conv_transpose_op.cc 20.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
C
chengduoZH 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
C
chengduoZH 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
C
chengduoZH 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/conv_transpose_op.h"
S
sneaxiy 已提交
16
#include <memory>
S
Siddharth Goyal 已提交
17 18
#include <string>
#include <vector>
19
#include "paddle/fluid/framework/data_layout.h"
20
#include "paddle/fluid/platform/cudnn_workspace_helper.h"
C
chengduoZH 已提交
21

J
Jacek Czaja 已提交
22 23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

C
chengduoZH 已提交
26 27 28
namespace paddle {
namespace operators {

29 30
using DataLayout = framework::DataLayout;

C
chengduoZH 已提交
31
void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const {
32 33 34 35 36 37
  PADDLE_ENFORCE_EQ(ctx->HasInput("Input"), true,
                    "Input(Input) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasInput("Filter"), true,
                    "Input(Filter) of ConvTransposeOp should not be null.");
  PADDLE_ENFORCE_EQ(ctx->HasOutput("Output"), true,
                    "Output(Output) of ConvTransposeOp should not be null.");
C
chengduoZH 已提交
38 39 40

  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
41 42
  std::vector<int> output_size =
      ctx->Attrs().Get<std::vector<int>>("output_size");
C
chengduoZH 已提交
43 44
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
C
chengduoZH 已提交
45
  std::vector<int> dilations = ctx->Attrs().Get<std::vector<int>>("dilations");
Y
Yibing Liu 已提交
46
  int groups = ctx->Attrs().Get<int>("groups");
47 48 49 50
  std::string padding_algorithm =
      ctx->Attrs().Get<std::string>("padding_algorithm");
  const DataLayout data_layout = framework::StringToDataLayout(
      ctx->Attrs().Get<std::string>("data_format"));
C
chengduoZH 已提交
51

52 53
  PADDLE_ENFORCE_EQ(in_dims.size() == 4 || in_dims.size() == 5, true,
                    "ConvTransposeOp intput should be 4-D or 5-D tensor.");
C
chengduoZH 已提交
54 55 56
  PADDLE_ENFORCE_EQ(in_dims.size(), filter_dims.size(),
                    "ConvTransposeOp input dimension and filter dimension "
                    "should be the same.");
57 58 59 60
  PADDLE_ENFORCE_EQ(
      in_dims.size() - strides.size(), 2U,
      "ConvTransposeOp input dimension and strides dimension should "
      "be consistent.");
61 62 63 64
  if (output_size.size())
    PADDLE_ENFORCE_EQ(output_size.size(), strides.size(),
                      "ConvTransposeOp output_size dimension and strides "
                      "dimension should be the same.");
C
chengduoZH 已提交
65

66
  const int64_t C =
67
      (data_layout != DataLayout::kNHWC ? in_dims[1]
68 69 70 71 72 73 74
                                        : in_dims[in_dims.size() - 1]);
  PADDLE_ENFORCE_EQ(
      C, filter_dims[0],
      "The number of input channels of Op(ConvTransposeOp) should "
      "be equal to the number of filter's channels.");

  framework::DDim in_data_dims;
75
  if (data_layout != DataLayout::kNHWC) {
76 77 78 79 80 81 82 83 84 85 86
    in_data_dims = framework::slice_ddim(in_dims, 2, in_dims.size());
  } else {
    in_data_dims = framework::slice_ddim(in_dims, 1, in_dims.size() - 1);
  }
  framework::DDim filter_data_dims =
      framework::slice_ddim(filter_dims, 2, filter_dims.size());
  std::vector<int> ksize = framework::vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                           in_data_dims, strides, ksize);

