test_yolov3_loss_op.py 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import division

17 18
import unittest
import numpy as np
19 20
from scipy.special import logit
from scipy.special import expit
21 22
from op_test import OpTest

23 24
from paddle.fluid import core

D
dengkaipeng 已提交
25

26 27
def l1loss(x, y):
    return abs(x - y)
28 29


D
dengkaipeng 已提交
30 31 32 33
def l2loss(x, y):
    return 0.5 * (y - x) * (y - x)


34
def sce(x, label):
35 36 37
    sigmoid_x = expit(x)
    term1 = label * np.log(sigmoid_x)
    term2 = (1.0 - label) * np.log(1.0 - sigmoid_x)
38
    return -term1 - term2
39 40


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
def sigmoid(x):
    return 1.0 / (1.0 + np.exp(-1.0 * x))


def batch_xywh_box_iou(box1, box2):
    b1_left = box1[:, :, 0] - box1[:, :, 2] / 2
    b1_right = box1[:, :, 0] + box1[:, :, 2] / 2
    b1_top = box1[:, :, 1] - box1[:, :, 3] / 2
    b1_bottom = box1[:, :, 1] + box1[:, :, 3] / 2

    b2_left = box2[:, :, 0] - box2[:, :, 2] / 2
    b2_right = box2[:, :, 0] + box2[:, :, 2] / 2
    b2_top = box2[:, :, 1] - box2[:, :, 3] / 2
    b2_bottom = box2[:, :, 1] + box2[:, :, 3] / 2

    left = np.maximum(b1_left[:, :, np.newaxis], b2_left[:, np.newaxis, :])
    right = np.minimum(b1_right[:, :, np.newaxis], b2_right[:, np.newaxis, :])
    top = np.maximum(b1_top[:, :, np.newaxis], b2_top[:, np.newaxis, :])
    bottom = np.minimum(b1_bottom[:, :, np.newaxis],
                        b2_bottom[:, np.newaxis, :])

    inter_w = np.clip(right - left, 0., 1.)
    inter_h = np.clip(bottom - top, 0., 1.)
    inter_area = inter_w * inter_h

    b1_area = (b1_right - b1_left) * (b1_bottom - b1_top)
    b2_area = (b2_right - b2_left) * (b2_bottom - b2_top)
    union = b1_area[:, :, np.newaxis] + b2_area[:, np.newaxis, :] - inter_area

    return inter_area / union


D
dengkaipeng 已提交
73
def YOLOv3Loss(x, gtbox, gtlabel, gtscore, attrs):
74 75 76 77 78 79 80 81 82
    n, c, h, w = x.shape
    b = gtbox.shape[1]
    anchors = attrs['anchors']
    an_num = len(anchors) // 2
    anchor_mask = attrs['anchor_mask']
    mask_num = len(anchor_mask)
    class_num = attrs["class_num"]
    ignore_thresh = attrs['ignore_thresh']
    downsample = attrs['downsample']
T
tink2123 已提交
83
    use_label_smooth = attrs['use_label_smooth']
84 85 86 87
    input_size = downsample * h
    x = x.reshape((n, mask_num, 5 + class_num, h, w)).transpose((0, 1, 3, 4, 2))
    loss = np.zeros((n)).astype('float32')

D
dengkaipeng 已提交
88 89 90
    label_pos = 1.0 - 1.0 / class_num if use_label_smooth else 1.0
    label_neg = 1.0 / class_num if use_label_smooth else 0.0

91 92 93 94 95 96
    pred_box = x[:, :, :, :, :4].copy()
    grid_x = np.tile(np.arange(w).reshape((1, w)), (h, 1))
    grid_y = np.tile(np.arange(h).reshape((h, 1)), (1, w))
    pred_box[:, :, :, :, 0] = (grid_x + sigmoid(pred_box[:, :, :, :, 0])) / w
    pred_box[:, :, :, :, 1] = (grid_y + sigmoid(pred_box[:, :, :, :, 1])) / h

