cross_entropy_op.cc 8.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/cross_entropy_op.h"
C
chengduo 已提交
16
#include <string>
Q
Qiao Longfei 已提交
17 18 19 20

namespace paddle {
namespace operators {

21
class CrossEntropyOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");
29

Q
Qiao Longfei 已提交
30 31
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
F
stash  
fengjiayi 已提交
32 33 34 35 36 37 38
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(rank, label_dims.size(),
                      "Input(X) and Input(Label) shall have the same rank.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "Input(X) and Input(Label) shall have the same shape "
                      "except the last dimension.");
39
    if (ctx->Attrs().Get<bool>("soft_label")) {
F
stash  
fengjiayi 已提交
40 41
      PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                        "If Attr(soft_label) == true, the last dimension of "
C
caoying03 已提交
42
                        "Input(X) and Input(Label) should be equal.");
43
    } else {
F
stash  
fengjiayi 已提交
44 45
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1UL,
                        "If Attr(softLabel) == false, the last dimension of "
C
caoying03 已提交
46
                        "Input(Label) should be 1.");
47
    }
48

F
fengjiayi 已提交
49 50 51
    auto y_dims = x_dims;
    y_dims[rank - 1] = 1;
    ctx->SetOutputDim("Y", y_dims);
Q
Qiao Longfei 已提交
52
    ctx->ShareLoD("X", /*->*/ "Y");
Q
Qiao Longfei 已提交
53
  }
Y
Yu Yang 已提交
54

55
 protected:
C
Cao Ying 已提交
56
  // Explicitly set that the data type of computation kernel of cross_entropy
C
caoying03 已提交
57
  // is determined by its input "X".
58
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
59
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
60 61 62
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
63
  }
Q
Qiao Longfei 已提交
64 65
};

66
class CrossEntropyGradientOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
67 68 69
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

70
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
71 72 73 74 75 76
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) shoudl be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");
77

Q
Qiao Longfei 已提交
78 79 80
    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
F
stash  
fengjiayi 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    int rank = x_dims.size();
    PADDLE_ENFORCE_EQ(dy_dims.size(), rank,
                      "Input(Y@Grad) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(label_dims.size(), rank,
                      "Input(Label) and Input(X) should have the same rank.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(label_dims, 0, rank - 1),
                      "The Input(X) and Input(Label) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(framework::slice_ddim(x_dims, 0, rank - 1),
                      framework::slice_ddim(dy_dims, 0, rank - 1),
                      "The Input(X) and Input(Y@Grad) should have the same "
                      "shape except the last dimension.");
    PADDLE_ENFORCE_EQ(dy_dims[rank - 1], 1,
                      "The last dimension of Input(Y@Grad) should be 1.");
96
    if (ctx->Attrs().Get<bool>("soft_label")) {
F
stash  
fengjiayi 已提交
97 98
      PADDLE_ENFORCE_EQ(x_dims[rank - 1], label_dims[rank - 1],
                        "When Attr(soft_label) == true, the last dimension of "
C
caoying03 已提交
99
                        "Input(X) and Input(Label) should be equal.");
100
    } else {
F
stash  
fengjiayi 已提交
101 102
      PADDLE_ENFORCE_EQ(label_dims[rank - 1], 1,
                        "When Attr(soft_label) == false, the last dimension of "
C
caoying03 已提交
103
                        "Input(Label) should be 1.");
104
    }
Q
Qiao Longfei 已提交
105
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
Q
Qiao Longfei 已提交
106
    ctx->ShareLoD("X", framework::GradVarName("X"));
Y
Yan Chunwei 已提交
107
  }
Y
Yu Yang 已提交
108

109
 protected:
C
Cao Ying 已提交
110 111
  // Explicitly set that the data type of computation kernel of cross_entropy
  // is determined by its input "X".
112
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
113
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
114 115 116
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
117
  }
Y
Yan Chunwei 已提交
118 119
};