  std::vector<int64_t> output_shape({in_dims[0]});
87
  if (data_layout != DataLayout::kNHWC) {
88 89
    output_shape.push_back(filter_dims[1] * groups);
  }
90
  const int offset = (data_layout != DataLayout::kNHWC ? 2 : 1);
C
chengduoZH 已提交
91
  for (size_t i = 0; i < strides.size(); ++i) {
C
chengduoZH 已提交
92
    auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1;
93 94
    auto infer_shape = (in_dims[i + offset] - 1) * strides[i] -
                       paddings[2 * i] - paddings[2 * i + 1] + filter_extent;
95
    if (output_size.size()) {
96 97 98 99 100
      PADDLE_ENFORCE_EQ((output_size[i] >= infer_shape &&
                         output_size[i] < infer_shape + strides[i]),
                        true,
                        "output_size of Op(ConvTransposeOp) should be "
                        "in appropriate range.");
101 102 103 104
      output_shape.push_back(output_size[i]);
    } else {
      output_shape.push_back(infer_shape);
    }
C
chengduoZH 已提交
105
  }
106 107 108
  if (data_layout == DataLayout::kNHWC) {
    output_shape.push_back(filter_dims[1] * groups);
  }
C
chengduoZH 已提交
109
  ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
C
chengduoZH 已提交
110 111
}

112 113
framework::OpKernelType ConvTransposeOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
J
Jacek Czaja 已提交
114
  framework::LibraryType library_{framework::LibraryType::kPlain};
115
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
116
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
C
chengduoZH 已提交
117
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
118 119 120 121
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
J
Jacek Czaja 已提交
122 123 124
    if (use_cudnn) {
      library_ = framework::LibraryType::kCUDNN;
    }
C
chengduoZH 已提交
125 126
  }
#endif
J
Jacek Czaja 已提交
127 128 129 130 131
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
    layout_ = framework::DataLayout::kMKLDNN;
132
  }
J
Jacek Czaja 已提交
133
#endif
134

135 136 137
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
138 139
}

Y
Yu Yang 已提交
140
void Conv2DTransposeOpMaker::Make() {
J
Jacek Czaja 已提交
141 142 143 144
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);
145 146 147 148 149
  AddInput("Input",
           "(Tensor) The input tensor of convolution transpose operator. "
           "The format of input tensor is NCHW or NHWC. Where N is batch size, "
           "C is the number of input channels, H is the height of the feature, "
           "and W is the width of the feature.");
C
chengduoZH 已提交
150 151 152 153 154 155 156 157
  AddInput(
      "Filter",
      "(Tensor) The filter tensor of convolution transpose operator. "
      "The format of the filter tensor is MCHW, where M is the number of "
      "input feature channels, C is the number of "
      "output feature channels,"
      "H is the height of the filter, and W is the width of the filter. "
      "We enforce groups number == 1 in the convolution transpose scenario.");
158 159 160 161 162 163
  AddInput("Bias",
           "(Tensor) Bias to be added to each output of filter application."
           "The format of output tensor is X (one-dimensional) of size equal"
           "to the number of output channels. Only used with MKL-DNN.")
      .AsDispensable();

C
chengduoZH 已提交
164
  AddOutput("Output",
C
chengduoZH 已提交
165
            "(Tensor) The output tensor of convolution transpose operator. "
166
            "The format of output tensor is the same as input tensor.");
167 168 169 170
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
Y
Yibing Liu 已提交
171 172 173 174
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution "
               "transpose operator. ")
      .SetDefault(1);
C
chengduoZH 已提交
175 176 177 178 179
  AddAttr<std::vector<int>>("dilations",
                            "(vector<int> default:{1, 1}), the "
                            "dilations(h_dilation, w_dilation) of convolution "
                            "transpose operator.")
      .SetDefault({1, 1});
C
chengduoZH 已提交
180 181
  AddAttr<std::vector<int>>(
      "strides",
C
chengduoZH 已提交
182
      "(vector<int> default:{1, 1}), the strides(h_stride, w_stride) of "
183
      "convolution transpose operator.")
C
chengduoZH 已提交
184
      .SetDefault({1, 1});
C
chengduoZH 已提交
185 186
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
187
      "(vector<int> default:{0, 0}), the paddings(h_pad, w_pad) of convolution "
C
chengduoZH 已提交
188
      "transpose operator.")
C
chengduoZH 已提交
189
      .SetDefault({0, 0});
190 191 192 193
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
J
Jacek Czaja 已提交
194 195 196 197 198
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
  AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
199 200 201 202 203 204 205 206
  AddAttr<std::string>("fuse_activation",
                       "(string, default \"\") Only used in mkldnn kernel")
      .SetDefault("");
  AddAttr<float>("fuse_alpha",
                 "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
  AddAttr<float>("fuse_beta", "(float, default 0.0) Only used in mkldnn kernel")
      .SetDefault(0.0f);
207 208 209 210
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
211 212 213 214 215 216 217 218 219
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
220 221 222 223 224 225
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
226
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
227
  AddComment(R"DOC(
C
chengduoZH 已提交
228 229
Convolution2D Transpose Operator.