D
dengkaipeng 已提交
97 98 99 100
    x[:, :, :, :, 5:] = np.where(x[:, :, :, :, 5:] < -0.5, x[:, :, :, :, 5:],
                                 np.ones_like(x[:, :, :, :, 5:]) * 1.0 /
                                 class_num)

101 102 103 104 105 106 107 108 109 110 111 112
    mask_anchors = []
    for m in anchor_mask:
        mask_anchors.append((anchors[2 * m], anchors[2 * m + 1]))
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in mask_anchors])
    anchor_w = anchors_s[:, 0:1].reshape((1, mask_num, 1, 1))
    anchor_h = anchors_s[:, 1:2].reshape((1, mask_num, 1, 1))
    pred_box[:, :, :, :, 2] = np.exp(pred_box[:, :, :, :, 2]) * anchor_w
    pred_box[:, :, :, :, 3] = np.exp(pred_box[:, :, :, :, 3]) * anchor_h

    pred_box = pred_box.reshape((n, -1, 4))
    pred_obj = x[:, :, :, :, 4].reshape((n, -1))
D
dengkaipeng 已提交
113
    objness = np.zeros(pred_box.shape[:2]).astype('float32')
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    ious = batch_xywh_box_iou(pred_box, gtbox)
    ious_max = np.max(ious, axis=-1)
    objness = np.where(ious_max > ignore_thresh, -np.ones_like(objness),
                       objness)

    gtbox_shift = gtbox.copy()
    gtbox_shift[:, :, 0] = 0
    gtbox_shift[:, :, 1] = 0

    anchors = [(anchors[2 * i], anchors[2 * i + 1]) for i in range(0, an_num)]
    anchors_s = np.array(
        [(an_w / input_size, an_h / input_size) for an_w, an_h in anchors])
    anchor_boxes = np.concatenate(
        [np.zeros_like(anchors_s), anchors_s], axis=-1)
    anchor_boxes = np.tile(anchor_boxes[np.newaxis, :, :], (n, 1, 1))
    ious = batch_xywh_box_iou(gtbox_shift, anchor_boxes)
    iou_matches = np.argmax(ious, axis=-1)
131
    gt_matches = iou_matches.copy()
132 133 134
    for i in range(n):
        for j in range(b):
            if gtbox[i, j, 2:].sum() == 0:
135
                gt_matches[i, j] = -1
136 137
                continue
            if iou_matches[i, j] not in anchor_mask:
138
                gt_matches[i, j] = -1
139 140
                continue
            an_idx = anchor_mask.index(iou_matches[i, j])
141
            gt_matches[i, j] = an_idx
142 143 144 145 146 147 148
            gi = int(gtbox[i, j, 0] * w)
            gj = int(gtbox[i, j, 1] * h)

            tx = gtbox[i, j, 0] * w - gi
            ty = gtbox[i, j, 1] * w - gj
            tw = np.log(gtbox[i, j, 2] * input_size / mask_anchors[an_idx][0])
            th = np.log(gtbox[i, j, 3] * input_size / mask_anchors[an_idx][1])
D
dengkaipeng 已提交
149
            scale = (2.0 - gtbox[i, j, 2] * gtbox[i, j, 3]) * gtscore[i, j]
150 151
            loss[i] += sce(x[i, an_idx, gj, gi, 0], tx) * scale
            loss[i] += sce(x[i, an_idx, gj, gi, 1], ty) * scale
D
dengkaipeng 已提交
152 153
            loss[i] += l2loss(x[i, an_idx, gj, gi, 2], tw) * scale
            loss[i] += l2loss(x[i, an_idx, gj, gi, 3], th) * scale
154

