test_yolov3_loss_op.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

26 27
def l1loss(x, y):
    return abs(x - y)
28 29


30
def sce(x, label):
31 32 33
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
34
    return -term1 - term2
35 36


37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


D
dengkaipeng 已提交
69
def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
70 71 72 73 74 75 76 77 78
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
    downsample = attrs['downsample']
T
tink2123 已提交
79
    use_label_smooth = attrs['use_label_smooth']
80 81 82 83 84 85 86 87 88 89
    input_size = downsample * h
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

D
dengkaipeng 已提交
90 91 92 93
    x[:, :, :, :, 5:] = np.where(x[:, :, :, :, 5:] < -0.5, x[:, :, :, :, 5:],
                                 np.ones_like(x[:, :, :, :, 5:]) * 1.0 /
                                 class_num)

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
    objness = np.zeros(pred_box.shape[:2])
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
124
    gt_matches = iou_matches.copy()
125 126 127
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
128
                gt_matches[i, j] = -1
129 130
                continue
            if iou_matches[i, j] not in anchor_mask:
131
                gt_matches[i, j] = -1
132 133
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
134
            gt_matches[i, j] = an_idx
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
            scale = 2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l1loss(x[i, an_idx, gj, gi, 3], th) * scale

            objness[i, an_idx * h * w + gj * w + gi] = 1

            for label_idx in range(class_num):
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx],
D
dengkaipeng 已提交
152
                               int(label_idx == gtlabel[i, j]) * gtscore[i, j])
153 154 155 156 157

        for j in range(mask_num * h * w):
            if objness[i, j] >= 0:
                loss[i] += sce(pred_obj[i, j], objness[i, j])

158 159
    return (loss, objness.reshape((n, mask_num, h, w)).astype('int32'), \
            gt_matches.astype('int32'))
160 161


162 163 164 165
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
166
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
167
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
168
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
D
dengkaipeng 已提交
169
        gtscore = np.random.random(self.gtbox_shape[:2]).astype('float32')
D
dengkaipeng 已提交
170 171 172
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
173 174 175

        self.attrs = {
            "anchors": self.anchors,
176
            "anchor_mask": self.anchor_mask,
177 178
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
179
            "downsample": self.downsample,
180
            "use_label_smooth": self.use_label_smooth,
181 182
        }

D
dengkaipeng 已提交
183 184 185
        self.inputs = {
            'X': x,
            'GTBox': gtbox.astype('float32'),
D
dengkaipeng 已提交
186 187
            'GTLabel': gtlabel.astype('int32'),
            'GTScore': gtscore.astype('float32')
D
dengkaipeng 已提交
188
        }
D
dengkaipeng 已提交
189 190
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, gtscore,
                                               self.attrs)
191 192 193 194 195
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
196 197

    def test_check_output(self):
198
        place = core.CPUPlace()
199
        self.check_output_with_place(place, atol=2e-3)
200

D
dengkaipeng 已提交
201 202 203 204 205
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
D
dengkaipeng 已提交
206 207
            no_grad_set=set(["GTBox", "GTLabel", "GTScore"]),
            max_relative_error=0.2)
208 209

    def initTestCase(self):
210 211 212 213 214
        self.anchors = [
            10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198,
            373, 326
        ]
        self.anchor_mask = [0, 1, 2]
D
dengkaipeng 已提交
215
        self.class_num = 10
216 217 218
        self.ignore_thresh = 0.7
        self.downsample = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
219
        self.gtbox_shape = (3, 10, 4)
220 221 222 223 224 225
        self.use_label_smooth = True


class TestYolov3LossWithLabelSmooth(TestYolov3LossOp):
    def set_label_smooth(self):
        self.use_label_smooth = True
226 227 228 229


if __name__ == "__main__":
    unittest.main()