C
chengduoZH 已提交
230
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
231
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
232
parameters is checked in the infer-shape.
233
Input(Input) and output(Output) are in NCHW or NHWC format. Where N is batchsize, C is the
C
chengduoZH 已提交
234 235 236 237 238 239
number of channels, H is the height of the feature, and W is the width of the feature.
Filter(Input) is in MCHW format. Where M is the number of input feature channels,
C is the number of output feature channels, H is the height of the filter,
and W is the width of the filter.
Parameters(strides, paddings) are two elements. These two elements represent height
and width, respectively.
C
chengduoZH 已提交
240
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
241

Y
update  
yi.wu 已提交
242
For an example:
C
chengduoZH 已提交
243
  Input:
C
chengduoZH 已提交
244 245
       Input shape: $(N, C_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, H_f, W_f)$
C
chengduoZH 已提交
246
  Output:
C
chengduoZH 已提交
247 248 249
       Output shape: $(N, C_{out}, H_{out}, W_{out})$
  Where
  $$
250 251
       H_{out} = (H_{in} - 1) * strides[0] - pad_height_top - pad_height_bottom  + dilations[0] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[1] - pad_width_left  - pad_width_right + dilations[1] * (W_f - 1) + 1
C
chengduoZH 已提交
252
  $$
C
chengduoZH 已提交
253 254 255
)DOC");
}

Y
Yu Yang 已提交
256
void Conv3DTransposeOpMaker::Make() {
257 258 259 260 261 262
  AddInput(
      "Input",
      "(Tensor) The input tensor of convolution transpose operator."
      "The format of input tensor is NCDHW or NDHWC. Where N is batch "
      "size, C is the number of channels, D is the depth of the feature, "
      "H is the height of the feature, and W is the width of the feature.");
C
chengduoZH 已提交
263 264
  AddInput("Filter",
           "(Tensor) The filter tensor of convolution transpose operator."
C
chengduoZH 已提交
265 266 267
           "The format of the filter tensor is MCDHW, where M is the number of "
           "input feature channels, C is the number of "
           "output feature channels, D "
C
chengduoZH 已提交
268 269
           "is the depth of the filter, H is the height of the filter, and "
           "W is the width of the filter."
C
chengduoZH 已提交
270
           "We enforce groups number == 1 and padding == 0 in "
C
chengduoZH 已提交
271
           "the convolution3d transpose scenario.");
C
chengduoZH 已提交
272 273
  AddOutput("Output",
            "(Tensor) The output tensor of convolution transpose operator."
274
            "The format of output tensor is the same as input tensor."
C
chengduoZH 已提交
275
            "Where N is batch size, C is "
C
chengduoZH 已提交
276 277
            "the number of channels, D is the depth of the feature, H is the "
            "height of the feature, and W is the width of the feature.");
278 279 280 281
  AddAttr<std::vector<int>>("output_size",
                            "(vector<int> default: []), the "
                            "size of the output tensor")
      .SetDefault({});
C
chengduoZH 已提交
282 283 284 285 286 287
  AddAttr<std::vector<int>>(
      "dilations",
      "(vector<int> default:{1, 1, 1}), the "
      "dilations(d_dilation,h_dilation, w_dilation) of convolution "
      "transpose operator.")
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
288
  AddAttr<std::vector<int>>("strides",
C
chengduoZH 已提交
289
                            "(vector<int> default:{1, 1, 1}), the "
290
                            "strides{d_stride, h_stride, w_stride} of "
C
chengduoZH 已提交
291
                            "convolution transpose operator.")
C
chengduoZH 已提交
292
      .SetDefault({1, 1, 1});
C
chengduoZH 已提交
293
  AddAttr<std::vector<int>>("paddings",
C
chengduoZH 已提交
294
                            "(vector<int> default:{0, 0, 0}), paddings(d_pad, "
C
chengduoZH 已提交
295
                            "h_pad, w_pad) of convolution transpose operator.")
C
chengduoZH 已提交
296
      .SetDefault({0, 0, 0});
297 298 299 300
  AddAttr<int>("groups",
               "(int default:1), the groups number of the convolution3d "
               "transpose operator. ")
      .SetDefault(1);
301 302 303 304
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
305 306 307
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
308 309 310 311
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
312 313 314 315 316 317 318 319 320
      "Specify that the data format of the input and output data is "
      "channel_first or channel_last.")
      .SetDefault("NCHW");
  AddAttr<std::string>(
      "padding_algorithm",
      "(string, default \"EXPLICIT\") An optional string from: \"EXPLICIT\","
      "\"SAME\",\"VALID\". Set to \"EXPLICIT\" for explicit padding. "
      "Set to \"SAME\" or \"VALID\" for algorithm of padding. ")
      .SetDefault("EXPLICIT");
321 322 323 324 325 326
  AddAttr<int>("workspace_size_MB",
               "Used in cudnn kernel only. workspace size for cudnn, in MB, "
               "workspace is a section of GPU memory which will be "
               "allocated/freed each time the operator runs, larger "
               "workspace size can increase performance but also requires "
               "better hardward. This size should be carefully setted.")
327
      .SetDefault(platform::GetDefaultConvWorkspaceSizeLimitMB());
C
chengduoZH 已提交
328
  AddComment(R"DOC(
C
chengduoZH 已提交
329 330
Convolution3D Transpose Operator.