120
class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker {
121
 public:
Y
Yu Yang 已提交
122
  void Make() override {
C
caoying03 已提交
123
    AddInput("X",
F
stash  
fengjiayi 已提交
124 125 126 127 128 129 130 131 132 133
             "(Tensor, default Tensor<float>), a tensor whose last dimension "
             "size is equal to the number of classes. This input is a "
             "probability computed by the previous operator, which is almost "
             "always the result of a softmax operator.");
    AddInput(
        "Label",
        "(Tensor), the tensor which represents the ground truth. It has the "
        "same shape with 'X' except the last dimension. When soft_label is set "
        "to false, the last dimension size is 1; when soft_label is set to "
        "true, the last dimension size is equal to the number of classes.");
C
caoying03 已提交
134
    AddOutput("Y",
F
stash  
fengjiayi 已提交
135 136 137
              "(Tensor, default Tensor<float>), a tensor whose shape is same "
              "with 'X' except that the last dimension size is 1. It "
              "represents the cross entropy loss.");
C
caoying03 已提交
138 139 140
    AddAttr<bool>("soft_label",
                  "(bool, default false), a flag indicating whether to "
                  "interpretate the given labels as soft labels.")
141
        .SetDefault(false);
142 143 144 145 146
    AddAttr<int>("ignore_index",
                 "(int, default -100), Specifies a target value that is"
                 "ignored and does not contribute to the input gradient."
                 "Only valid if soft_label is set to False")
        .SetDefault(-100);
Q
Qiao Longfei 已提交
147
    AddComment(R"DOC(
148
CrossEntropy Operator.
Q
Qiao Longfei 已提交
149

F
stash  
fengjiayi 已提交
150 151 152 153 154 155
The input 'X' and 'Label' will first be logically flattened to 2-D matrixs. 
The matrix's second dimension(row length) is as same as the original last 
dimension, and the first dimension(column length) is the product of all other 
original dimensions. Then the softmax computation will take palce on each raw 
of flattened matrixs.

156 157 158
It supports both standard cross-entropy and soft-label cross-entropy loss
computation.
1) One-hot cross-entropy:
159
    soft_label = false, Label[i, 0] indicates the class index for sample i:
160

K
Kexin Zhao 已提交
161
                $Y[i] = -\log(X[i, Label[i]])$
Q
Qiao Longfei 已提交
162

163
2) Soft-label cross-entropy:
164
    soft_label = true, Label[i, j] indicates the soft label of class j
165
    for sample i:
166

K
Kexin Zhao 已提交
167
                $Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}$
168

169
   Please make sure that in this case the summuation of each row of Label
170 171 172 173 174 175
   equals one.

3) One-hot cross-entropy with vecterized Input(Label):
     As a special case of 2), when each row of Input(Label) has only one
     non-zero element (equals 1), soft-label cross-entropy degenerates to a
     one-hot cross-entropy with one-hot label representation.
D
dangqingqing 已提交
176

K
Kexin Zhao 已提交
177 178 179
Both the input X and Label can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.

Q
Qiao Longfei 已提交
180 181 182
)DOC");
  }
};
C
chengduo 已提交
183 184 185 186 187 188 189 190 191

class CrossEntropyOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};
Q
Qiao Longfei 已提交
192 193 194
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
195
namespace ops = paddle::operators;
196 197
using CPUCtx = paddle::platform::CPUDeviceContext;

Y
Yang Yang 已提交
198
REGISTER_OPERATOR(cross_entropy, ops::CrossEntropyOp, ops::CrossEntropyOpMaker,
C
chengduo 已提交
199
                  ops::CrossEntropyOpInferVarType,
200 201
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(cross_entropy_grad, ops::CrossEntropyGradientOp);
202 203
REGISTER_OP_CPU_KERNEL(cross_entropy, ops::CrossEntropyOpKernel<CPUCtx, float>,
                       ops::CrossEntropyOpKernel<CPUCtx, double>);
204
REGISTER_OP_CPU_KERNEL(cross_entropy_grad,
205 206
                       ops::CrossEntropyGradientOpKernel<CPUCtx, float>,
                       ops::CrossEntropyGradientOpKernel<CPUCtx, double>);