test_yolov3_loss_op.py 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

D
dengkaipeng 已提交
26 27 28 29
def l2loss(x, y):
    return 0.5 * (y - x) * (y - x)


30
def sce(x, label):
31 32 33
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
34
    return -term1 - term2
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


D
dengkaipeng 已提交
69
def YOLOv3Loss(x, gtbox, gtlabel, attrs):
70 71 72 73 74 75 76 77
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
D
dengkaipeng 已提交
78 79
    downsample = attrs['downsample']
    input_size = downsample * h
80 81 82 83 84 85 86 87 88
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

D
dengkaipeng 已提交
89 90 91 92
    x[:, :, :, :, 5:] = np.where(x[:, :, :, :, 5:] < -0.5, x[:, :, :, :, 5:],
                                 np.ones_like(x[:, :, :, :, 5:]) * 1.0 /
                                 class_num)

93 94 95 96 97 98 99 100 101 102 103 104
    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
D
dengkaipeng 已提交
105
    objness = np.zeros(pred_box.shape[:2]).astype('float32')
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
123
    gt_matches = iou_matches.copy()
124 125 126
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
127
                gt_matches[i, j] = -1
128 129
                continue
            if iou_matches[i, j] not in anchor_mask:
130
                gt_matches[i, j] = -1
131 132
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
133
            gt_matches[i, j] = an_idx
134 135 136 137 138 139 140
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
D
dengkaipeng 已提交
141
            scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3])
142 143
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
D
dengkaipeng 已提交
144 145
            loss[i] += l2loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l2loss(x[i, an_idx, gj, gi, 3], th) * scale
146

D
dengkaipeng 已提交
147
            objness[i, an_idx * h * w + gj * w + gi] = 1.0
148 149

            for label_idx in range(class_num):
D
dengkaipeng 已提交
150 151
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx],
                               float(label_idx == gtlabel[i, j]))
152 153

        for j in range(mask_num * h * w):
D
dengkaipeng 已提交
154
            if objness[i, j] > 0:
D
dengkaipeng 已提交
155
                loss[i] += sce(pred_obj[i, j], 1.0)
D
dengkaipeng 已提交
156 157
            elif objness[i, j] == 0:
                loss[i] += sce(pred_obj[i, j], 0.0)
158

D
dengkaipeng 已提交
159
    return (loss, objness.reshape((n, mask_num, h, w)).astype('float32'), \
160
            gt_matches.astype('int32'))
161 162


163 164 165 166
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
167
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
168
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
169 170 171 172
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
173 174 175

        self.attrs = {
            "anchors": self.anchors,
176
            "anchor_mask": self.anchor_mask,
177 178
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
D
dengkaipeng 已提交
179
            "downsample": self.downsample,
180 181
        }

D
dengkaipeng 已提交
182 183 184
        self.inputs = {
            'X': x,
            'GTBox': gtbox.astype('float32'),
D
dengkaipeng 已提交
185
            'GTLabel': gtlabel.astype('int32'),
D
dengkaipeng 已提交
186
        }
D
dengkaipeng 已提交
187
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, self.attrs)
188 189 190 191 192
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
193 194

    def test_check_output(self):
195
        place = core.CPUPlace()
D
dengkaipeng 已提交
196
        self.check_output_with_place(place, atol=1e-3)
197

D
dengkaipeng 已提交
198 199 200 201 202
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
D
dengkaipeng 已提交
203
            no_grad_set=set(["GTBox", "GTLabel"]),
D
dengkaipeng 已提交
204
            max_relative_error=0.3)
205 206

    def initTestCase(self):
D
dengkaipeng 已提交
207 208 209 210
        self.anchors = [10, 13, 16, 30, 33, 23]
        self.anchor_mask = [1, 2]
        self.class_num = 5
        self.ignore_thresh = 0.5
D
dengkaipeng 已提交
211
        self.downsample = 32
212
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
213
        self.gtbox_shape = (3, 5, 4)
214 215 216 217


if __name__ == "__main__":
    unittest.main()