C
chengduoZH 已提交
331
The convolution transpose operation calculates the output based on the input, filter
C
chengduoZH 已提交
332
and dilations, strides, paddings, groups parameters. The size of each dimension of the
C
chengduoZH 已提交
333
parameters is checked in the infer-shape.
334
Input(Input) and output(Output) are in NCDHW or NDHWC format. Where N is batch size, C is the
C
chengduoZH 已提交
335 336 337 338 339 340 341
number of channels, D is the depth of the feature, H is the height of the feature,
and W is the width of the feature.
Filter(Input) is in MCDHW format. Where M is the number of input feature channels,
C is the number of output feature channels, D is the depth of the filter,H is the
height of the filter, and W is the width of the filter.
Parameters(strides, paddings) are three elements. These three elements represent
depth, height and width, respectively.
C
chengduoZH 已提交
342
The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
343

344
Example:
C
chengduoZH 已提交
345
  Input:
C
chengduoZH 已提交
346 347
       Input shape: $(N, C_{in}, D_{in}, H_{in}, W_{in})$
       Filter shape: $(C_{in}, C_{out}, D_f, H_f, W_f)$
C
chengduoZH 已提交
348
  Output:
C
chengduoZH 已提交
349 350 351
       Output shape: $(N, C_{out}, D_{out}, H_{out}, W_{out})$
  Where
  $$
352 353 354
       D_{out} = (D_{in} - 1) * strides[0] - pad_depth_front - pad_depth_back + dilations[0] * (D_f - 1) + 1 \\
       H_{out} = (H_{in} - 1) * strides[1] - pad_height_top  - pad_height_bottom + dilations[1] * (H_f - 1) + 1 \\
       W_{out} = (W_{in} - 1) * strides[2] - pad_width_left - pad_width_right + dilations[2] * (W_f - 1) + 1
C
chengduoZH 已提交
355
  $$
C
chengduoZH 已提交
356 357 358
)DOC");
}

