int> default: []), Additional size added "
                            "to one side of each dimension in the output "
                            "shape")
      .SetDefault({});
380 381 382 383
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
384 385 386 387 388 389
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
390
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
391
                            "(vector<int> default:{1, 1, 1}), the "
392
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
393
                            "convolution transpose operator.")
C
chengduoZH 已提交
394
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
395
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
396
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
397
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
398
      .SetDefault({0, 0, 0});
399 400 401 402
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
403 404 405 406
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
407 408 409
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
410 411 412 413
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
414 415 416 417 418 419 420 421 422
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
423 424 425 426 427
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
T
tianshuo78520a 已提交
428
               "better hardward. This size should be carefully set.")
429
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
430
  AddComment(R"DOC(
C
chengduoZH 已提交
431 432
Convolution3D Transpose Operator.

C
chengduoZH 已提交
433
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
434
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
435
parameters is checked in the infer-shape.
436
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
437 438 439 440 441 442 443
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
444
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
445

446
Example:
C
chengduoZH 已提交
447
  Input:
C
chengduoZH 已提交
448 449
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
450
  Output:
C
chengduoZH 已提交
451 452 453
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
454 455 456
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
457
  $$
C
chengduoZH 已提交
458 459 460
)DOC");
}

C
chengduoZH 已提交
461
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
462 463 464 465 466 467 468 469 470 471
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

472 473 474
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
475
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
476 477 478 479 480 481
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
482 483 484 485 486 487 488
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

489
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
490 491 492
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
493 494
}

H
hong 已提交
495 496
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
497
 public:
H
hong 已提交
498
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
499 500

 protected:
501
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
502 503 504 505 506 507 508 509
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
510
    }
H
hong 已提交
511 512
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
513 514 515
  }
};

516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594
/*
 * Inputs:  I, W, dO, ddI, ddW
 * Outputs: ddO, dW, dI
 */
template <typename T>
class ConvTransposeDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    // I, W, dO, ddI, ddW
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetInput("DOutput", this->Input(framework::GradVarName("Output")));
    op->SetInput("DDInput", this->OutputGrad(framework::GradVarName("Input")));
    op->SetInput("DDFilter",
                 this->OutputGrad(framework::GradVarName("Filter")));

    // ddO, dI, dW
    // Unlike grad op, double grad op does not use name@GRAD@GRAD
    // as key of ops' inputs and outputs.
    auto ddx = this->OutputGrad(framework::GradVarName("Input"));
    auto ddw = this->OutputGrad(framework::GradVarName("Filter"));

    op->SetOutput("DDOutput",
                  ddx.empty()
                      ? this->EmptyInputGrad()
                      : this->InputGrad(framework::GradVarName("Output")));
    op->SetOutput("DFilter", ddx.empty() ? this->EmptyInputGrad()
                                         : this->InputGrad("Filter"));
    op->SetOutput("DInput", ddw.empty() ? this->EmptyInputGrad()
                                        : this->InputGrad("Input"));

    op->SetAttrMap(this->Attrs());
  }
};

void ConvTransposeOpDoubleGrad::InferShape(
    framework::InferShapeContext* ctx) const {
  auto x_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("Filter");
  auto do_dims = ctx->GetInputDim("DOutput");

  if (ctx->HasOutput("DDOutput") &&
      (ctx->HasInput("DDInput") || (ctx->HasInput("DDFilter")))) {
    ctx->SetOutputDim("DDOutput", do_dims);
  }
  if (ctx->HasOutput("DFilter") && ctx->HasInput("DDInput")) {
    ctx->SetOutputDim("DFilter", w_dims);
  }
  if (ctx->HasOutput("DInput") && ctx->HasInput("DDFilter")) {
    ctx->SetOutputDim("DInput", x_dims);
  }
}

framework::OpKernelType ConvTransposeOpDoubleGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
595 596 597 598
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
599

600
// conv2d_transpose
Y
Yang Yang 已提交
601 602
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
603 604
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
605 606 607 608 609
REGISTER_OPERATOR(
    conv2d_transpose_grad, ops::ConvTransposeOpGrad,
    ops::ConvTransposeDoubleGradMaker<paddle::framework::OpDesc>,
    ops::ConvTransposeDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(conv2d_transpose_grad_grad, ops::ConvTransposeOpDoubleGrad);
C
chengduoZH 已提交
610 611

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
612
    conv2d_transpose,
Q
QI JUN 已提交
613 614
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
615
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
616
    conv2d_transpose_grad,
Q
QI JUN 已提交
617 618 619
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
620

621
// conv3d_transpose
Y
Yang Yang 已提交
622 623
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
624 625
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
626
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
627 628

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
629
    conv3d_transpose,
Q
QI JUN 已提交
630 631
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
632
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
633
    conv3d_transpose_grad,
Q
QI JUN 已提交
634 635 636
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
637 638 639 640

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
641 642
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
643 644 645 646 647 648 649 650 651 652 653
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
654 655 656 657 658 659 660 661 662 663 664

REGISTER_OP_VERSION(conv_transpose)
    .AddCheckpoint(
        R"ROC(
      Upgrade convtranspose add a new attribute [output_padding].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "output_padding",
            "In order to add additional size to one side of each dimension "
            "in the output",
            {}));