D
dengkaipeng 已提交
155
            objness[i, an_idx * h * w + gj * w + gi] = gtscore[i, j]
156 157

            for label_idx in range(class_num):
D
dengkaipeng 已提交
158
                loss[i] += sce(x[i, an_idx, gj, gi, 5 + label_idx], label_pos
D
dengkaipeng 已提交
159 160
                               if label_idx == gtlabel[i, j] else
                               label_neg) * gtscore[i, j]
161 162

        for j in range(mask_num * h * w):
D
dengkaipeng 已提交
163 164 165 166
            if objness[i, j] > 0:
                loss[i] += sce(pred_obj[i, j], 1.0) * objness[i, j]
            elif objness[i, j] == 0:
                loss[i] += sce(pred_obj[i, j], 0.0)
167

D
dengkaipeng 已提交
168
    return (loss, objness.reshape((n, mask_num, h, w)).astype('float32'), \
169
            gt_matches.astype('int32'))
170 171


172 173 174 175
class TestYolov3LossOp(OpTest):
    def setUp(self):
        self.initTestCase()
        self.op_type = 'yolov3_loss'
176
        x = logit(np.random.uniform(0, 1, self.x_shape).astype('float32'))
177
        gtbox = np.random.random(size=self.gtbox_shape).astype('float32')
D
dengkaipeng 已提交
178
        gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2])
D
dengkaipeng 已提交
179
        gtscore = np.random.random(self.gtbox_shape[:2]).astype('float32')
D
dengkaipeng 已提交
180 181 182
        gtmask = np.random.randint(0, 2, self.gtbox_shape[:2])
        gtbox = gtbox * gtmask[:, :, np.newaxis]
        gtlabel = gtlabel * gtmask
183 184 185

        self.attrs = {
            "anchors": self.anchors,
186
            "anchor_mask": self.anchor_mask,
187 188
            "class_num": self.class_num,
            "ignore_thresh": self.ignore_thresh,
189
            "downsample": self.downsample,
190
            "use_label_smooth": self.use_label_smooth,
191 192
        }

D
dengkaipeng 已提交
193 194 195
        self.inputs = {
            'X': x,
            'GTBox': gtbox.astype('float32'),
D
dengkaipeng 已提交
196 197
            'GTLabel': gtlabel.astype('int32'),
            'GTScore': gtscore.astype('float32')
D
dengkaipeng 已提交
198
        }
D
dengkaipeng 已提交
199 200
        loss, objness, gt_matches = YOLOv3Loss(x, gtbox, gtlabel, gtscore,
                                               self.attrs)
201 202 203 204 205
        self.outputs = {
            'Loss': loss,
            'ObjectnessMask': objness,
            "GTMatchMask": gt_matches
        }
206 207

    def test_check_output(self):
208
        place = core.CPUPlace()
D
dengkaipeng 已提交
209
        self.check_output_with_place(place, atol=1e-3)
210

D
dengkaipeng 已提交
211 212 213 214 215
    def test_check_grad_ignore_gtbox(self):
        place = core.CPUPlace()
        self.check_grad_with_place(
            place, ['X'],
            'Loss',
D
dengkaipeng 已提交
216
            no_grad_set=set(["GTBox", "GTLabel", "GTScore"]),
D
dengkaipeng 已提交
217
            max_relative_error=0.3)
218 219

    def initTestCase(self):
D
dengkaipeng 已提交
220 221 222 223
        self.anchors = [10, 13, 16, 30, 33, 23]
        self.anchor_mask = [1, 2]
        self.class_num = 5
        self.ignore_thresh = 0.5
224 225
        self.downsample = 32
        self.x_shape = (3, len(self.anchor_mask) * (5 + self.class_num), 5, 5)
D
dengkaipeng 已提交
226
        self.gtbox_shape = (3, 5, 4)
227 228 229
        self.use_label_smooth = True


D
dengkaipeng 已提交
230
class TestYolov3LossWithoutLabelSmooth(TestYolov3LossOp):
231
    def set_label_smooth(self):
D
dengkaipeng 已提交
232
        self.use_label_smooth = False
233 234 235 236


if __name__ == "__main__":
    unittest.main()