C
chengduoZH 已提交
359
void ConvTransposeOpGrad::InferShape(framework::InferShapeContext* ctx) const {
C
chengduoZH 已提交
360 361 362 363 364 365 366 367 368 369
  auto in_dims = ctx->GetInputDim("Input");
  auto filter_dims = ctx->GetInputDim("Filter");
  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("Filter"))) {
    ctx->SetOutputDim(framework::GradVarName("Filter"), filter_dims);
  }
}

370 371 372
framework::OpKernelType ConvTransposeOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  bool use_cudnn = ctx.Attr<bool>("use_cudnn");
373
  use_cudnn &= platform::is_gpu_place(ctx.GetPlace());
C
chengduoZH 已提交
374 375 376 377 378 379
#ifdef PADDLE_WITH_CUDA
  if (platform::is_gpu_place(ctx.GetPlace())) {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    use_cudnn &= dev_ctx.cudnn_handle() != nullptr;
  }
#endif
380 381 382 383 384 385 386
  framework::LibraryType library_;
  if (use_cudnn) {
    library_ = framework::LibraryType::kCUDNN;
  } else {
    library_ = framework::LibraryType::kPlain;
  }

387
  framework::DataLayout layout_ = framework::DataLayout::kAnyLayout;
388 389 390
  return framework::OpKernelType(
      OperatorWithKernel::IndicateVarDataType(ctx, "Input"), ctx.GetPlace(),
      layout_, library_);
391 392
}

H
hong 已提交
393 394
template <typename T>
class ConvTransposeGradOpMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
395
 public:
H
hong 已提交
396
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
397 398

 protected:
H
hong 已提交
399 400 401 402 403 404 405 406 407 408
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("Input", this->Input("Input"));
    op->SetInput("Filter", this->Input("Filter"));
    op->SetOutput(framework::GradVarName("Input"), this->InputGrad("Input"));
    op->SetOutput(framework::GradVarName("Filter"), this->InputGrad("Filter"));
    if (this->HasInput("Bias")) {
      op->SetInput("Bias", this->Input("Bias"));
      op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
S
sneaxiy 已提交
409
    }
H
hong 已提交
410 411
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
    op->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
412 413 414 415
    return op;
  }
};

C
chengduoZH 已提交
416 417 418 419
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
C
chengduoZH 已提交
420

421
// conv2d_transpose
Y
Yang Yang 已提交
422 423
REGISTER_OPERATOR(conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
424 425
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
426
REGISTER_OPERATOR(conv2d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
427 428

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
429
    conv2d_transpose,
Q
QI JUN 已提交
430 431
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
432
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
433
    conv2d_transpose_grad,
Q
QI JUN 已提交
434 435 436
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
C
chengduoZH 已提交
437

438
// conv3d_transpose
Y
Yang Yang 已提交
439 440
REGISTER_OPERATOR(conv3d_transpose, ops::ConvTransposeOp,
                  ops::Conv3DTransposeOpMaker,
H
hong 已提交
441 442
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
443
REGISTER_OPERATOR(conv3d_transpose_grad, ops::ConvTransposeOpGrad);
C
chengduoZH 已提交
444 445

REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
446
    conv3d_transpose,
Q
QI JUN 已提交
447 448
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
C
chengduoZH 已提交
449
REGISTER_OP_CPU_KERNEL(
C
chengduoZH 已提交
450
    conv3d_transpose_grad,
Q
QI JUN 已提交
451 452 453
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);
454 455 456 457

// depthwise conv2d_transpose
REGISTER_OPERATOR(depthwise_conv2d_transpose, ops::ConvTransposeOp,
                  ops::Conv2DTransposeOpMaker,
H
hong 已提交
458 459
                  ops::ConvTransposeGradOpMaker<paddle::framework::OpDesc>,
                  ops::ConvTransposeGradOpMaker<paddle::imperative::OpBase>);
460 461 462 463 464 465 466 467 468 469 470
REGISTER_OPERATOR(depthwise_conv2d_transpose_grad, ops::ConvTransposeOpGrad);

REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    depthwise_conv2d_transpose_grad,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GemmConvTransposeGradKernel<paddle::platform::CPUDeviceContext,
                                     double>);