conv_transpose_op.cc 16.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
Siddharth Goyal 已提交
16 17
#include <string>
#include <vector>
C
chengduoZH 已提交
18 19 20 21

namespace paddle {
namespace operators {

C
chengduoZH 已提交
22
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
23
  PADDLE_ENFORCE(ctx->HasInput("Input"),
C
chengduoZH 已提交
24
                 "Input(Input) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
25
  PADDLE_ENFORCE(ctx->HasInput("Filter"),
C
chengduoZH 已提交
26
                 "Input(Filter) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
27
  PADDLE_ENFORCE(ctx->HasOutput("Output"),
C
chengduoZH 已提交
28
                 "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
29 30 31

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
32 33
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
34 35
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
36
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
37
  int groups = ctx->Attrs().Get<int>("groups");
C
chengduoZH 已提交
38

C
chengduoZH 已提交
39 40 41 42 43 44 45 46
  PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5,
                 "ConvTransposeOp intput should be 4-D or 5-D tensor.");
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
  PADDLE_ENFORCE(in_dims.size() - strides.size() == 2U,
                 "ConvTransposeOp input dimension and strides dimension should "
                 "be consistent.");
47 48 49 50
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
51
  PADDLE_ENFORCE_EQ(paddings.size(), strides.size(),
C
chengduoZH 已提交
52
                    "ConvTransposeOp paddings dimension and strides "
C
chengduoZH 已提交
53
                    "dimension should be the same.");
C
chengduoZH 已提交
54 55 56
  PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(),
                    "ConvTransposeOp paddings dimension and dilations "
                    "dimension should be the same.");
C
chengduoZH 已提交
57
  PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0],
Y
Yibing Liu 已提交
58
                    "In ConvTransposeOp, The number of input channels should "
59
                    "be equal to the number of filter's channels.");
C
chengduoZH 已提交
60

Y
Yibing Liu 已提交
61
  std::vector<int64_t> output_shape({in_dims[0], filter_dims[1] * groups});
C
chengduoZH 已提交
62
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
63
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
64 65 66 67 68 69 70 71 72 73 74
    auto infer_shape =
        (in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + filter_extent;
    if (output_size.size()) {
      PADDLE_ENFORCE((output_size[i] >= infer_shape &&
                      output_size[i] < infer_shape + strides[i]),
                     "ConvTransposeOp output_size should be "
                     "in appropriate range.");
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
75
  }
C
chengduoZH 已提交
76
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
77 78
}

79 80 81
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
82
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
83 84 85 86 87 88
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
89 90 91 92 93 94 95 96 97 98 99 100 101 102
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

Y
Yu Yang 已提交
103
void Conv2DTransposeOpMaker::Make() {
C
chengduoZH 已提交
104 105 106 107
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator. "
      "The format of input tensor is NCHW. Where N is batch size, C is the "
C
chengduoZH 已提交
108 109
      "number of input channels, H is the height of the feature, and "
      "W is the width of the feature.");
C
chengduoZH 已提交
110 111 112 113 114 115 116 117
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
C
chengduoZH 已提交
118
  AddOutput("Output",
C
chengduoZH 已提交
119
            "(Tensor) The output tensor of convolution transpose operator. "
C
chengduoZH 已提交
120
            "The format of output tensor is also NCHW.");
121 122 123 124
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
125 126 127 128
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
129 130 131 132 133
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
134 135
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
136
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
137
      "convolution transpose operator.")
C
chengduoZH 已提交
138
      .SetDefault({1, 1});
C
chengduoZH 已提交
139 140
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
141
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
142
      "transpose operator.")
C
chengduoZH 已提交
143
      .SetDefault({0, 0});
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
163
  AddComment(R"DOC(
C
chengduoZH 已提交
164 165
Convolution2D Transpose Operator.

C
chengduoZH 已提交
166
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
167
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
168
parameters is checked in the infer-shape.
C
chengduoZH 已提交
169 170 171 172 173 174 175
Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
176
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
177

Y
update  
yi.wu 已提交
178
For an example:
C
chengduoZH 已提交
179
  Input:
C
chengduoZH 已提交
180 181
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
182
  Output:
C
chengduoZH 已提交
183 184 185
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
186 187
       H_{out} = (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
188
  $$
C
chengduoZH 已提交
189 190 191
)DOC");
}

Y
Yu Yang 已提交
192
void Conv3DTransposeOpMaker::Make() {
C
chengduoZH 已提交
193 194 195 196 197 198
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator."
           "The format of input tensor is NCDHW. Where N is batch size, C is "
           "the number of channels, D is the depth of the feature, H is the "
           "height of the feature, and "
           "W is the width of the feature.");
C
chengduoZH 已提交
199 200
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
201 202 203
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
204 205
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
206
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
207
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
208 209 210 211
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
            "The format of output tensor is also NCDHW."
            "Where N is batch size, C is "
C
chengduoZH 已提交
212 213
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
214 215 216 217
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
218 219 220 221 222 223
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
224
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
225
                            "(vector<int> default:{1, 1, 1}), the "
226
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
227
                            "convolution transpose operator.")
C
chengduoZH 已提交
228
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
229
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
230
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
231
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
232
      .SetDefault({0, 0, 0});
233 234 235 236
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
      .SetDefault(4096);
C
chengduoZH 已提交
256
  AddComment(R"DOC(
C
chengduoZH 已提交
257 258
Convolution3D Transpose Operator.

C
chengduoZH 已提交
259
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
260
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
261
parameters is checked in the infer-shape.
C
chengduoZH 已提交
262 263 264 265 266 267 268 269
Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
270
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
271

272
Example:
C
chengduoZH 已提交
273
  Input:
C
chengduoZH 已提交
274 275
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
276
  Output:
C
chengduoZH 已提交
277 278 279
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
280 281 282
       D_{out} = (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
283
  $$
C
chengduoZH 已提交
284 285 286
)DOC");
}

C
chengduoZH 已提交
287
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
288 289 290 291 292 293 294 295 296 297
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

298 299 300
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
301
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
302 303 304 305 306 307
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
308 309 310 311 312 313 314 315 316 317 318 319 320 321
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduoZH 已提交
322 323 324 325
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
326

327
// conv2d_transpose
Y
Yang Yang 已提交
328 329
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
330 331
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
332 333

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
334
    conv2d_transpose,
Q
QI JUN 已提交
335 336
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
337
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
338
    conv2d_transpose_grad,
Q
QI JUN 已提交
339 340 341
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
342

343
// conv3d_transpose
Y
Yang Yang 已提交
344 345
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
346 347
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
348 349

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
350
    conv3d_transpose,
Q
QI JUN 已提交
351 352
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
353
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
354
    conv3d_transpose_grad,
Q
QI JUN 已提交
355 356 357
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);